A LOWER BOUND FOR MULTIPLE INTEGRAL OF NORMALIZED LOG DISTANCE FUNCTION IN \mathbb{R}^{n}

T. AGAMA

Abstract. In this note we introduce the notion of the local product on a sheet and associated space. As an application, we prove that for $\langle a, b\rangle>e^{e}$ then

$$
\begin{array}{r}
\left.\int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\left|b_{1}\right|} \log \left(i \frac{\sqrt[4 s]{\sum_{j=1}^{n} x_{j}^{4 s}}}{\left.\left\|\left.\vec{a}\right|^{4 s+1}+\right\| \vec{b}\right|^{4 s+1}}\right) \right\rvert\, d x_{1} d x_{2} \cdots d x_{n} \\
\\
\geq \frac{\left|\prod_{j=1}^{n}\right| b_{j}\left|-\left|a_{j}\right|\right|}{\log \log (\langle a, b\rangle)}
\end{array}
$$

for all $s \in \mathbb{N}$, where \langle,$\rangle denotes the inner product and i^{2}=-1$.

1. Introduction

There is hardly no formal introduction to the concept of an inner product and associated space in the literature. The inner product space is usually a good place to go for a wide range of mathematical results, from identities to inequalities. In this situation, the best potential result is frequently obtained. The Cauchy-Schwartz inequality obtained in the case of the Hilbert space [1] is a good example. The notion of the local product and the induced local product space are introduced in this study. This space reveals itself to be a unique form of complicated inner product space. The following inequality is obtained by utilizing this space.

Theorem 1.1. Let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ such that $e^{e}<$ $\langle\vec{a}, \vec{b}\rangle$ and $\langle\vec{a}, \vec{b}\rangle \neq 1$, then we have

$$
\begin{aligned}
& \int_{\left|a_{n}\right|}^{\left|b_{n}\right|} \int_{\left|a_{n-1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|}\left|\log \left(i \frac{\sqrt[4 s]{\sum_{j=1}^{n} x_{j}^{4 s}}}{\left.\left\|\left.\vec{a}\right|^{4 s+1}+\right\| \vec{b}\right|^{4 s+1}}\right)\right| d x_{1} d x_{2} \cdots d x_{n} \\
& \geq \frac{\left|\prod_{j=1}^{n}\right| b_{j}\left|-\left|a_{j}\right|\right|}{\log \log (\langle a, b\rangle)}
\end{aligned}
$$

for all $s \in \mathbb{N}$, where \langle,$\rangle denotes the inner product and i^{2}=-1$.

[^0]
2. The local product and associated space

In this section, we introduce and study the notion of the local product and associated space.

Definition 2.1. Let $\vec{a}, \vec{b} \in \mathbb{C}^{n}$ and $f: \mathbb{C} \longrightarrow \mathbb{C}$ be continuous on $\cup_{j=1}^{n}\left[\left|a_{j}\right|,\left|b_{j}\right|\right]$. Let $\left(\mathbb{C}^{n},\langle\rangle,\right)$ be a complex inner product space. Then by the $k^{t h}$ local product of \vec{a} with \vec{b} on the sheet f, we mean the bi-variate map $\mathcal{G}_{f}^{k}:\left(\mathbb{C}^{n},\langle\rangle,\right) \times\left(\mathbb{C}^{n},\langle\rangle,\right) \longrightarrow \mathbb{C}$ such that

$$
\mathcal{G}_{f}^{k}(\vec{a} ; \vec{b})=f(\langle\vec{a}, \vec{b}\rangle) \int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\mid b_{1}} f \circ \mathbf{e}\left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\left\|\vec{a}| |^{k+1}+\right\| \vec{b} \|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

where \langle,$\rangle denotes the inner product and where \mathbf{e}(q)=e^{2 \pi i q}$. We denote an inner product space with a $k^{t h}$ local product defined over a sheet f as the $k^{t h}$ local product space over a sheet f. We denote this space with the triple $\left(\mathbb{C}^{n},\langle\rangle,, \mathcal{G}_{f}^{k}(;)\right)$.

