Contradiction for a Gravitational Plane Wave Pulse Colliding with a Mass

Karl De Paepe*

Abstract

We consider a system of a gravitational plane wave pulse colliding with a mass. We assume as size and mass go to zero that the the path of the mass approaches a geodesic of a plane gravitational wave pulse having zero Ricci tensor. Assume also that energy and momentum are conserved. We show these assumptions lead to a contradiction.

1 Plane gravitational wave pulse metric

Define u = t - x and let the metric $g_{\mu\nu}(u)$ be [1]

$$ds^{2} = -dt^{2} + dx^{2} + [L(u)]^{2}e^{2\beta(u)}dy^{2} + [L(u)]^{2}e^{-2\beta(u)}dz^{2}$$
(1)

having L(u) = 1 and $\beta(u) = 0$ for u < 0 hence $g_{\mu\nu}(u) = \eta_{\mu\nu}$ for u < 0. Let $\beta \neq 0$ and let L(u) satisfy the equation

$$\frac{d^2L}{du^2}(u) + \left[\frac{d\beta}{du}(u)\right]^2 L(u) = 0$$
⁽²⁾

The metric $g_{\mu\nu}(u)$ then has zero Ricci tensor hence $R_{\mu\nu} = 0$. It is then the metric of a gravitational plane wave pulse. We have by (2) as u increases from u = 0 that L(u) decreases from L(0) = 1 and become zero at some point $u_0 > 0$. Consequently $g_{22}(u) > 0$ for $u < u_0$.

2 Proper Lorentz transformation

Consider a coordinate transformation from t, x, y, z to t', x', y', z' coordinates that is a composition of a rotation by θ about the z axis followed by a boost by $2\cos\theta/(1+\cos^2\theta)$ in the x direction followed by a rotation by $\theta + \pi$ about the z axis. For θ/π not an integer this is a proper Lorentz transformation [2] such that

$$t = t'(1 + 2\cot^2\theta) - 2x'\cot^2\theta + 2y'\cot\theta$$
(3)

$$x = 2t' \cot^2 \theta + x'(1 - 2 \cot^2 \theta) + 2y' \cot \theta$$
(4)

$$y = 2t' \cot \theta - 2x' \cot \theta + y' \tag{5}$$

$$z = z' \tag{6}$$

By (3) and (4) we get t - x = t' - x' = u'. By (3)-(6) we get the metric $g'_{\mu\nu}(u')$

$$ds^{2} = \left\{ -1 - 4[1 - g_{22}(u')] \cot^{2} \theta \right\} dt'^{2} + 8[1 - g_{22}(u')] \cot^{2} \theta dt' dx' + \left\{ 1 - 4[1 - g_{22}(u')] \cot^{2} \theta \right\} dx'^{2} - 4[1 - g_{22}(u')] \cot \theta dt' dy' + 4[1 - g_{22}(u')] \cot \theta dx' dy' + g_{22}(u') dy'^{2} + g_{33}(u') dz'^{2}$$
(7)

The metric $g'_{\mu\nu}(u')$ satisfying $R'_{\mu\nu}(u') = 0$ and $g'_{\mu\nu}(u') = \eta_{\mu\nu}$ for u' < 0 is then also the metric of a gravitational plane wave pulse.

 $^{{}^{*}}k.depaepe@alumni.utoronto.ca$

3 Geodesic curve

The curve

$$t'(\lambda) = (1 + 2\cot^2\theta)\lambda - 2\cot^2\theta \int_0^\lambda \frac{dw}{g_{22}(w)}$$
(8)

$$x'(\lambda) = 2\cot^2\theta\lambda - 2\cot^2\theta\int_0^\lambda \frac{dw}{g_{22}(w)}$$
(9)

$$y'(\lambda) = -2\cot\theta\lambda + 2\cot\theta \int_0^\lambda \frac{dw}{g_{22}(w)}$$
(10)

$$z'(\lambda) = 0 \tag{11}$$

satisfies the geodesic equation for the metric $g'_{\mu\nu}(u')$ and so is a geodesic curve. For $\lambda < 0$ we have $t'(\lambda) = \lambda, x'(\lambda) = y'(\lambda) = z'(\lambda) = 0$. Now by (8)

$$\frac{dt'}{d\lambda} = 1 + 2\cot^2\theta - \frac{2\cot^2\theta}{g_{22}(\lambda)}$$
(12)

Since $g_{22}(0) = 1$ and $g_{22}(u) \to 0$ as $u \to u_0$ there is then a $\lambda_0 > 0$ such that $(dt'/d\lambda)(\lambda_0) = 0$. We then have $(dt'/d\lambda)(\lambda) < 0$ for $\lambda_0 < \lambda < u_0$. Consequently for $\lambda_0 < \lambda < u_0$ the geodesic curve goes backward in t'.

