Contradiction for a Gravitational Plane Wave Pulse Colliding with a Mass

Karl De Paepe*

Abstract

We consider a system of a gravitational plane wave pulse colliding with a mass. We assume as size and mass go to zero that the the path of the mass approaches a geodesic of a plane gravitational wave pulse having zero Ricci tensor. Assume also that energy and momentum are conserved. We show these assumptions lead to a contradiction.

1 Plane gravitational wave pulse metric

Define $u=t-x$ and let the metric $g_{\mu \nu}(u)$ be [1]

$$
\begin{equation*}
d s^{2}=-d t^{2}+d x^{2}+[L(u)]^{2} e^{2 \beta(u)} d y^{2}+[L(u)]^{2} e^{-2 \beta(u)} d z^{2} \tag{1}
\end{equation*}
$$

having $L(u)=1$ and $\beta(u)=0$ for $u<0$ hence $g_{\mu \nu}(u)=\eta_{\mu \nu}$ for $u<0$. Let $\beta \neq 0$ and let $L(u)$ satisfy the equation

$$
\begin{equation*}
\frac{d^{2} L}{d u^{2}}(u)+\left[\frac{d \beta}{d u}(u)\right]^{2} L(u)=0 \tag{2}
\end{equation*}
$$

The metric $g_{\mu \nu}(u)$ then has zero Ricci tensor hence $R_{\mu \nu}=0$. It is then the metric of a gravitational plane wave pulse. We have by (2) as u increases from $u=0$ that $L(u)$ decreases from $L(0)=1$ and become zero at some point $u_{0}>0$. Consequently $g_{22}(u)>0$ for $u<u_{0}$.

2 Proper Lorentz transformation

Consider a coordinate transformation from t, x, y, z to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates that is a composition of a rotation by θ about the z axis followed by a boost by $2 \cos \theta /\left(1+\cos ^{2} \theta\right)$ in the x direction followed by a rotation by $\theta+\pi$ about the z axis. For θ / π not an integer this is a proper Lorentz transformation [2] such that

$$
\begin{align*}
t & =t^{\prime}\left(1+2 \cot ^{2} \theta\right)-2 x^{\prime} \cot ^{2} \theta+2 y^{\prime} \cot \theta \tag{3}\\
x & =2 t^{\prime} \cot ^{2} \theta+x^{\prime}\left(1-2 \cot ^{2} \theta\right)+2 y^{\prime} \cot \theta \tag{4}\\
y & =2 t^{\prime} \cot \theta-2 x^{\prime} \cot \theta+y^{\prime} \tag{5}\\
z & =z^{\prime} \tag{6}
\end{align*}
$$

By (3) and (4) we get $t-x=t^{\prime}-x^{\prime}=u^{\prime}$. By (3)-(6) we get the metric $g_{\mu \nu}^{\prime}\left(u^{\prime}\right)$

$$
\begin{align*}
d s^{2} & =\left\{-1-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta\right\} d t^{\prime 2}+8\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta d t^{\prime} d x^{\prime} \\
& +\left\{1-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot ^{2} \theta\right\} d x^{\prime 2}-4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot \theta d t^{\prime} d y^{\prime} \\
& +4\left[1-g_{22}\left(u^{\prime}\right)\right] \cot \theta d x^{\prime} d y^{\prime}+g_{22}\left(u^{\prime}\right) d y^{\prime 2}+g_{33}\left(u^{\prime}\right) d z^{\prime 2} \tag{7}
\end{align*}
$$

The metric $g_{\mu \nu}^{\prime}\left(u^{\prime}\right)$ satisfying $R_{\mu \nu}^{\prime}\left(u^{\prime}\right)=0$ and $g_{\mu \nu}^{\prime}\left(u^{\prime}\right)=\eta_{\mu \nu}$ for $u^{\prime}<0$ is then also the metric of a gravitational plane wave pulse.

[^0]
3 Geodesic curve

The curve

$$
\begin{align*}
t^{\prime}(\lambda) & =\left(1+2 \cot ^{2} \theta\right) \lambda-2 \cot ^{2} \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{8}\\
x^{\prime}(\lambda) & =2 \cot ^{2} \theta \lambda-2 \cot ^{2} \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{9}\\
y^{\prime}(\lambda) & =-2 \cot \theta \lambda+2 \cot \theta \int_{0}^{\lambda} \frac{d w}{g_{22}(w)} \tag{10}\\
z^{\prime}(\lambda) & =0 \tag{11}
\end{align*}
$$

satisfies the geodesic equation for the metric $g_{\mu \nu}^{\prime}\left(u^{\prime}\right)$ and so is a geodesic curve. For $\lambda<0$ we have $t^{\prime}(\lambda)=\lambda, x^{\prime}(\lambda)=y^{\prime}(\lambda)=z^{\prime}(\lambda)=0$. Now by (8)

$$
\begin{equation*}
\frac{d t^{\prime}}{d \lambda}=1+2 \cot ^{2} \theta-\frac{2 \cot ^{2} \theta}{g_{22}(\lambda)} \tag{12}
\end{equation*}
$$

Since $g_{22}(0)=1$ and $g_{22}(u) \rightarrow 0$ as $u \rightarrow u_{0}$ there is then a $\lambda_{0}>0$ such that $\left(d t^{\prime} / d \lambda\right)\left(\lambda_{0}\right)=0$. We then have $\left(d t^{\prime} / d \lambda\right)(\lambda)<0$ for $\lambda_{0}<\lambda<u_{0}$. Consequently for $\lambda_{0}<\lambda<u_{0}$ the geodesic curve goes backward in t^{\prime}.

