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ABSTRACT

This paper describes Curvature-cosmology that is a tired-light cosmology that predicts a well-defined

static and stable universe. It provides a new simpler raw data analysis for Type Ia supernova. Since

it is a complete challenge to the big bang paradigm, Curvature-cosmology can only be judged by

its agreement with direct cosmological observations. Curvature-cosmology predicts a universe of a

hydrogen plasma with a temperature of 2.456×109 K [observed: 2.62×109K] and a cosmic background

radiation temperature of 2.736 K [observed: 2.725K]. It has only one parameter which is the density

of the cosmic plasma. The major observations that are shown to consistent with it are: Type 1a

supernova, Tolman surface density, brightness, angular size, galaxy distributions, X-ray background

radiation, and quasar variability. It does not need inflation, dark matter or dark energy.
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1. INTRODUCTION

This paper describes the Curvature-cosmology

paradigm that challenges the big bang paradigm to

see which provides the best agreement with cosmologi-

cal observations. Following the precepts of Thomas S.

Kuhn (Kuhn 1970) it is essential that each paradigm

must be judged using its own analysis. That is ob-

servations of non-static behavior observed within the

old paradigm cannot be used to invalidate the new

paradigm. They must be evaluated within the new

paradigm to have any validity.

Curvature-cosmology has excellent agreement with all

the major cosmological observations and a brief sum-

mary is provided in Table 1.

Nearby Type Ia supernova are well known to have es-

sentially identical light curves that make excellent cos-

mological probes. The observational evidence for their

time dilation has a long history with notable papers

being by Goldhaber et al. (2001, 1996); Blondin et al.

(2008). More recent contributions are by Kowalski et al.

(2008); Wood-Vasey et al. (2008); Kessler et al. (2009a);

Amanullah et al. (2010); Conley et al. (2011); Betoule

et al. (2014); Scolnic et al. (2018). All of these recent

papers use the SALT2 Guy et al. (2010, 2007) method

to determine the widths and peak flux densities of the

supernova and they have used the ΛCDM expansion cos-

mology to determine absolute magnitudes. These papers

show that type Ia supernova observations provide the

major contribution to cosmological models.

The common attribute of all ΛCDM , cosmologies is

that they are based on the assumption that the uni-

verse is expanding (Peebles 1993). An early alterna-

tive was the steady-state theory of Hoyle, Bondi and

Gold Hoyle (1962) (described with later extensions by

Hoyle et al. (2000)) that required continuous creation of

matter. However steady-state theories have serious dif-

ficulties in explaining the cosmic microwave background

radiation. This left ΛCDM as the dominant cosmology

but still subject to criticism.

Lal (2010) and Joseph (2010) have continued ma-

jor earlier criticisms of ΛCDM cosmologies (Ellis 1984;

Lerner 1991; Disney 2000; van Flandern 1991). Whereas

most of these criticisms have been of a theoretical na-

ture, this paper concentrates on whether observational

data supports a static cosmological model, Curvature-

cosmology.

A crucial property of Curvature-cosmology is that the

observed magnitude is the sum of an intrinsic magni-

tude, which is what would be observed by a nearby ob-

server and a cosmological magnitude. The cosmological

magnitude is a comes from the change in the average

energy of the photons due to their trajectory through

the universe. Whereas the intrinsic magnitude is only a

property of the observed object and is completely inde-

pendent of the cosmology.

This paper has three major parts where the first part

presents a new much simpler method that analyzes raw

Type Ia supernova data in order to measure their light

curve widths and their peak flux densities. These re-

sults are compared with the standard SALT2 method

and it showed that the SALT2 method (summarized in

the appendix) has a flaw in its flux density results.

The second part presents a new static cosmology,

Curvature-cosmology, that has excellent agreement with

observations.

The third part provides the observation data for many

cosmological observations and discuses their results in

the context of Curvature-cosmology.

This paper is the culmination of many years of work

and is a complete re-synthesis of many approaches that I

have already published (Crawford 1987a,b, 1991, 1993,

1995a,b, 1998, 1999a,b, 2006, 2009a,b). These papers

are cited to show the convoluted and historical path

of Curvature-cosmology. Because hypotheses and no-

tations have changed and evolved, direct references to

these earlier versions of the theory would be misleading

and all relevant results are published in this paper.

For convenience it is assumed that the wavelength de-

pendence of a band can be replaced by a single value, λ,

which is the mean wavelength for that band.

2. CONCLUSIONS

The major tests for Curvature-cosmology is shown in

Table 1.

