Some Facts about Relations and Operations of Algebras

SHAO-DAN LEE

Abstract Let \mathbf{A} be a σ -algebra. Suppose that Θ is a congruence of \mathbf{A} . Then Θ is a subalgebra of $\mathbf{A} \times \mathbf{A}$. If ϕ is an automorphism from \mathbf{A} to \mathbf{A} , then $\langle \phi, \phi \rangle$ is an automorphism of $\mathbf{A} \times \mathbf{A}$. And it is obvious that $\langle \phi, \phi \rangle(\Theta)$ is a congruence of \mathbf{A} . Let \mathbf{B} be a σ -algebra and ψ a homomorphism from \mathbf{A} to \mathbf{B} . Then $\mathbf{B}' := \psi(\mathbf{A})$ is a subalgebra of \mathbf{B} . And $\langle \psi, \psi \rangle(\Theta)$ is a congruence of \mathbf{B}' . If ψ is an epimorphism, then $\langle \psi, \psi \rangle(\Theta)$ is a congruence of \mathbf{B} . Suppose that \mathcal{A} is a category of all σ -algebras. Let $\mathbf{A}, \mathbf{B} \in \mathcal{A}$ and $\psi : \mathbf{A} \to \mathbf{B}$ be a homomorphism. Then the pullback $\mathbf{A} \sqcap_{\mathbf{B}} \mathbf{A}$ is isomorphic to a congruence of \mathbf{A} . An n-ary relation Φ of an algebra \mathbf{A} is a subset of \mathbf{A}^n . If Φ satisfies some conditions, then Φ is a subalgebra of \mathbf{A}^n . The set of languages is a lattice. If $\mathbf{\Sigma}$ is the set of the compositions of the operations in a language σ , then $\mathbf{\Sigma}$ is an algebra.

Contents

1.	Congruence	1
2.	Congruence and Pullback	2
3.	n-ary Relation and Operation	2
4.	n-ary Relation and Homomorphism	3
5.	Lattice of Languages	3
6.	Algebraic Language Algebra	4
References		5

1. Congruence

Let σ be an algebraic language[2]. Suppose that \mathbf{A} is an algebra of language σ . Let **Con A**[4] be the set of all congruences on an algebra \mathbf{A} . If $\Theta \in \mathbf{Con A}$, then Θ is a subalgebra of $\mathbf{A} \times \mathbf{A}$ (See [1]). Suppose that $\phi : \mathbf{A} \to \mathbf{A}$ is an automorphism[4]. Then

$$\langle \phi, \phi \rangle : \mathbf{A} \times \mathbf{A} \to \mathbf{A} \times \mathbf{A}$$

given by

 $\langle a, b \rangle \mapsto \langle \phi(a), \phi(b) \rangle$ for all $\langle a, b \rangle \in \mathbf{A} \times \mathbf{A}$

is an automorphism of $\mathbf{A} \times \mathbf{A}$.

Proposition 1.1 (cf. [2,4]). Let ϕ be an automorphism of **A** and $\Theta \in Con A$. Then $\langle \phi, \phi \rangle(\Theta) \in Con A$. If Θ is fully invariant[4], then $\langle \phi, \phi \rangle(\Theta) \subseteq \Theta$.

Proof. Let $a, b, c \in A$ with $(a, b), (b, c) \in \Theta$. Then $\langle \phi(a), \phi(b) \rangle$, $\langle \phi(b), \phi(a) \rangle$, $\langle \phi(a), \phi(a) \rangle$, $\langle \phi(a), \phi(c) \rangle$ are in $\langle \phi, \phi \rangle(\Theta)$. If Θ is fully invariant then $(\phi(a), \phi(b)) \in \Theta$. It follows $\langle \phi, \phi \rangle(\Theta) \subseteq \Theta$. An automorphism is compatible with the operations in language of A. Hence $\langle \phi, \phi \rangle(\Theta)$ is a congruence.

2020 Mathematics Subject Classification. 08A99.

Key words and phrases. Universal algebra, Operation, Relation, Language.

Date: June 21, 2022.

SHAO-DAN LEE

Let **B** be a σ -algebra and ψ a homomorphism[4] from **A** to **B**. Then the image of ψ is a subalgebra[4] of **B**. And we have a homomorphism

$$\langle \psi, \psi \rangle : \mathbf{A} \times \mathbf{A} \to \mathbf{B} \times \mathbf{B}$$

given by

$$\langle a, a' \rangle \mapsto \langle \psi(a), \psi(a') \rangle$$
 for all $\langle a, a' \rangle \in \mathbf{A} \times \mathbf{A}$

If ψ is an epimorphism[4], then $\langle \psi, \psi \rangle$ is an epimorphism.

