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Abstract 

The Noether theorem establishes that symmetries in physics correspond to conservation laws, and 

therefore contra-positively that un-conserved quantities correspond to broken symmetries. This 

theorem was not established for dynamic systems in discrete space and discrete time, but the 

author in previous work has observed that replication of published cellular automata (CA) loop 

structures corresponds to chiral asymmetries. The work described here shows that replication of a 

different kind of CA replicator (the HighLife replicator of Nathan Thompson, 1994) corresponds to 

loss and restoration of a line of symmetry in each replication cycle. In addition to my past 

observations of loop replication chirality, the broken symmetry observed in the achiral replication of 

the achiral Thompson replicator suggests a hypothetical general principle of a correspondence 

between replication observed as an un-conserved (increasing) number of replicator instances and a 

range of broken symmetries. The paper concludes with some speculation about the possible 

relevance of simple CA replicators to proto-biology. 
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Introduction 

The theorem of Emmy Noether (1918) has become a deep principle of modern physics [8]. It shows 

that differentiable (continuous) symmetries of physics (i.e., invariance with continuous translation) 

correspond to conserved physical quantities. The theorem was derived from Lagrangian 

formulations of the dynamics of physical bodies in our universe of apparent continuous space and 

continuous time.  The theorem shows that space translation-, time translation- and rotation-

invariances correspond respectively to conservation of linear momentum, mass/energy and angular 

momentum. 

Recognition of the correspondence of symmetry to conservation laws suggests a contrapositive 

form: does an un-conserved quantity correspond to a broken symmetry? The second law of 

thermodynamics is a recognition that un-conserved entropy corresponds to the “arrow of time” 

(broken T-symmetry), but recognizing this, we can ask: is thermodynamics within the scope of the 

Noether theorem? 

Entropy is understood at the scale of discrete entities, e.g., ordered to disordered distributions of 

discrete molecules in fluids, so the answer to the question is of strong recent and continuing 

interest, e.g., [7]. Continuous entropy is well-defined as an obvious extension of Shannon entropy, 

but it has flaws which contraindicate its relevance to experimental and observational sciences, 

except that continuous relative entropy is useful for mathematical reasoning in information theory 

[6]. 

Subject to the ideal condition of no confounding interactions, we can readily recognize that in a 

cellular automata (CA) space equipped with a universal state-transition function, spatial translation 

symmetry applies in a limited discrete sense: the state-transition dynamics of a structure is not 

changed by moving (copying) the structure to elsewhere on the CA grid, nor does the dynamic 

behaviour change with any of the finite number of possible discrete rotations within the CA space 



(or rotation of the CA space), nor does insertion of a copy of a structure into open CA space at any 

arbitrary time correspond to any change in the dynamic behaviour.  

Recognising these correspondences of symmetry and invariance in CA universes prompts us to ask: 

are there general principles analogous to the principles of the Noether theorem which apply to 

dynamics within the discrete space and discrete time of CA universes? 

 

Cellular automata replicators 

Cellular automata environments can support replicators, and we may consider that replication in CA 

environments is of more relevance than the translations which are crucial in dynamics observed in 

continuous space and time. The computer scientist Gregory Chaitin states it thus: 

“… in this CA world … it is easier for an organism to reproduce itself than it is for it to move (translate 

itself).“ [2] 

In considering CA dynamics including replication, we can acknowledge the existence of symmetries 

and asymmetries. Symmetries of importance in CA replication are the structural 

symmetries/asymmetries of replicating structures, and the symmetries or asymmetries of the state 

transition functions which facilitate replication. 

Under the ideal conditions of one initial replicator instance in an otherwise quiescent/dead CA 

universe, replication cycles repeat indefinitely over time, so the number of replicator instances 

increases, i.e., the number of replicator instances and corresponding Shannon entropy are not 

conserved. The apparent arrow of time observed in our physical reality in which entropy is not 

conserved is also characteristic of CA universes: the iterative dynamic behaviour of CA structures in 

general is irreversible. 

 

CA loop replicators 

Self-replicating loops [1][3][5] are chiral in structure, and their replication process is chiral in the 

sense that there is no single comprehensive cell state-transition function which supports coexistence 

of left- and right-handed replication [9][10]. However, some particular permutations of the cell state 

set applied to a chiral replicator, but not applied to its mirror complement allow a functional 

heterochirality of replication [11][12]. In these arrangements, the left-handed replicator is not the 

mirror form of its right-handed complement due to one-sided reassignment of state-labels (e.g., a 

swapping of states 2 and 4 applied to only one of the two Byl replicator chiralities [11]), but with the 

chiral reassignment of states and applying the appropriate state-transition rules (e.g., Moore rules), 

left- and right-handed replication can coexist under a common state-transition function.  

 

HighLife: a variation of John Conway’s original Game of Life (GoL), and Nathan Thompson’s 

HighLife replicator 

We have noted that replication of Langton’s loop [5] and later simplifications of it [1][3] is chiral. 

However, there are structures in CA spaces which are achiral replicators. A simple example 

supported by a variation of Conway’s Game of Life (GoL) was discovered by Nathan Thompson in 

1994. A description can be found in [4], p. 386, Figure 12.2. 



The GoL variation (“HighLife”, rule string B36/S23) includes the rules of the original GoL, but adds 

the rule that a dead cell with exactly six live neighbours comes to life. The state-transition function is 

achiral (each explicit state-transition rule coexists with its corresponding mirror-complement in the 

state-transition function, so both left- and right-handed replication of any replicating structure is 

supported). The replicating structure discovered by Thompson is very small and simple – twelve live 

cells within a square region of 5x5 cells (Figure 1 below, Time = 0). The structure itself is achiral – it is 

its own mirror-complement, so a left- and right-handed distinction in the replication of this structure 

does not exist. 