The major support for the λCDM model is that it

describes the general relativity model of an unstable ex-

panding universe. This is similar to assuming that a

falling feather should have the same acceleration as a

falling stone, whereas we know that the difference is due

to air resistance. Maybe cosmology needs something like

air resistance such as Curvature-cosmology,

Crucially the standard procedure is to use λCDM or

one of its variants to determine the dimensionless den-

sity parameters, which depend on assumptions of infla-

tion, dark matter and dark energy. Since none of these

properties are substantiated by other independent ob-

servations, they do not provide any support for this cos-

mology. Moreover they are ad hoc models largely deter-

mined by supernova observations. In other words, there

are no observations other than those for supernova that

show strong confirmation of the SALT2 analysis and the

λCDM model.

Curvature-cosmology is a static tired-light cosmology

which is a static solution to the equation of general rel-
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Table 1. Predicted and observed results for Curvature-cosmology.

Cosmological measurement Ref. Predicted Observed

Quasar energy loss rate 3.6 1+z (1.0073± 0.0046)(1 + z)

Cosmic temperature 4.7 2.456× 109 K (2.62± 0.13)× 109 K

Supernova light curve width 3.4 1+z (1.060± 0.009) + (1.080± 0.042) z

Supernova absolute magnitude M(z) 5.1 M0 + 0z (−18.6562± 0.009)+ (0.081± 0.057)z

CMBR temperature 5.3 (2.736± 0.092) K (2.72548± 0.00057) K

Tolman surface density exponent 5.4 1 (1.38± 0.13)

ativity that is described by the Friedmann equations

with an additional term that stabilizes the solution.

This term called Curvature-pressure is a reaction of

high-speed particles back on the material producing the

curved space-time. This sense of this reaction is to try

and reduce the curvature.

The basic cosmological model is one in which the cos-

mic plasma dominates the mass distribution and hence

the curvature of space-time. In this first-order model,

the gravitational effects of stars and galaxies are ne-

glected. The geometry is that of a three-dimensional

“surface” of a four-dimensional hyper-sphere, which is

common to most cosmologies. Its main strengths are

that it does not have ad hoc additions to the model and

it has exceptionally good agreement with cosmological

observations.

This is a brief summary of the quantitative obser-

vations that are relevant to the Curvature-cosmology

model. The predicted Hubble’s constant is H0 =

41.30 kms−1Mpc−1 where the density has used NH =

1.93 from section 5.2. This value is significantly less

than the current value of h ≈ 70. However these mea-

surements were based the standard model. A valid test

would be re-evaluate the observations using Curvature-

cosmology.

Curvature-cosmology does not need dark matter to

explain the velocity dispersion in clusters of galaxies or

the shape of galactic rotation curves. Furthermore it is

shown in section 3.7 that dark energy could be due to

fault in the SALT2 analysis.

For angular size the conclusion is in favor of

Curvature-cosmology.

An analysis of many galaxies that have multiple ob-

served bands show no evidence of evolution.

Curvature-cosmology predicts the observed quasar

epoch variability of zero.

The Butcher-Oemler effect remains uncertain, and

therefore does not provide evidence to refute a static

cosmology.

Not only can Curvature-cosmology explain the anoma-

lous Pioneer 10 acceleration, it has a feasible prediction

of its value.

Fluctuations in the CMBR can be explained a density

fluctuations in the cosmic plasma.

Overall for Curvature-cosmology there is remark-

able agrement between its predictions and observations,

without any serious problems.

3. PART A: ANALYSIS OF TYPE IA SUPERNOVA

3.1. Introduction

This part describes a new analysis method (intrinsic

analysis) for Type Ia supernova that is simple and can

replace the standard SALT2 method. A major differ-

ence from SALT2 is that it explicitly estimates and uses

intrinsic flux densities.

It is shown that absolute magnitudes of Type Ia su-

pernova analyzed with the SALT2 method and using the

λCDM distance modulus are independent of redshift.

However supernova analyzed with the intrinsic analysis

and using the λCDM distance modulus have a signifi-

cant dependence on redshift which implies a fault in the

SALT2 analysis .

Although the intrinsic magnitude is the same as the

absolute magnitude, the different name is used because

the measurement method is different. The intrinsic mag-

nitude can only be used when there are many bands and

relies on the fact that each band must have the same

cosmological magnitude. Whereas using a distance mod-

ulus, the absolute magnitude can be applied to a single

observation.