Proposition 1.2 (cf. [2, 4]). Let A, B be σ -algebras, $\Theta \in Con A$ and $\psi: A \to B$ a homomorphism. Suppose that B' is the image of ψ . Then $\langle \psi, \psi \rangle (\Theta) \in Con B'$. If ψ is an epimorphism, then $\langle \psi, \psi \rangle (\Theta) \in Con B$.

Proof. Let $a, b \in A$. If $(a, b) \in \Theta$ with $\psi(a) = \psi(b)$, then $\langle \psi(a), \psi(b) \in \langle \psi, \psi \rangle(\Theta)$. Then the proof is similar to proposition 1.1

2. Congruence and Pullback

In a category, if a pullback[3] of $A \xrightarrow{f} B \xleftarrow{f} A$ exists, then it is called kernel(See [3]). If **A**, **B** are σ -algebras and $\psi: \mathbf{A} \to \mathbf{B}$ is a homomorphism, then the pullback

of $\mathbf{A} \xrightarrow{\psi} \mathbf{B} \xleftarrow{\psi} \mathbf{A}$ is isomorphic to the kernel of ψ . A kernel of homomorphism is a congruence (See [4]). On the other hand, for every $\Theta \in Con \mathbf{A}$, the congruence Θ is a kernel of $\mathbf{A} \rightarrow \mathbf{A}/\Theta$ (See [4]).

Proposition 2.1 (cf. [2–4]). Suppose that A is the category of σ -algebras. Every congruence of a σ -algebra is a pullback in A.

Proof. It is obvious.

3. n-ary Relation and Operation

Let **A** be a algebra of language σ . Suppose that **A** has an n-ary operation f and an n-ary relation Φ . Let g be an m-ary operation of **A** and $a_{ij} \in \mathbf{A}$ for $1 \le i \le n, 1 \le j \le m$.

Definition 3.1 (cf. [2, 4]). Suppose that $\langle a_{1j}, a_{2j}, \ldots, a_{nj} \rangle \in \Phi$ for $1 \le j \le m$. If

 $(g(a_{11}, a_{12}, \ldots, a_{1m}), g(a_{21}, a_{22}, \ldots, a_{2m}), \ldots, g(a_{n1}, a_{n2}, \ldots, a_{nm})) \in \Phi$

then we say that Φ is **compatible with** *g*.

Definition 3.2 (cf. [2,4]). If

 $f(g(a_{11}, a_{12}, \ldots, a_{1m}), g(a_{21}, a_{22}, \ldots, a_{2m}), \ldots, g(a_{n1}, a_{n2}, \ldots, a_{nm}))$

 $= g(f(a_{11}, a_{21}, \ldots, a_{n1}), f(a_{12}, a_{22}, \ldots, a_{n2}), \ldots, f(a_{1m}, a_{21}, \ldots, a_{nm}))$

then we say that *f* is **distributive with** *g*.

An n-ary relation of **A** is a subset of \mathbf{A}^n (See [2]). Hence if $(a_1, a_2, ..., a_n) \in \Phi$, then $f(a_1, a_2, ..., a_n) \in \mathbf{A}$. And $f(\Phi)$ is a subset of **A**.

Proposition 3.1. If Φ is compatible with all operations of **A** and *f* is distributive with all operations of **A**, then $f(\Phi)$ is a subalgebra of **A**.

Lemma 3.1. If Φ is compatible with all operations of **A**, then Φ is a subalgebra of **A**ⁿ.

Proof. It is obvious.

2

Lemma 3.2. If *f* is distributive with all operations of **A**, then *f* induces a homomorphism

 $\tilde{f}: \mathbf{A}^n \to \mathbf{A}$

given by

$$\langle a_1, \ldots a_n \rangle \mapsto f(a_1, \ldots a_n)$$

Proof. It is obvious.

Proof of proposition 3.1. That $f(\Phi)$ is the image of the \tilde{f} restricted to the subalgebra Φ .

4. n-ary Relation and Homomorphism

Suppose that S is the category[3] of τ -algebras. Suppose that the algebras in S have *n*-ary relation Φ , and that Φ is compatible with all operations of algebras in S. Let $A, B \in S$, $\alpha : A \to B$ be a homomorphism[2]. Then $\Phi_A, \Phi_B \in S$. Suppose that α preserves Φ . Then the homomorphism α induces a homomorphism

$$\vec{\alpha} : \Phi_A \to \Phi_B$$

given by

$$\langle a_1,\ldots,a_n\rangle \mapsto \langle \alpha(a_1),\ldots,\alpha(a_n)\rangle$$

If β preserves Φ , then $\overrightarrow{\beta \circ \alpha} = \overrightarrow{\beta} \circ \overrightarrow{\alpha}$ is a homomorphism.

