LARGER TYPES OF INFINITIES AND ITS IMPACT ON SOCIETY

Murilo Leandro
Porto Velho, Brazil
murilouko.louco@gmail.com

Abstract

In this paper, we consider an extended real number denoting "larger types of infinity" through elements of a polynomial in a way that justify concepts as infinity plus one, or multiplication of infinities. Then, we equip the set with sums and multiplication such that it forms a ring, and finally, define its order relations.

1 Introduction

The goal is to create a system in which $1<\infty<\infty+1$. This could potentially solve many social problems of "say the biggest number" kind of discussions. The first assumption is to extend the real number with $\{\infty, \infty+1, \infty+2\}$ with $\forall x \in \mathbb{R}: x<\infty<\infty+1<\ldots$, but this leaves "non-integer infinity" such as 0.25∞ out.

Our next step is to consider then numbers on the form $a+b \infty$ where $a, b \in \mathbb{R}$. This kind of number has the same form of complex numbers, and it's closed under addition. The problem arises when we consider multiplication: in complex numbers, $i \cdot i=-1$, so it's closed under multiplication, but what is $\infty \cdot \infty$?

2 Solving with infinite powers of infinity

An Infinite-extended real number system \mathbb{M} is a system composed of elements on the form

$$
\begin{equation*}
a_{0}+a_{1} \infty+a_{2} \infty^{2}+a_{3} \infty^{3}+\ldots+a_{D} \infty^{D}, \quad a_{k} \in \mathbb{R}, \infty^{k} \in \underline{\bar{\infty}} \tag{1}
\end{equation*}
$$

Where D is the biggest infinity, and $\overline{\bar{\infty}}$ is the set of all infinities:

$$
\begin{equation*}
\overline{\underline{\infty}}=\bigcup_{k=1}^{\infty}\left\{\infty^{k}\right\} \tag{2}
\end{equation*}
$$

We define multiplication of infinities following the usual rules of exponentiation:

$$
\begin{equation*}
\infty^{a} \cdot \infty^{b}=\infty^{b} \cdot \infty^{a}:=\infty^{a+b} \tag{3}
\end{equation*}
$$

Additions and subtractions are defined as:

$$
\begin{equation*}
m \pm n=\sum_{k=0}^{D}\left(m_{k} \pm n_{k}\right) \infty^{k}, \quad m, n \in \mathbb{M} \tag{4}
\end{equation*}
$$

Where ∞^{0} is a shorthand that means $a_{0} \infty^{0}=a_{0}$. This should not be confused with the indeterminate form ∞^{0}. The product $m \cdot n, m, n \in \mathbb{M}$ can be obtained following the distributive property and the product/sum defined earlier. We can clearly see that \mathbb{M} is a polynomial ring $K[\{\infty\}]$ (where the powers of ∞ are well-defined). In this sense, the usual arithmetic operations are well-defined, allowing people to make the most needed statements like " $\infty+1$ " or " ∞ ".

3 Order relation

Now that we know that it form a ring, it's time to define the most important thing, the order relation. Assume $m, n \in \mathbb{M}$. Define a_{k} to be the coefficient of ∞^{k} in the polynomial expansion of m, and b_{k} to be the coefficient of ∞^{k} in the polynomial expansion of n. Then, the following rule apply:

$$
\begin{equation*}
m<n \Longleftrightarrow a_{\mu}<b_{\mu}, a_{\mu} \neq b_{\mu}, \forall \nu>\mu, a_{\nu}=b_{\nu} \tag{5}
\end{equation*}
$$

Remark. From this definition, it's clear that:

$$
\begin{equation*}
1,000,000<\infty<\infty+1<\infty^{2}<\ldots \tag{6}
\end{equation*}
$$

Achieving what we wanted.

4 Infinite series

From this definition, we can check an "order relation limit". Let m_{k} and n_{k} be sequences of numbers in \mathbb{M}. If there exist a number λ such that, for all $s>\lambda, m_{s}<n_{s}$, then we say $m<\lim n$.

We can check some sequences to see what they result:

Example 1.

$$
\begin{align*}
& m_{s}=\sum_{k=0}^{s} 1 \infty^{k} \tag{7}\\
& n_{s}=\sum_{k=0}^{s} 2 \infty^{k} \tag{8}
\end{align*}
$$

For every s, if we set $\mu=s, \mu$ follows (5). This means that, for any $s, m_{s}<n_{s}$, hence, $m<\lim n$. In this case, the smallest λ was 0 .
Example 2.

$$
\begin{align*}
m_{s} & =\sum_{k=0}^{s} \frac{-1}{2^{k}} \infty^{k} \tag{9}\\
n_{s} & =\sum_{k=0}^{s} \frac{1}{2^{k}} \infty^{k} \tag{10}
\end{align*}
$$

We apply the same logic of example 1, it follows that $m<\lim n$. In this case, the limit of the sequences a_{k} and b_{k} was both 0 , but what matter to us is not the limit of the values, but the limit of order relations.

Example 3.

$$
\begin{gather*}
m_{s}=\sum_{k=0}^{s}(-1)^{k} \infty^{k} \tag{11}\\
n_{s}=\sum_{k=0}^{s} 2 \infty^{k} \tag{12}
\end{gather*}
$$

We can see here that the limit of the sequence really doesn't matter, only the fact that $m_{s}<n_{s}$ everytime, hence, $m<\lim n$.

Example 4.

$$
\begin{align*}
m_{s} & =\sum_{k=0}^{s}-(-1)^{k} \infty^{k} \tag{13}\\
n_{s} & =\sum_{k=0}^{s}(-1)^{k} \infty^{k} \tag{14}
\end{align*}
$$

This illustrate why we can't have well-defined orders for all sequences. The order relation alternates between $m_{s}<n_{s}$ and $n_{s}<m_{s}$. The limit of the order is then undefined.

5 Impact on society

One may wonder the purpose of all this. The team of experts [1] responsible for this paper made a research on how would people feel if they could scientifically say $\infty+1>\infty$:

There was also the option "It would ruin my life" but no one choose that. The pie chart shows that 67% (two thirds) of the population would be positively impacted by this paper.

Children will be the most benefited. Based on research[2], the most common problem related to the biggest number game is when a kid says "well, actually, infinity is not a number, and also you can't add 1 to it and make it bigger". It's now possible for the wiser kid rebut the propositions with a scientific background and a actual study, resulting in more interesting fights between children.

As stated by a specialist[3] in the area:
"The $\infty+1>\infty$ is an extremely important knowledge nowadays, since we live in the information era and any information can end up enriching us more as a person, a concept so simple and easy to understand, but that may not be accessible to everyone."

6 Conclusion

Overall, we found that it is mathematically possible to construct a system where $\infty+1>\infty$ and even for infinite series. This could potentially solve many world conflicts, i leave for the scientific community to expand this concept.
Fields medal when?

References

[1] Me and my friend vinicius.
[2] I remember having this discussion when i was a kid.
[3] Vinicius again.