The 26 panels (Time = 0 through to 24, and Time = 36) of Figure 1 below show replication of the 

Nathan Thompson replicator in detail: 
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Figure 1. Replication of the Nathan Thompson structure in the HighLife CA environment from one instance at Time = 0 to 

two instances sufficiently spatially separated for unimpeded replication of each to yield a total of four instances from Time 

= 24 to 36, shown in the last two frames. Superimposed oblique lines shown at Times 0, 10, 11 and 12 are lines of 

structural symmetry (see text for discussion). 

 

A replication cycle of the Nathan Thompson replicator incorporates transient loss of one of two lines 

of structural symmetry during each replication cycle – a different kind of broken symmetry from the 

chirality observed in CA loop replication.  

Figure 1 shows replication cycles from Time = 0 to 36, with one cycle completed by Time = 12. The 

live-state (state 1) configurations at Times 10 and 11 have lost the line of symmetry perpendicular to 

the line of symmetry along which replication propagates. The two perpendicular lines of symmetry 

are restored at Time = 12 when there are two completed instances of the initial Time = 0 replicator.  

By Time = 10, it is unambiguous that there are two identical structures which separately develop into 

instances of the initial Time = 0 replicator by Time = 12. However, these two instances of the 

replicator are too close together to continue a direct development to four instances – the two child 

instances which otherwise could develop between the two parent instances established at Time = 12 

mutually annihilate so that by Time = 24 there are still only two instances, but they are at this time 

sufficiently separated for successful replication to two children each by repeats of the replication 

dynamic shown in complete detail from Time = 0 to Time = 12. 
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Discussion 

While dynamic behaviour in CA universes breaks T-symmetry (i.e., is irreversible), observations of a 

narrow range of small, simple CA replicators indicate that replication requires additional 

corresponding broken symmetries – chiral asymmetries in the cases of replicating loops, or loss of 

structural lines of symmetry in cases of achiral replication. 

The hypothesis that replication is not possible without breaking of symmetries is falsifiable by 

identification of replication without broken or lost symmetries. The author is not aware of any such 

examples (but note the discussion below about Game of Life (GoL) glider dynamics). 

 

Interpretation of GoL glider dynamics as no-growth replication 

John Conway’s GoL and HighLife both support a structure of five live cells which advances in the grid 

by one cell as it iteratively cycles through four different structural configurations. This structure is 

well known to GoL enthusiasts as a glider [4]. 

As an alternative to recognizing glider dynamics as spatial translation, we might think of a glider 

walking across a GoL CA space as a replication in which production of one child corresponds to 

annihilation of the preceding parent structure, so replication with conservation of the number of 

replicator instances (i.e., never exceeding one instance) is equivalent to spatial translation. The cycle 

of four iterations per one-cell translation comprises two chiral live-state configurations with mirror-

complements, i.e., both left- and complement right-handed chiral structures coexist in the cycle. 

Additionally, the GoL state-transition function is achiral, therefore there are no chiral asymmetries in 

the dynamics of a GoL glider. There are also no lines of structural symmetry in any of the four 

structural configurations per glider cycle, so the number of lines of structural symmetry is conserved 

at zero. Aside from being irreversible, there are no asymmetries in the dynamics of a GoL glider.  

 

A general hypothesis 

With consideration of the observations of CA loop replication and the HighLife achiral replicator, we 

can consider a general hypothesis: 

A replication process generating an increasing population of replicators corresponds to one or more 

broken or lost symmetries in the replication cycle. The corresponding contrapositive form is that 

absence of asymmetries corresponds to no replication growth. 

The absence of asymmetries in the four-step GoL glider cycle coincides with its spatial translation. If 

we alternatively interpret the spatial translation of the GoL glider as no-growth replication as 

discussed above, we can interpret glider dynamics as consistent with the contrapositive form of the 

hypothesis. 

 

Relating replicator abstractions to prospective biological processes of the past 

If there is a credible correspondence of simple CA dynamics to ancestral biological phenomena, what 

might cell states correspond to, and how might the spatial distribution of cell states be interpreted? 



The simplicity of a small CA replicator may correspond to a small and simple proto-biological 

replicator, or to consider a wider range of possibilities, cell states may plausibly correspond to 

identifiably-distinct chemical networks, in which case a CA replicator may correspond to a more 

complex bio-dynamic system. 

With this prospective correspondence in mind, the rigid spatial arrangement of CA cells in a 

neighbourhood may then map logically to a pattern of local interactions between chemical 

networks, with a pattern of spatial arrangement less rigid than indicated by the CA cell 

neighbourhoods. A CA state-transition rule would then indicate the dynamics of local interactions 

between the chemical networks corresponding to the CA cell neighbourhood specified in the rule. 

As we have seen in this paper and past work, asymmetries corresponding to replication can be either 

achiral or chiral [9][10][11][12]. Given that we observe homochirality in contemporary extant 

biology, the chirality of CA loop replication [1][3][5] may be of particular relevance to thinking about 

the specific problem of the origin of handedness in biology. 

I conclude here with acknowledgement of “the elephant in the room”. It is obvious that replication 

of these CA structures is perfect, i.e., there is no evolutionary development. The prospective 

correspondence between cell states and more-complex chemical networks may provide a way 

forward for integration of evolutionary change. 
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