4 Energy-momentum tensor

Now consider a system of gravitational plane wave pulse colliding with a mass M of finite size and finite mass density. Let $\tilde{g}_{\mu\nu}(t, x, y, z)$ be the metric of the combined system of colliding wave and M. Require $\tilde{g}_{\mu\nu}(t, x, y, z) \rightarrow g_{\mu\nu}(t - x)$ as size and mass density of M go to zero where $g_{\mu\nu}(t - x)$ is the metric (1). Transforming to t', x', y', z' coordinates by (3)-(6) gives the metric $\tilde{g}'_{\mu\nu}(t', x', y', z')$. Let the mass density of M be $\rho(t', x', y', z')$ and pressure p(t', x', y', z'). Also there is an equation between p and ρ . The energy-momentum tensor of M is

$$T^{\mu\nu} = p\tilde{g}^{\mu\nu} + (p+\rho)\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}$$
(13)

with

$$\widetilde{g}_{\mu\nu}^{\prime}\frac{dx^{\prime\mu}}{d\tau}\frac{dx^{\prime\nu}}{d\tau} = -1 \tag{14}$$

From (13) and (14) we get

$$T'^{\mu\nu} = p\tilde{g}'^{\mu\nu} + \frac{(T'^{0\mu} - p\tilde{g}'^{0\mu})(T'^{0\nu} - p\tilde{g}'^{0\nu})}{T'^{00} - p\tilde{g}'^{00}}$$
(15)

and

$$p + \rho = -\tilde{g}'_{\mu\nu} \frac{(T'^{0\mu} - p\tilde{g}'^{0\mu})(T'^{0\nu} - p\tilde{g}'^{0\nu})}{T'^{00} - p\tilde{g}'^{00}}$$
(16)

Assuming conservation of energy and momentum $T'^{\mu\nu}_{;\nu} = 0$ we have

$$\frac{\partial T^{\prime 0\mu}}{\partial t^{\prime}} = -\frac{\partial T^{\prime 1\mu}}{\partial x^{\prime}} - \frac{\partial T^{\prime 2\mu}}{\partial y^{\prime}} - \frac{\partial T^{\prime 3\mu}}{\partial z^{\prime}} - \Gamma^{\mu}_{\ \alpha\beta}T^{\prime\alpha\beta} - \Gamma^{\alpha}_{\ \alpha\beta}T^{\prime\beta\mu} \tag{17}$$

where $\Gamma^{\alpha}_{\mu\nu}$ is constructed using the metric $\tilde{g}'_{\mu\nu}(t', x', y', z')$. From $T'^{\mu\nu}$ at t' and having $\tilde{g}'_{\mu\nu}$ at all points we can use (17) to determine $T'^{0\mu}$ at $t' + \delta t'$. We can then use (15), (16), and equation between pand ρ to determine $T'^{\mu\nu}$ and ρ at $t' + \delta t'$. Now choose M of constant mass density. There is then a constant C such that $\rho = C$ for all points of M and $\rho = 0$ outside M.

5 Backward in time

Let M have small mass and size so that, using the assumption, the path of M is approximately the geodesic (8)-(11). Define S(t') to be the set of points (x', y', z') such that $\rho(t', x', y', z') = C$. We have for large negative t' that S(t') is not empty. If S(t') is not empty then by (16) there are points (x', y', z') such that $T'^{0\mu}(t', x', y', z') \neq 0$. Consequently by (17) there are (x', y', z') and a small $\delta > 0$ such that $T'^{0\mu}(t' + \delta, x', y', z') \neq 0$. By (13) then $\rho(t' + \delta, x', y', z') \neq 0$. Now ρ at a point is either C or zero hence $\rho(t' + \delta, x', y', z') = C$. Consequently $S(t' + \delta)$ is not empty.

Since the paths of the different fluid elements making up M do not intersect S(t') does not go to a point as t' increases. Consequently S(t') is not empty for all t'. Following S(t') as t' increases we then have M does not go backward in t'.

6 Contradiction

From section 3 we have for $\lambda_0 < \lambda < u_0$ that the geodesic goes backward in t'. For our example of wave colliding with M having small mass and size the path of M is approximately this geodesic. There are then points on the path of M where M goes backward in t'. From section 5 this can not happen. We have a contradiction.

References

- [1] C. Misner, K. Thorne, J. Wheeler, Gravitation, p. 957
- [2] K. De Paepe, *Physics Essays*, June 2018