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Abstract. Using the method of compression we show that the number of

points that can be placed in a plane figure with mutual distances at least
d > 0 satisfies the lower bound

�2 d
d−1+ε

for some small ε > 0.

1. Introduction

Let d > 0, then the following question appears in [1]

Question 1.1. What is the maximum number of points included in a plane figure
(generally: in a space body) such that the distance between any two points is
greater than or equal to d?

Though it belongs to the class of discrete geometry problems involving certain
configurations of points and lines in the plane (resp. Euclidean space), the problem
1.1 is relatively unknown and unsolved. Depending on the dimension of the space in
which the points dwell, the problem demands a precise arrangement of points so that
their mutual distances are not small and are totally covered by a planar figure (resp.
space body). In theory, the problem might be investigated by selecting a planar
(resp. space curve) that contains all of these points in the correct configuration,
as this curve can be embedded in a planar shape (resp. space body) or its slightly
expanded and translated equivalents. This is the main concept we will use to get
the major result in this paper. By using the method of compression [2], we show
that the maximum number of points that can be included in a planar figure with
mutual distances at least d > 0 is at least dd−1+ε. In particular, we obtain the
following lower bound

Theorem 1.2. Let ∆2(d) denotes the maximum number of points that can be placed
inside a geometric figure in R2 such that their mutual distances is at least d > 0
satisfies the lower bound

∆2(d)�2 d
d−1+ε

for some small ε > 0.
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2. Preliminaries and background

Definition 2.1. By the compression of scale m > 0 (m ∈ R) fixed on Rn we mean
the map V : Rn −→ Rn such that

Vm[(x1, x2, . . . , xn)] =

(
m

x1
,
m

x2
, . . . ,

m

xn

)
for n ≥ 2 and with xi 6= xj for i 6= j and xi 6= 0 for all i = 1, . . . , n.

Remark 2.2. Compression is a term that refers to the process of re-scaling points in
Rn for n ≥ 2. It is vital to note that a compression, roughly speaking, pushes points
very close to the origin away from the origin by a given scale, while also drawing
points away from the origin close to the origin. A compression of scale 1 ≥ m > 0
with Vm : Rn −→ Rn is a bijective map. To see this, suppose Vm[(x1, x2, . . . , xn)] =
Vm[(y1, y2, . . . , yn)], then it follows that(

m

x1
,
m

x2
, . . . ,

m

xn

)
=

(
m

y1
,
m

y2
, . . . ,

m

yn

)
.

It follows that xi = yi for each i = 1, 2, . . . , n. Surjectivity follows by definition of
the map. Thus the map is bijective.

2.1. The mass of compression. In this section we recall the notion of the mass
of compression on points in space and study the associated statistics.

Definition 2.3. By the mass of a compression of scale m > 0 (m ∈ R) fixed, we
mean the map M : Rn −→ R such that

M(Vm[(x1, x2, . . . , xn)]) =

n∑
i=1

m

xi
.

It is important to notice that the condition xi 6= xj for (x1, x2, . . . , xn) ∈ Rn is
not only a quantifier but a requirement; otherwise, the statement for the mass of
compression will be flawed completely. To wit, suppose we take x1 = x2 = · · · = xn,
then it will follows that Inf(xj) = Sup(xj), in which case the mass of compression
of scale m satisfies

m

n−1∑
k=0

1

Inf(xj)− k
≤M(Vm[(x1, x2, . . . , xn)]) ≤ m

n−1∑
k=0

1

Inf(xj) + k

and it is easy to notice that this inequality is absurd. By extension, one may try to
equalize the sub-sequence by assigning the supremum and infimum and getting an
estimate, however this would contradict the mass of compression inequality after
a minor reassignment. As a result, it is critical for the estimate to make sense in
order to ensure that any tuple (x1, x2, . . . , xn) ∈ Rn must satisfy xi 6= xj for all
1 ≤ i, j ≤ n. Hence in this paper this condition will be highly extolled. In situations
where it is not mentioned, it will be assumed that the tuple (x1, x2, . . . , xn) ∈ Rn
is such that xi ≤ xj for 1 ≤ i, j ≤ n.

Lemma 2.4. The estimate holds∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
where γ = 0.5772 · · · is the Euler-Macheroni constant.
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Remark 2.5. Next we prove upper and lower bounding the mass of the compression
of scale m > 0.

Proposition 2.1. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for each 1 ≤ i ≤ n and
xi 6= xj for i 6= j, then the estimates holds

m log

(
1− n− 1

sup(xj)

)−1
�M(Vm[(x1, x2, . . . , xn)])� m log

(
1 +

n− 1

Inf(xj)

)
for n ≥ 2.

Proof. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2 with xj 6= 0. Then it follows that

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≤ m
n−1∑
k=0

1

Inf(xj) + k

and the upper estimate follows by the estimate for this sum. The lower estimate
also follows by noting the lower bound

M(Vm[(x1, x2, . . . , xn)]) = m

n∑
j=1

1

xj

≥ m
n−1∑
k=0

1

sup(xj)− k
.

