Least Common Multiple and Optimization

Yuly Shipilevsky

Toronto, Ontario, Canada

Abstract

We reduce finding of Least Common Multiple of integer numbers to polynomial-time integer optimization problems and to NP-hard integer optimization problems.

1. Introduction

In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers p and q , usually denoted by $1 \mathrm{~cm}(p, q)$, is the smallest positive integer that is divisible by both p and q (see e.g. [8]), e.g., $\operatorname{lcm}(6,9)=6 \times 3=9 \times 2=18$. Correspondingly, lowest common multiple, or smallest common multiple of three integers p, q and r , usually denoted by $\operatorname{lcm}(\mathrm{p}, \mathrm{q}, \mathrm{r})$, is the smallest positive integer that is divisible by p, q and r, e.g., $1 \mathrm{~cm}(3,6,9)=3 \times 6=6 \times 3=9 \times 2=18$, etc.

We will reduce the problem of finding of the Least Common Multiple of three integer numbers to the following two integer minimization problems, wherein the first one is polynomial-time problem and another one is NP-hard problem (see also [1, 4]).

2. Reducing to polynomial-time linear minimization problem

Theorem 1. The problem of finding the Least Common Multiple of three integer numbers: $p>0, q>0$ and $r>0$ can be reduced to the following thr-ee-dimensional linear integer minimization problem:

$$
\begin{aligned}
\operatorname{lcm}(p, q, r)= & \{\min (p x-q y)+(p x-r z)+p x, \\
& \text { subject to } \\
& p x-q y \geq 0, p x-r z \geq 0, \\
& x \leq s, y \leq s, z \leq s, s=p+q+r, \\
& x, y, z, p, q, r \in N\} .
\end{aligned}
$$

[^0]Proof. It follows from the Least Common Multiple's definition.
Due to Lenstra [10], minimizing a linear function over the integer points in a polyhedron is solvable in polynomial time provided that the number of integer variables is a constant(see also Del Pia et al. [2, 3], Hemmecke et al. [7]). Thus, we can obtain the following

Theorem 2. Problem (1) is a polynomial-time problem.
Remark 1. Note, that results, similar to Theorem 1 and Theorem 2 can be obtained for finding Least Common Multiples of more than three integer numbers. In case of two integer numbers, we can obtain the following

Theorem 3. The problem of finding the Least Common Multiple of two integer numbers: $p>0, q>0$ can be reduced to the following two-dimensional linear integer minimization problem:

$$
\begin{align*}
\operatorname{lcm}(p, q)= & \{\min (p x-q y)+p x \tag{2}\\
& \text { subject to } \\
& p x-q y \geq 0 \\
& x \leq s, y \leq s, s=p+q, x, y, p, q \in N\}
\end{align*}
$$

Proof. It follows from the Least Common Multiple's definition.
Correspondingly, we can obtain the following
Theorem 4. Problem (2) is a polynomial-time problem.
The following can be obtained as well:
Theorem 5. The problem of finding the Least Common Multiple of two integer numbers: $p>0, q>0$ can be reduced to the following two-dimensional integer quadratic minimization problem:

$$
\begin{align*}
\operatorname{lcm}(p, q)= & \left\{\min (p x-q y)^{2}+p^{2} x^{2},\right. \tag{3}\\
& \text { subject to } \\
& x \leq s, y \leq s, s=p+q, x, y, p, q \in N\}
\end{align*}
$$

Proof. It follows from the Least Common Multiple's definition. and due to monotonicity(strictly increasing) of power function.

Correspondingly, we can obtain the following
Theorem 6. Problem (3) is a polynomial-time problem.
Proof. It follows due to Del Pia and Weismantel [2], where they show that Integer Quadratic Programming can be solved in polynomial time in the plane.

3. Reducing to NP-hard nonlinear minimization problem

On the other hand, the problem of finding the Least Common Multiple of three integer numbers: $p>0, q>0$ and $r>0$ can be reduced to the following nonlinear three-dimensional integer minimization problem:

Theorem 7. The problem of finding the Least Common Multiple of three integer numbers: $p>0, q>0$ and $r>0$ can be reduced to the following thr-ee-dimensional nonlinear integer minimization problem:

$$
\begin{align*}
\operatorname{lcm}(p, q, r)= & \left\{\min \left(p^{2} x^{2}-q^{2} y^{2}\right)^{2}+\left(p^{2} x^{2}-r^{2} z^{2}\right)^{2}+p^{4} x^{4}\right. \tag{4}\\
& \text { subject to } \\
& x \leq s, y \leq s, z \leq s, s=p+q+r \\
& x, y, z, p, q, r \in N\} .
\end{align*}
$$

Proof. It follows from the Least Common Multiple's definition and monotonicity(strictly increasing) of power function.

Remark 2. Note, that results, similar to Theorem 7 can be obtained for finding Least Common Multiples of more than three integer numbers. In case of two integer numbers, we can correspondingly obtain the following

Theorem 8. \quad The problem of finding the Least Common Multiple of two integer numbers: $p>0, q>0$ can be reduced to the following two-dimensional nonlinear integer minimization problem:

$$
\begin{align*}
\operatorname{lcm}(p, q)= & \left\{\begin{array}{l}
\min \left(p^{2} x^{2}-q^{2} y^{2}\right)^{2}+p^{4} x^{4} \\
\\
\text { subject to }
\end{array}\right. \tag{5}
\end{align*}
$$

$$
x \leq s, y \leq s, s=p+q, x, y, p, q \in \boldsymbol{N}\}
$$

Proof. It follows from the Least Common Multiple's definition and monotonicity(strictly increasing) of power function.