The next section covers the results for intrinsic magni-

tudes for both Type Ia supernova and quasars. An im-

portant product is plots of intrinsic magnitudes verses

intrinsic wavelengths, both of which appear to be dom-

inated by atomic hydrogen absorption.

Although the absolute magnitudes for supernova an-

alyzed with the SALT2 method and the λCDM model

show no dependence with redshift. The absolute mag-

nitudes for intrinsic analysis and the λCDM model are
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significantly different from zero. Section 3.7 provides a

discussion of why the λCDM model may be flawed.

3.2. Type Ia supernova

From WikipediA: “Type Ia Supernova is believed to

result from mass accretion to a carbon-oxygen white

dwarf in a close binary system. When the white dwarf

mass exceeds the Chandrasekhar limit, the degenerate

electron pressure can no longer support the accumulated

mass and the star collapses in a thermonuclear explosion

producing a supernova. The peak luminosity of super-

nova Ia is set by the radioactive decay chain, and the

observed photometric correlation between the peak lu-

minosity and the time-scale over which the light curve

decays from its maximum is understood physically as

having both the luminosity and opacity being set by the

mass of Nickel-56 synthesized in the explosion.

The major observational evidence for Type Ia super-

nova is a lack of hydrogen lines and a singly ionized

silicon (Si II) absorption feature at 0.615µm near peak

brightness.”

The observation of a distant supernova requires the

emission of a photon from an intrinsic source and then it

follows a trajectory that is determined by the geometry

of the universe. If the universe is expanding then their

average energy is determined by velocity of the telescope

relative to the source. If the universe is static, this en-

ergy loss could be the result of photons being scattered

outside the beam.

A critical part in measuring the light curve width of

Type Ia supernova light curves is to have a reference

light curve. The observed light curve must have the

same shape independent of redshift. Only its width and

height will vary with redshift. Consequently this prop-

erty is assumed in intrinsic analysis.

In order to remove any possible bias, a standard in-

dependent template, the B band Parab-18 from Table 2

from Goldhaber et al. (2001) which has the first half-

peak width at -10.1 days and the second half-peak width

at 22.3 days is used. Consequently all widths are relative

to this light curve.

The purpose of the light-curve analysis is to obtain

estimates of the peak flux density for each band, the

width (common to all bands) of the light-curve relative

to the template and the epoch offset of the light curve.

This offset is a nuisance parameter that allows for the

unknown epoch of the peak flux density and is defined

to be the epoch difference between the fitted light curve

relative to the observed epochs.

An initial problem is to determine the initial epoch

offset q. The solution used was to estimate the aver-

age flux density for every epoch in the observed range.

This averaging used a Gaussian weight factor with the

weight = exp(−0.5(pi− q)2) where pi is the epoch of an

observation and q is the reference epoch. The day with

the largest average flux density defined the initial epoch

offset.

The intrinsic analysis method starts with the observed

flux density, fi for the index i, and its uncertainty σi.

Then for each supernova and each band the maximum

likelihood method is used to determine the fitted maxi-

mum flux density, F and its epoch.

Let the reference supernova light curve be referenced

by C((pi − q)/w) where pi is the epoch, w is the com-

puted width, and q is the epoch offset of the maximum

of the fitted light curve. Then, assuming a Gaussian flux

density noise distribution, the log-likelihood function for

a single band, with n observations, of a supernova is

L =
n∑

i=1

[(
fi − b− F × C((pi − q)/w)

σi

)2
]
, (1)

where i is the observation index, the epoch is pi and b

is the base flux density level for the current band. A

constant term that depends only on the measurement

uncertainties is omitted. Additionally the omission of

the factor −1/2 means that L is a ψ2 variate with n

degrees of freedom. Thus the maximization of the like-

lihood is identical to the minimization of L.
Although the peak flux density and base level are de-

termined by an analytic fit, the values for the epoch

offset and width are easily found by numerical mini-

mization. Fortunately, the flux density and width are

almost orthogonal so that a sequence of alternate fits

rapidly converges.

Note that in Eq 1 each flux density and each peak

flux density is divided by its uncertainty which means

that the fitted width is independent of individual band

calibrations and all bands can be included in the same

expression.

All the information about the width distribution is

contained in L. The uncertainty in the width was deter-

mined from the proposition that the likelihood function,

L as a function of width is equal to the likelihood of a

Gaussian function of width with a standard deviation

equal to the width uncertainty. That is

L = (
w

σw
)2, (2)

where w is the width and σw is the estimated uncertainty

in the width and it is estimated using Eq. 1.