In certain ways, the $k^{t h}$ local product is a universal map induced by a sheet. To put it another way, a local product can be made by carefully selecting the sheet. We get the local product by making our sheet the constant function $f:=1$

$$
\begin{aligned}
\mathcal{G}_{1}^{k}(\vec{a} ; \vec{b}) & =\int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{i=1}^{\left|b_{1}\right|} d x_{1} d x_{2} \cdots d x_{n} \\
& =\prod_{i}^{n}\left|b_{i}\right|-\left|a_{i}\right| .
\end{aligned}
$$

Similarly, if we take our sheet to be $f=\log$, then under the condition that $\langle\vec{a}, \vec{b}\rangle \neq 0$, we obtain the induced local product

$$
\mathcal{G}_{\log }^{k}(\vec{a} ; \vec{b})=2 \pi \times(i)^{k+1} \frac{\log (\langle\vec{a}, \vec{b}\rangle)}{\left\|\left.\vec{a}\right|^{k+1}+\right\||\vec{b}|^{k+1}} \int_{\left|a_{n}\right|}^{\left|b_{n}\right|} \int_{\left|a_{n-1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}} d x_{1} d x_{2} \cdots d x_{n}
$$

By taking the sheet $f=$ Id to be the identity function, then we obtain in this setting the associated local product

$$
\mathcal{G}_{\mathrm{Id}}^{k}(\vec{a} ; \vec{b})=\langle\vec{a}, \vec{b}\rangle \int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\left|b_{1}\right|} \mathbf{e}\left(\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\left\|\left.\vec{a}\right|^{k+1}+\right\| \vec{b} \|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

Again, by taking the sheet $f=\mathrm{Id}^{-1}$ with $\langle a, b\rangle \neq 0$, then we obtain the corresponding induced $k^{t h}$ local product

$$
\mathcal{G}_{\mathrm{Id}^{-1}}^{k}(\vec{a} ; \vec{b})=\frac{1}{\langle\vec{a}, \vec{b}\rangle} \int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\mid b_{1}} \mathbf{e}\left(-\frac{(i)^{k} \sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\|\vec{a}\|^{k+1}+\|\left.\vec{b}\right|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

Also by taking the sheet $f=\log \log$, then we have the associated $k^{t h}$ local product

$$
\mathcal{G}_{\log \log }^{k}(\vec{a} ; \vec{b})=\log \log (\langle\vec{a}, \vec{b}\rangle) \int_{\left|a_{n}\right|}^{\left|b_{n}\right|} \int_{\left|a_{n-1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|} \log \left(i \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\|\vec{a}\|^{k+1}+\|\left.\vec{b}\right|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n}
$$

3. Properties of the local product product

In this section we study some properties of the local product on a fixed sheet.
Proposition 3.1. The following holds
(i) If f is linear such that $\langle a, b\rangle=-\langle b, a\rangle$ then

$$
\mathcal{G}_{f}^{k}(\vec{a} ; \vec{b})=(-1)^{n+1} \mathcal{G}_{f}^{k}(\vec{b} ; \vec{a})
$$

(ii) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$such that $f(t) \leq g(t)$ for any $t \in[1, \infty)$. Then $\left|\mathcal{G}_{f}(\vec{a} ; \vec{b})\right| \leq\left|\mathcal{G}_{g}(\vec{a} ; \vec{b})\right|$.