4 Energy-momentum tensor

Now consider a system of gravitational plane wave pulse colliding with a mass M of finite size and finite mass density. Let $\widetilde{g}_{\mu \nu}(t, x, y, z)$ be the metric of the combined system of colliding wave and M. Require $\widetilde{g}_{\mu \nu}(t, x, y, z) \rightarrow g_{\mu \nu}(t-x)$ as size and mass density of M go to zero where $g_{\mu \nu}(t-x)$ is the metric (1). Transforming to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates by (3)-(6) gives the metric $\widetilde{g}_{\mu \nu}^{\prime}\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$. Let the mass density of M be $\rho\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$ and pressure $p\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$. Also there is an equation between p and ρ. The energy-momentum tensor of M is

$$
\begin{equation*}
T^{\prime \mu \nu}=p \widetilde{g}^{\prime \mu \nu}+(p+\rho) \frac{d x^{\prime \mu}}{d \tau} \frac{d x^{\prime \nu}}{d \tau} \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\widetilde{g}_{\mu \nu}^{\prime} \frac{d x^{\prime \mu}}{d \tau} \frac{d x^{\prime \nu}}{d \tau}=-1 \tag{14}
\end{equation*}
$$

From (13) and (14) we get

$$
\begin{equation*}
T^{\prime \mu \nu}=p \widetilde{g}^{\prime \mu \nu}+\frac{\left(T^{\prime 0 \mu}-p \widetilde{g}^{\prime 0 \mu}\right)\left(T^{\prime 0 \nu}-p \widetilde{g}^{0 \nu}\right)}{T^{\prime 00}-p \widetilde{g}^{\prime 00}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
p+\rho=-\widetilde{g}_{\mu \nu}^{\prime} \frac{\left(T^{\prime 0 \mu}-p \widetilde{g}^{\prime 0 \mu}\right)\left(T^{\prime 0 \nu}-p \widetilde{g}^{0 \nu}\right)}{T^{\prime 00}-p \widetilde{g}^{\prime 00}} \tag{16}
\end{equation*}
$$

Assuming conservation of energy and momentum $T^{\prime \mu \nu}{ }_{; \nu}=0$ we have

$$
\begin{equation*}
\frac{\partial T^{\prime 0 \mu}}{\partial t^{\prime}}=-\frac{\partial T^{\prime 1 \mu}}{\partial x^{\prime}}-\frac{\partial T^{\prime 2 \mu}}{\partial y^{\prime}}-\frac{\partial T^{\prime 3 \mu}}{\partial z^{\prime}}-\Gamma^{\mu}{ }_{\alpha \beta} T^{\prime \alpha \beta}-\Gamma^{\alpha}{ }_{\alpha \beta} T^{\prime \beta \mu} \tag{17}
\end{equation*}
$$

where $\Gamma_{\mu \nu}^{\alpha}$ is constructed using the metric $\widetilde{g}_{\mu \nu}^{\prime}\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$. From $T^{\prime \mu \nu}$ at t^{\prime} and having $\widetilde{g}_{\mu \nu}^{\prime}$ at all points we can use (17) to determine $T^{\prime 0 \mu}$ at $t^{\prime}+\delta t^{\prime}$. We can then use (15), (16), and equation between p and ρ to determine $T^{\prime \mu \nu}$ and ρ at $t^{\prime}+\delta t^{\prime}$. Now choose M of constant mass density. There is then a constant C such that $\rho=C$ for all points of M and $\rho=0$ outside M.

5 Backward in time

Let M have small mass and size so that, using the assumption, the path of M is approximately the geodesic (8)-(11). Define $S\left(t^{\prime}\right)$ to be the set of points $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ such that $\rho\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)=C$. We have for large negative t^{\prime} that $S\left(t^{\prime}\right)$ is not empty. If $S\left(t^{\prime}\right)$ is not empty then by (16) there are points $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ such that $T^{\prime 0 \mu}\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right) \neq 0$. Consequently by (17) there are ($x^{\prime}, y^{\prime}, z^{\prime}$) and a small $\delta>0$ such that $T^{\prime 0 \mu}\left(t^{\prime}+\delta, x^{\prime}, y^{\prime}, z^{\prime}\right) \neq 0$. By (13) then $\rho\left(t^{\prime}+\delta, x^{\prime}, y^{\prime}, z^{\prime}\right) \neq 0$. Now ρ at a point is either C or zero hence $\rho\left(t^{\prime}+\delta, x^{\prime}, y^{\prime}, z^{\prime}\right)=C$. Consequently $S\left(t^{\prime}+\delta\right)$ is not empty.

Since the paths of the different fluid elements making up M do not intersect $S\left(t^{\prime}\right)$ does not go to a point as t^{\prime} increases. Consequently $S\left(t^{\prime}\right)$ is not empty for all t^{\prime}. Following $S\left(t^{\prime}\right)$ as t^{\prime} increases we then have M does not go backward in t^{\prime}.

6 Contradiction

From section 3 we have for $\lambda_{0}<\lambda<u_{0}$ that the geodesic goes backward in t^{\prime}. For our example of wave colliding with M having small mass and size the path of M is approximately this geodesic. There are then points on the path of M where M goes backward in t^{\prime}. From section 5 this can not happen. We have a contradiction.

References

[1] C. Misner, K. Thorne, J. Wheeler, Gravitation, p. 957
[2] K. De Paepe, Physics Essays, June 2018

[^0]: *k.depaepe@alumni.utoronto.ca