It must be noted that the fitting procedure is com-

pletely independent of the redshift and is also indepen-

dent of the band type. Although each band had its own

estimate of its peak flux density, the width is the result
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of a common fit to all observations for each supernova.

Thus the computed parameters for each supernova are

its light curve width, and the peak flux density for each

band which is the flux density for that band at the max-

imum epoch of the common fitted light curve.

3.3. The observations.

The Type Ia supernova data used here comes from

the Supernova Legacy survey (SNSL), the Sloan Digital

Survey (SDSS) (both sourced from the SNANA website

Kessler et al. (2009b)), and the Panoramic Survey Tele-

scope and Rapid Response System, (Pan-STARRS), su-

pernova survey Kaiser et al. (2010); Jones et al. (2018);

Scolnic et al. (2018) and those observed by the Hubble

Space Telescope (HST) Riess et al. (2007); Jones et al.

(2013).

The observations of Type Ia supernova from Pan-

STARRS, (PS1), were accessed from the site https:

//archive.stsci.edu/prepds/ps1cosmo/jones and the file

datatable.html. In 2018 Pan-STARRS consisted of two

1.8-m Ritchey-Chrétien telescopes located at Haleakala

in Hawaii and could record almost 1.4 billion pixels per

image. It is designed to detect moving or variable ob-

jects on a continual basis. An image with a 30 to 60

second duration can record down to an apparent magni-

tude of 22 mag. The whole visible sky will be surveyed

four times a month.

Although theoretically, the Type Ia supernova model

has a fixed absolute magnitude, its measurement is sub-

ject to the usual uncertainties. This is why they can be

observed at redshifts beyond the nominal limit of the

telescope and are subject to Malmquist bias.

However many of the observations come from the PS1

survey which is essentially providing a continuous record

of the sky so that the simple Malmquist bias is not appli-

cable. However for all the other supernova a Malmquist

bias is -1.382σ2
i mag, where σi is the observed flux den-

sity uncertainty. But since application of Malmquist

bias corrections made negligible difference to the results

it has not been applied.

Table 2 shows the statistics for the selected supernova.

The selection criteria was that there was a good fit and

the width was between 0.3 and 5.0 and the width uncer-

tainly was less than 0.3. In addition the value of L had

to be less than 20/n.

3.4. Results for the light curve width

from 1, 745 initial candidates there were 1,707 that

satisfied the selection criteria. Most of the rejections

were because there were insufficient observations prior

to the peak epoch.

The important result of this width analysis is a re-

gression of wobs(z) as a function of z for all the 1,707

Table 2. Light-curve numbers for each band

Band λ/µm Na Nb

U 0.365 77 0

B 0.445 121 0

V 0.551 121 0

R 0.658 72 0

I 0.809 74 0

u 0.354 141 0

g 0.475 421 1141

r 0.622 468 1132

i 0.763 468 1142

z 0.905 412 1146

F775W 0.771 7 0

F850LP 0.907 17 0

a Number of supernova from other catalogues.
b Number of supernova for the PS1 catalogue.

accepted observations which is

wobs(z) = (1.060± 0.009 + (1.080± 0.042)) z. (3)

Although the ordinate is statistically different from

one, it is this ordinate that is most sensitive to calibra-

tion and systematic errors such as having minor errors

in the reference light curve. Here this difference is not

important. However the coordinate shows an excellent

agreement with one. Note that this width measurement

is independent any cosmological model.

The widths for all the supernova are shown in Figure 1.

It is clear that the slope is consistent with the expected

dependence of w(z) = 1+z. Some of the supernova show

either discrepant widths or discrepant uncertainties and

to avoid any bias, no rejections have been made to the

original data.

For convenience it helps to convert all the flux den-

sities into magnitudes. All computed apparent magni-

tudes except the those in the SDSS catalogue were cal-

culated by mk = 27.5 − 2.5 log10(Fk) where Fk is the

peak flux density and k is the band. Those in the SDSS

catalogue had mk = 24.5− 2.5 log10(Fk).

Since each supernova has a peak flux density for each

observed band, they can be combined to provide a peak

intrinsic flux density for each band and a cosmological

flux density for the supernova. Thus there is a clear

separation between the intrinsic flux density which is

independent of the redshift and the cosmological redshift

that is only a function of redshift.