Theorem 9. Problem (5) is a polynomial-time problem.
Proof. It follows due to Del Pia et al. [3], where they show that the problem of minimizing a homogeneous polynomial of any fixed degree over the integer points in a bounded rational polyhedron is solvable in polynomial time in the plane(Theorem 1.6).

Despite in general, Integer Programming is NP-hard or even incomputable (see, e.g., Hemmecke et al. [7]), for some subclasses of target functions and constraints it can be computed in time polynomial.

Note that the dimension of the problem (4) is fixed and is equal to 3 .
A fixed-dimensional polynomial minimization in integer variables, where the objective function is a convex polynomial and the convex feasible set is described by arbitrary polynomials can be solved in time polynomial(see, e.g ., Khachiyan and Porkolab [8]).

A fixed-dimensional polynomial minimization over the integer variables, where the objective function is a quasiconvex polynomial with integer coefficients and where the constraints are inequalities with quasiconvex polynomials of degree at most ≥ 2 with integer coefficients can be solved in time polynomial in the degrees and the binary encoding of the coefficients(see, e.g., Heinz [6], Hemmecke et al. [7], Lee [9]).

Minimizing a convex function over the integer points of a bounded convex set is polynomial in fixed dimension, according to Oertel et al. [11].

Del Pia and Weismantel [2] showed that Integer Quadratic Programming can be solved in polynomial time in the plane.

It was further generalized for cubic and homogeneous polynomials in Del Pia et al. [3].

However, according to
Theorem 10 (Hemmecke et al. [7], Del Pia et al. [3]). The problem of minimizing a degree-4 polynomial over the lattice points of a convex polygon is NP-hard.

Furthermore,

Proposition 1 (Del Pia et al. [3]). The problem of minimizing a function f over the integer points in n-dimensional rational polyhedron is NP-hard when f is a homogeneous polynomial of degree d with integer coefficients, $n \geq$ 3 and $d \geq 4$ are fixed, even when rational polyhedron is bounded.

Thus, we can obtain the following
Theorem 11. Problem (4) is NP-hard problem.
Proof. It follows from the Proposition 1, since problem (4) is a problem of minimizing a degree $d=4$ homogeneous polynomial with integer coefficients over the integer points in a bounded three-dimensional $(\mathrm{n}=3)$ rational polyhedron.

As a result, since we reduced the same problem to polynomial-time problem (1) and to NP-hard problem (4), we would conclude that $\mathrm{P}=\mathrm{NP}$, as since if there is a polynomial-time algorithm for any NP-hard problem then there are polynomial-time algorithms for all problems in NP (see [1, 4]).

4. Conclusion

We reduced the problem of finding of the Least Common Multiple of three integer numbers to two integer minimization problems: linear three-dimensional polynomial-time integer minimization problem and nonlinear thr-ee-dimensional NP-hard integer minimization problem and concluded that it would mean that $\mathrm{P}=\mathrm{NP}$.

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction To Algorithms, third ed, The MIT Press, Cambridge, 2009.
[2] A. Del Pia and R. Weismantel, Integer quadratic programming in the plane, SODA (Chandra Chekuri, ed.), SIAM, 2014, pp. 840-846.
[3] A. Del Pia, R. Hildebrand, R. Weismantel and K. Zemmer, Minimizing Cubic and Homogeneous Polynomials over Integers in the Plane, To appear in Mathematics of Operations Research (2015).
[4] M. R. Garey and D. S. Johnson, Computers and intractability. W. H. Freeman and Co., San Francisco, Calif., A guide to the theory of NP-co-
mpleteness, A Series of Books in the Mathematical Sciences, 1979.
[5] G. H. Hardy, E. M. Wright, R. Heath-Brown and J. Silverman, An Introduction to the Theory of Numbers, Oxford mathematics. OUP Oxford, 2008.
[6] S. Heinz, Complexity of integer quasiconvex polynomial optimization, J. Complexity 21(4) (2005) 543-556.
[7] R. Hemmecke, M. Köppe, J. Lee and R. Weismantel, Nonlinear Integer Programming, in: M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, L.Wolsey (Eds.), 50 Years of Integer Programming 1958-2008: The Early Years and State-of-the-Art Surveys, Sprin-ger-Verlag, Berlin, 2010, pp. 561-618.
[8] L. G. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets, Discrete and Computational Geometry 23(2) (2000) 207-224.
[9] J. Lee, On the boundary of tractability for nonlinear discrete optimization, in: Cologne Twente Workshop 2009, 8th Cologne Twente Workshop on Graphs and Combinatorial Optimization, Ecole Polytechnique, Paris, 2009, pp. 374-383.
[10] H.W. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of Operations Research 8(4) (1983) 538-548.
[11] T. Oertel, C. Wagner and R. Weismantel, Convex integer minimization in fixed dimension,. arxiv:1203.4175v1(2012).

E-mail: yulysh2000@yahoo.ca

[^0]: 2020 Mathematics Subject Classifications. Primary: 11A05, 90C10; Secondary: 68Q25. Key words and phrases. Complexity, Integer Optimization, Least Common Multiple.

