Resolving Frame Shift Paradox in Magnetism

Rajeev Kumar*

Abstract

Magnetic field strength and magnetic force depend on velocity which leads to an inconsistency as magnetic field strength and magnetic force are absolute quantities (that means frame-independent quantities) whereas velocity is a relative quantity (that means frame-dependent quantity). In this paper modified laws of magnetic field and magnetic force have been presented in order to resolve frame shift paradox. **Keyword :** Frame shift paradox.

1 ETHER : A MEDIUM FOR MAGNETIC FIELD

Let's assume that there exists a medium termed as 'ether' which is responsible for magnetic field.

2 LAW OF MAGNETIC FIELD

Magnetic field **B** in a medium of magnetic permeability μ due to a moving charge q, at a distance r from the charge will be

 $\mathbf{B} = \frac{\mu q \mathbf{v} \times \mathbf{r}}{4\pi r^3}$

where \mathbf{v} is the relative velocity of the charge with respect to the ether.

3 LAW OF MAGNETIC FORCE

Magnetic force **F** experienced by a moving charge q in a magnetic field **B** will be $\mathbf{F} = q(\mathbf{v} \times \mathbf{B})$

where v is the relative velocity of the charge with respect to the source of the magnetic field.

4 BIOT-SAVART LAW

It can be obtained from the law of magnetic field that the infinitesimal magnetic field dB due to an infinitesimal and electrically neutral current element IdI, at a distance r from it will be

$$\mathbf{dB} = \frac{\mu I \, \mathbf{dI} \times \mathbf{r}}{4 \, \pi \, r^3}$$

where

 $I = nev_d A$

where v_d is the magnitude of the average drift velocity for the free electrons with respect to the current element.

*rajeevkumar620692@gmail.com

5 FORCE ON A MOVING CHARGE DUE TO A STRAIGHT WIRE

Consider a charge q moving with a velocity \mathbf{v} with respect to and outside of a straight current carrying wire which is electrically neutral throughout its entire length. By Biot-Savart law, the magnetic field for a straight current carrying wire which is electrically neutral throughout its entire length, in cylindrical coordinates, will be

$$\mathbf{B} = \frac{\mu I (\sin \alpha_1 + \sin \alpha_2)}{4\pi r} \hat{\mathbf{\theta}}$$

Now it can be obtained, from the laws of magnetic field and magnetic force, that the force experienced by the charge q will be

$$\mathbf{F} = q(\mathbf{v} - \mathbf{v}_{\mathbf{d}}) \times \mathbf{B}$$

where v_d is the average drift velocity for the free electrons with respect to the wire.

References

1. Hugh D. Young, Roger A. Freedman, Albert Lewis Ford, "Sears' and Zemansky's University Physics with Modern Physics 13th edition."