Proof. (i) By the linearity of f, we can write

$$
\begin{aligned}
& \mathcal{G}_{f}^{k}(\vec{a} ; \vec{b})=f(\langle\vec{a}, \vec{b}\rangle) \int_{\left|a_{n}\right|}^{\left|b_{n}\right|} \int_{\left|a_{n-1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|} f \circ \mathbf{e}\left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\|\vec{a}\|^{k+1}+\|\left.\vec{b}\right|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& =f(\langle\vec{a}, \vec{b}\rangle) \int_{\left|a_{n}\right|}^{\left|b_{n}\right|} \int_{\left|a_{n-1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|} f \circ \mathbf{e}\left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\left.\left\|\left.\vec{a}\right|^{k+1}+\right\| \vec{b}\right|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& =f(-\langle b, a\rangle)(-1)^{n} \int_{\left|b_{n}\right|}^{\left|a_{n}\right|\left|b_{n-1}\right|} \int_{\left|b_{1}\right|}^{\left|a_{n-1}\right|} \cdots \int_{\left|a_{1}\right|} f \circ \mathbf{e}\left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\left\|\left.\vec{a}\right|^{k+1}+\right\| \vec{b} \|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& =(-1)^{n+1} f(\langle b, a\rangle) \int_{\left|b_{n}\right|}^{\left|a_{n}\right|} \int_{\left|b_{n-1}\right|}^{\left|a_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\left|a_{1}\right|} f \circ \mathbf{e}\left((i)^{k} \frac{\sqrt[k]{\sum_{j=1}^{n} x_{j}^{k}}}{\|\vec{a}\|^{k+1}+\|\left.\vec{b}\right|^{k+1}}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& =(-1)^{n+1} \mathcal{G}_{f}^{k}(\vec{b} ; \vec{a}) .
\end{aligned}
$$

(ii) Property (ii) follows very easily from the inequality $f(t) \leq g(t)$.

4. Applications of the local product

In this section we explore some applications of the local product.

Theorem 4.1. Let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$ such that $e^{e}<$ $\langle\vec{a}, \vec{b}\rangle$, then the lower bound holds

$$
\begin{aligned}
& \int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|b_{n}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|a_{1}\right|}^{\left|b_{1}\right|}\left|\log \left(i \frac{\sqrt[4 s]{\sum_{j=1}^{n} x_{j}^{4 s}}}{\left.\left\|\vec{a}| |^{4 s+1}+\right\| \vec{b}\right|^{4 s+1}}\right)\right| d x_{1} d x_{2} \cdots d x_{n} \\
& \geq \frac{\left|\prod_{j=1}^{n}\right| b_{j}\left|-\left|a_{j}\right|\right|}{\log \log (\langle a, b\rangle)}
\end{aligned}
$$

for all $s \in \mathbb{N}$, where \langle,$\rangle denotes the inner product and i^{2}=-1$.
Proof. Let $f: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and $\vec{a}, \vec{b} \in \mathbb{R}^{n}$ such that $e^{e}<\langle\vec{a}, \vec{b}\rangle$. We note that
$\mathcal{G}_{\log \log }^{4 s}(\vec{a} ; \vec{b})=\log \log (\langle\vec{a}, \vec{b}\rangle) \int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{\left|b_{1}\right|}^{\mid b_{1}} \log \left(i \frac{\sqrt[n]{\sum_{j=1} x_{j}^{4 s}}}{\left.\left\|\left.\vec{a}\right|^{4 s+1}+\right\| \vec{b}\right|^{4 s+1}}\right) d x_{1} d x_{2} \cdots d x_{n}$
by taking $k=4 s$ for any $s \in \mathbb{N}$. Also by taking the sheet $f:=1$ to be the constant function, then we obtain in this setting the associated local product

$$
\begin{aligned}
\mathcal{G}_{1}^{4 s}(\vec{a} ; \vec{b}) & =\int_{\left|a_{n}\right|\left|a_{n-1}\right|}^{\left|b_{n}\right|} \int_{\left|a_{1}\right|}^{\left|b_{n-1}\right|} \cdots \int_{i=1}^{\left|b_{1}\right|} d x_{1} d x_{2} \cdots d x_{n} \\
& =\prod_{i}^{n}\left|b_{i}\right|-\left|a_{i}\right| .
\end{aligned}
$$

Since $|\log i t|=\left|\log t+i \frac{\pi}{2}\right| \geq 1$ on \mathbb{R}^{+}the claim inequality is a consequence by appealing to Proposition 3.1.

References

1. Rudin, W. Real and complex analysis, Tata McGraw-hill education, 2006.

Department of Mathematics, African Institute for mathematical sciences, Accra, Ghana.

E-mail address: Theophilus@aims.edu.gh/emperordagama@yahoo.com

[^0]: Date: June 15, 2022.
 2010 Mathematics Subject Classification. Primary 11Pxx, 11Bxx; Secondary 11Axx, 11Gxx. Key words and phrases. Local product; local product space; sheet.