3.5. Intrinsic supernova magnitudes

Then for each supernova and band the fitted apparent

magnitude is the sum of an intrinsic magnitude and a

https://archive.stsci.edu/prepds/ps1cosmo/jones
https://archive.stsci.edu/prepds/ps1cosmo/jones
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Figure 1. A plot of the Type Ia supernova light curve
observed widths. The blue dots are for the PS1 and the black
dots with error bars show the HST (Hubble Space Telescope)
observations. All other observations are shown by the green
dots. The red line shows a (1 + z) dependence

common cosmological magnitude. Starting with a con-

stant intrinsic flux density, the average magnitude was

determined by fitting a regression equation to the ob-

served peak magnitudes minus the current intrinsic mag-

nitude which is common to all the supernova and is a

function of the intrinsic wavelength.

The first step is to estimate an initial cosmological flux

density as the mean of the observed peak flux densities

for each band. The next step is to determine an estimate

of the intrinsic flux density as a function of the intrinsic

wavelength, ψ which by definition is

ψ = λ/(1 + z). (4)

Initially there 30 boxes that cover the ψ range are set to

zero, then the difference between each observed flux den-

sity and the current estimate of the cosmological magni-

tude is added to the appropriate box. After all the ob-

servations are processed, the procedure is repeated with

each peak flux density being corrected for the average

flux density defined by the mean of its box. Then a new

set of cosmological magnitudes are produced. This pro-

cess is repeated until there are no significant changes in

the values.

Thus each supernova, the observed peak band mag-

nitudes are reduced to a peak cosmological magnitude

and a common intrinsic magnitude distribution. The

individual intrinsic peak magnitude data points for the

supernova are shown in Figure 2 and tabulated in Ta-

ble 3. There is a very rapid decrease in the intrinsic

luminosity as the intrinsic wavelength approaches the

Lymanα line which suggests scattering in a local hydro-

gen cloud. This could also explain the lack of hydrogen

Table 3. Intrinsic magnitude of Type Ia supernova

box number ψ/µm magnitude

8 26 0.243 3.876± 0.247

9 132 0.269 2.021± 0.077

10 256 0.304 1.113± 0.051

11 471 0.334 0.613± 0.032

12 608 0.364 0.080± 0.027

13 470 0.400 -0.181± 0.022

14 521 0.434 -0.227± 0.021

15 537 0.467 -0.197± 0.021

16 493 0.500 -0.182± 0.023

17 499 0.534 -0.067± 0.030

18 498 0.567 -0.126± 0.033

19 453 0.600 -0.114± 0.029

20 383 0.634 0.027± 0.039

21 368 0.667 0.086± 0.038

22 265 0.699 0.126± 0.042

23 190 0.733 0.443± 0.059

24 106 0.765 0.366± 0.084

25 100 0.798 0.520± 0.093

lines in the spectra. Note that the size of this cloud

would be very small and would not be easily detected.

Figure 2. The intrinsic peak magnitude of Type Ia su-
pernova as a function of intrinsic wavelength, ψ. The black
points and curve show the average intrinsic peak magnitude
as a function of intrinsic wavelength. The bands UBV RI
have the same sequential colors as the bands ugriz. The
position of the Lymanα line is shown in blue.

3.6. Intrinsic quasar magnitudes

The purpose of this section is to show that an analysis

of the observed magnitudes for many quasars is to show

that they all have a relative energy loss proportional to

(1 + z).
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From WikipediA: “A quasar also known as a quasi-

stellar object is an extremely luminous active galactic

nucleus (AGN), powered by a supermassive black hole,

with mass ranging from millions to tens of billions times

the mass of the Sun, surrounded by a gaseous accre-

tion disc. Gas in the disc falling towards the black hole

heats up because of friction and releases energy in the

form of electromagnetic radiation. The radiant energy

of quasars is enormous; the most powerful quasars have

luminosities thousands of times greater than a galaxy

such as the Milky Way. Usually, quasars are categorized

as a subclass of the more general category of AGN. The

redshifts of quasars are of cosmological origin.”

All quasar data used here is taken from the Sloan Dig-

ital Sky Survey Quasar Catalog: Sixteenth Data Release

(DR16Q) Lyke et al. (2020).

The majority of these quasars gave been discovered

by a flux density limited survey without knowledge of

the redshift and it is clear that the observed magnitudes

have a very limited dependence on their observed red-

shift. Thus the observation model is that the selection

of each quasar is determined by the cut-off flux density

and the overall telescope noise and it is assumed that

these values are the same for all the quasars.