�

Definition 2.6. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all i = 1, 2 . . . , n. Then
by the gap of compression of scale m > 0, denoted G ◦ Vm[(x1, x2, . . . , xn)], we
mean the expression

G ◦ Vm[(x1, x2, . . . , xn)] =

∣∣∣∣∣∣∣∣(x1 − m

x1
, x2 −

m

x2
, . . . , xn −

m

xn

)∣∣∣∣∣∣∣∣
Definition 2.7. Let (x1, x2, . . . , xn) ∈ Rn with xi 6= 0 for all 1 ≤ i ≤ n. Then
by the ball induced by (x1, x2, . . . , xn) ∈ Rn under compression of scale m > 0,
denoted B 1

2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] we mean the inequality∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, x2 +

m

x2
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ < 1

2
G ◦ Vm[(x1, x2, . . . , xn)].

A point ~z = (z1, z2, . . . , zn) ∈ B 1
2G◦Vm[(x1,x2,...,xn)][(x1, x2, . . . , xn)] if it satisfies the

inequality. We call the ball the circle induced by points under compression if we
take the dimension of the underlying space to be n = 2.

Remark 2.8. In the geometry of balls under compression of scale m > 0, we will
assume implicitly that 1 ≥ m > 0. The circle induced by points under compression
is the ball induced on points when we take n = 2.

Proposition 2.2. Let (x1, x2, . . . , xn) ∈ Rn for n ≥ 2, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
+m2M◦ V1[(x21, . . . , x

2
n)]− 2mn.
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In particular, we have the estimate

G ◦ Vm[(x1, x2, . . . , xn)]2 =M◦ V1

[(
1

x21
, . . . ,

1

x2n

)]
− 2mn+O

(
m2M◦ V1[(x21, . . . , x

2
n)]

)
for ~x ∈ Nn, where m2M◦ V1[(x21, . . . , x

2
n)] is the error term in this case.

Lemma 2.9 (Compression estimate). Let (x1, x2, . . . , xn) ∈ Nn for n ≥ 2 and
xi 6= xj for i 6= j, then we have

G ◦ Vm[(x1, x2, . . . , xn)]2 � nsup(x2j ) +m2 log

(
1 +

n− 1

Inf(xj)2

)
− 2mn

and

G ◦ Vm[(x1, x2, . . . , xn)]2 � nInf(x2j ) +m2 log

(
1− n− 1

sup(x2j )

)−1
− 2mn.

Theorem 2.10. Let ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all 1 ≤ i < j ≤ n.
Then ~z ∈ B 1

2G◦Vm[~y][~y] if and only if

G ◦ Vm[~z] < G ◦ Vm[~y].

Proof. Let ~z ∈ B 1
2G◦Vm[~y][~y] for ~z = (z1, z2, . . . , zn) ∈ Nn with zi 6= zj for all

1 ≤ i < j ≤ n, then it follows that ||~y|| > ||~z||. Suppose on the contrary that

G ◦ Vm[~z] ≥ G ◦ Vm[~y],

then it follows that ||~y|| ≤ ||~z||, which is absurd. Conversely, suppose

G ◦ Vm[~z] < G ◦ Vm[~y]

then it follows from Proposition 2.2 that ||~z|| < ||~y||. It follows that∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣~y − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~y].

This certainly implies ~z ∈ B 1
2G◦Vm[~y][~y] and the proof of the theorem is complete. �

Theorem 2.11. Let ~x = (x1, x2, . . . , xn) ∈ Nn with xi 6= xj for all 1 ≤ i < j ≤ n.
If ~y ∈ B 1

2G◦Vm[~x][~x] then

B 1
2G◦Vm[~y][~y] ⊆ B 1

2G◦Vm[~x][~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] and suppose for the sake of contradiction that

B 1
2G◦Vm[~y][~y] 6⊆ B 1

2G◦Vm[~x][~x].

Then there must exist some ~z ∈ B 1
2G◦Vm[~y][~y] such that ~z /∈ B 1

2G◦Vm[~x][~x]. It follows

from Theorem 2.10 that

G ◦ Vm[~z] ≥ G ◦ Vm[~x].
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It follows that

G ◦ Vm[~y] > G ◦ Vm[~z]

≥ G ◦ Vm[~x]

> G ◦ Vm[~y]

which is absurd, thereby ending the proof. �

Remark 2.12. Theorem 2.11 tells us that points confined in certain balls induced
under compression should by necessity have their induced ball under compression
covered by these balls in which they are contained.

2.2. Admissible points of balls induced under compression. We launch the
notion of admissible points of balls induced by points under compression. We study
this notion in depth and explore some possible connections.