Let $\dot{\mathcal{S}}$ be a subcategory of \mathcal{S} defined by

Objects: the objects of S

morphisms: the set { $\alpha \in Hom_S(A, B) \mid \alpha$ preserves the *n*-ary relation Φ } The we may define a functor.

Proposition 4.1. Let F be a morphism from \dot{S} to S given by

Object: $\mathbf{A} \mapsto \Phi_A$; morphism: $\alpha \mapsto \vec{\alpha}$;

Then F is a functor[3].

Proof. We have that $F(Id_A) = \overrightarrow{Id_A} = Id_{\Phi_A}$. Suppose that $A, B, C \in S, \alpha : A \to B$ and $\beta : B \to C$ are morphisms in \dot{S} . Then we have that

$$F(\beta \circ \alpha) = \overrightarrow{\beta \circ \alpha} = \overrightarrow{\beta} \circ \overrightarrow{\alpha} = F(\beta) \circ F(\alpha) \qquad \Box$$

Hence the statement is true.

5. Lattice of Languages

We say that A is a structure[2] of language \emptyset if A is a set. Let Ω be a set of some languages[2,4].

Proposition 5.1. Let $\tau, \sigma \in \Omega$. Define

$$\tau \lor \sigma \coloneqq \tau \cup \sigma$$
$$\tau \land \sigma \coloneqq \tau \cap \sigma$$

If $\tau \lor \sigma \in \Omega$ and $\tau \land \sigma \in \Omega$, then Ω is a lattice.

SHAO-DAN LEE

Proof. Let $\sigma, \tau, \upsilon \in \Omega$. Then we have $\tau \lor \sigma \in \Omega$ and $\tau \land \sigma \in \Omega$. And Ω satisfies the following equations:

(Idempotent)	$\tau \lor \tau = \tau$
(Idempotent)	$\tau \wedge \tau = \tau$
(Commutative)	$\tau \lor \sigma = \sigma \lor \tau$
(Commutative)	$\tau \land \sigma = \sigma \land \tau$
(Associative)	$(\tau \vee \sigma) \vee \upsilon = \tau \vee (\sigma \vee \upsilon)$
(Associative)	$(\tau \land \sigma) \land \upsilon = \tau \land (\sigma \land \upsilon)$
(Absorption)	$\tau \lor (\tau \land \sigma) = \tau$
(Absorption)	$\tau \land (\tau \lor \sigma) = \tau$

Suppose that **A** is a structure of language τ . If f is an n-ary operation in τ , then let $f^{A}[4]$ denote an n-ary operation of **A**.

Definition 5.1. Suppose that A, B are τ -structure and σ -structure, respectively. Then a function $\varphi : A \rightarrow B$ is a homomorphism provided

$$\varphi(f^{A}(a_{1},...,a_{n})) = f^{B}(\varphi(a_{1}),...,\varphi(a_{n}))$$

for all operations $f \in \tau \land \sigma$ and all $a_{1},...,a_{n} \in \mathbf{A}$; And if
 $\langle b_{1},...,b_{m} \rangle \in \Theta_{A}$

then

 $\langle \varphi(b_1), \ldots, \varphi(b_m) \rangle \in \Theta_B$

for all relations $\Theta \in \tau \land \sigma$ and all $b_1, \ldots, b_m \in \mathbf{A}$. If $\tau \land \sigma = \emptyset$, then φ is a function of the sets.

Proposition 5.2. If φ is the homomorphism which is defined in definition 5.1, then the image of φ is a structure of language $\tau \land \sigma$.

Proof. It is obvious.

П

6. Algebraic Language Algebra

Suppose that σ is an algebraic language. Let $f \in \sigma$ be an n-ary operation and $g_i \in \sigma$ n_i -ary operations for $1 \le i \le n$. Then $h := f(g_1, \ldots, g_n)$ is a $(\sum_{1}^{n} n_i)$ -ary operation. And the operation h is a composition of f, g_1, \ldots, g_n . A compostion of the compositions of some operations in σ is a composition of the operations in σ . Let Σ be the set of the compositions of operations in σ .

Proposition 6.1. The set Σ is an algebra of the language σ .

Proof. It is obvious.

We say that the algebra Σ is generated by σ .

Corollary 6.1. The algebra Σ has the language Σ .

Proof. It is obvious.

Proposition 6.2. We define a binary relation Ξ in Σ : $\langle f, g \rangle \in \Xi$ if f and g have same arity[2,4]. Then the binary relation Ξ is a congruence relation. *Proof.* It is obvious.

4

References

- Nathan Jacobson, *Basic algebra ii*, 2nd ed., Dover Publications, 2009.
 Jaroslav Ježek, *Universal algebra*, 1st ed., 2008.
 Saunders Mac Lane, *Categories for the working mathematician*, 2nd ed., Springer, 1971.
 S.Burris and H.P.Sankappanavar, *A course in universal algebra*, 2012.