Definition 2.13. Let ~y = (y1, y2, . . . , yn) ∈ Rn with yi 6= yj for all 1 ≤ i < j ≤ n.
Then ~y is said to be an admissible point of the ball B 1

2G◦Vm[~x][~x] if∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣ =
1

2
G ◦ Vm[~x].

Remark 2.14. It is important to notice that the notion of admissible points of balls
induced by points under compression encompasses points on the ball. These points
in geometrical terms basically sit on the outer of the induced ball.

Theorem 2.15. The point ~y ∈ B 1
2G◦Vm[~x][~x] is admissible if and only if

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x].

Proof. First let ~y ∈ B 1
2G◦Vm[~x][~x] be admissible and suppose on the contrary that

B 1
2G◦Vm[~y][~y] 6= B 1

2G◦Vm[~x][~x].

Then there exist some ~z ∈ B 1
2G◦Vm[~x][~x] such that

~z /∈ B 1
2G◦Vm[~y][~y].

Applying Theorem 2.10, we obtain the inequality

G ◦ Vm[~y] ≤ G ◦ Vm[~z] < G ◦ Vm[~x].

It follows from Proposition 2.2 that ||~x|| < ||~y|| or ||~y|| < ||~x||. By joining this
points to the origin by a straight line, this contradicts the fact that the point ~y
is an admissible point of the ball B 1

2G◦Vm[~x][~x]. The latter equality follows from

assertion that two balls are indistinguishable. Conversely, suppose

B 1
2G◦Vm[~y][~y] = B 1

2G◦Vm[~x][~x]

and G ◦ Vm[~y] = G ◦ Vm[~x]. Then it follows that the point ~y lives on the outer of
the indistinguishable balls and must satisfy the inequality∣∣∣∣∣∣∣∣~z − 1

2

(
y1 +

m

y1
, . . . , yn +

m

yn

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣~z − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
=

1

2
G ◦ Vm[~x].
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It follows that

1

2
G ◦ Vm[~x] =

∣∣∣∣∣∣∣∣~y − 1

2

(
x1 +

m

x1
, . . . , xn +

m

xn

)∣∣∣∣∣∣∣∣
and ~y is indeed admissible, thereby ending the proof. �

Next we obtain an equivalent notion of the circumference of the circle induced
by points under compression in the plane R2 in the following result.

Proposition 2.3. Let ~x ∈ R2 with xi 6= 0 for each 1 ≤ i ≤ 2. Then the circumfer-
ence of the circle induced by point ~x under compression of scale m, denoted Vm[~x],
is given by

δ(Vm[~x]) = π × (G ◦ Vm[~x]).

Proof. This follows from the mere definition of the circumference of a circle and
noting that the radius r of the circle induced by the point ~x ∈ R2 under compression
is given by

r =
G ◦ Vm[~x]

2
.

�

Remark 2.16. We note that we can replace the set Nn used in our construction
with Rn at the compromise of imposing the restrictions ~x = (x1, . . . , xn) ∈ Rn such
that xi > 1 for all 1 ≤ i ≤ n and xi 6= xj for i 6= j. The following construction in
our next result in the sequel employs this flexibility.

3. Lower bound

Theorem 3.1. Let ∆2(d) denotes the maximum number of points that can be placed
inside a geometric figure in R2 such that their mutual distances is at least d > 0
satisfies the lower bound

∆2(d)�2 d
d−1+ε

for some small ε > 0.

Proof. Pick arbitrarily a point (x1, x2) = ~x ∈ R2 for 1 ≤ j ≤ 2 such that G◦Vm[~x] ≥
dd. Next we apply the compression of scale m > 0, given by Vm[~x] and construct
the circle induced by the compression given by

B 1
2G◦Vm[~x][~x]

with radius (G◦Vm[~x])
2 ≥ dd

2 by choosing

inf(xi)1≤i≤2 = dd+ε

for some small ε > 0. On this circle locate admissible points so that the chord joining
each pair of adjacent admissible points is at least d > 0. Invoking Proposition 2.3,
the circumference of the circle induced under compression is given by

δ(Vm[~x]) = π × G ◦ Vm[~x].

We join all pairs of adjacent admissible points considered by a chord. We note that
we can use the length of the arc induced by any two adjacent admissible points
on the circle to determine the number of pairwise admissible points with mutual
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distances at least d > 0. It follows that the number of admissible points on the
circle with mutual distances at least d > 0 satisfies the lower bound

∆2(d) : =
π × (G ◦ Vm[~x])

2d sin θ

�2
inf(xi)1≤i≤2

d

=
dd+ε

d
.

If the circle of compression constructed lives in the plane figure then the lower
bound follows. On the other hand, if it pokes outside then we can enlarge the plane
figure and apply translation under suitable translation vectors so that it covers the
circle of compression B 1

2G◦Vm[~x][~x] and the lower bound also holds in this case. This

completes the construction. �
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