Thus for each quasar discovered its apparent magni-

tude must lie in the range of magnitudes that are ac-

cepted by the telescope and it is completely independent

of the intrinsic magnitude of the quasar. The observed

flux density depends on the probability of seeing the

quasar and its distance. Since the observed distance

is rapidly increasing with redshift, it is proportional to

the maximum area. For this distance the observed flux

density is inversely proportional to the same area. Since

these two areas cancel each other, the expected flux den-

sity is the cut-off flux density plus, if any, common cos-

mological flux density.

The data for each quasar is its redshift and the ob-

served magnitudes for the 5 bands, UBV RI. The in-

trinsic magnitude for each band is determined by the

procedure described in section 3.3 for the supernova,

except there were 1000 boxes.

The quasar intrinsic magnitude is shown in Figure 3.

The rapid decrease in luminosity at short wavelengths

is probably due to a local hydrogen cloud. Note that if

quasars are like black holes then the size of this cloud

could be very small and it would not easily be detected

against the luminosity of the accretion disk.

If the universe is expanding then this energy loss factor

is proportional to (1+z)−1. A simple method to measure

this average energy loss is to assume that the expected

magnitude is

m = a+ b× 2.5log10(1 + z). (5)

Figure 3. The black plot shows the average intrinsic mag-
nitude of SDSS quasars as a function of intrinsic wavelength,
ψ. The position of the wavelength for the Lymanα line is
shown in blue and that for the hydrogen ionization is shown
in red.

Then the expected values are a = −1 and b = −1.

The weighted regression equation for 635,218 quasars

produced the results a = −0.9109± 0.001 and

b = −(1.0073± 0.0046). (6)

The difference of the parameter a from -1 is unknown

but fortunately it is not important here. However the

agreement of parameter b with -1 is very clear and shows

very strong support for an energy loss rate of (1 + z).

The absolute magnitude of Type Ia supernova is the

sum of the apparent magnitude and a distance modulus.

Scolnic et al. (2017) suggests several distance moduli

that have a good fit to the PS1 Medium Deep Survey

that were analyzed with the SALT2 method. The sim-

plest is the oCDM model. There are two sets of data,

the 1117 PS1 set and the combined 1652 described above

that can be used to test the absolute magnitude depen-

dence on redshift. The PS1 set (JonesJones et al. (2018)

table (3)) is a list of results from the Pan-STARRS

supernova survey and their apparent magnitudes have

been corrected using Scolnic et al. (2017) Eq.(3) and

using the oCDM model, the regression of the absolute

magnitude verse redshift for the 1117 PS1 Type Ia su-

pernova that used the SALT2 model

M(z) = −19.205± 0.009 + (0.052± 0.067)z, (7)

where the last term is statistically equal to zero. This

shows that the SALT2 method is consistent with the

oCDM model.

However the regression for the 1652 PS1 Type Ia

supernova, using the intrinsic analysis and the oCDM
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model, is

M(z) = −18.562± 0.009 + (0.669± 0.059)z, (8)

where the last term is not equal to zero.

3.7. Discussion of SALT2 magnitudes.

The absolute magnitudes of PS1 supernova that are

analyzed by the SALT2 method and using the oCDM

model show negligible dependence on redshift. However

the absolute magnitudes that are obtained from intrinsic

analysis and using the oCDMmodel shows a statistically

valid dependence on redshift, ∆M = (0.833 ± 0.072)z

that is inconsistent with the expected value of zero,

Could this be due to a fault in the intrinsic analy-

sis? Because the intrinsic analysis is completely inde-

pendent of the observed redshift the anomaly must be

present in the observed data and cannot come from the

analysis. Although it is not an independent result, sec-

tion 5.21 shows that there is no Phillip’s relation. The

conclusion is that it must be in SALT2 and that the

λCDM procedure of determining the dimensionless den-

sity parameters counteracts the fault.. As shown in the

appendix the SALT2 method calibrates a new Type Ia

supernova by comparing its observations against the re-

sults for previous supernova measurements, these results

only show self-consistency and do not provide validation

of the flux densities. However if there is a systematic er-

ror in the previous supernova measurements, it will be

transmitted to new observations. Furthermore it explic-

itly includes the nuisance parameter α that is a measure

of the Phillip’s relation between magnitude and redshift.

The major support for the λCDM model is that it

describes the general relativity model of an unstable ex-

panding universe. This is similar to assuming that a

falling feather should have the same acceleration as a

falling stone, whereas we know that the difference is due

to air resistance and is not due to a deficiency in the

gravitational model. Maybe cosmology needs something

like air resistance such as Curvature-cosmology,

Crucially the standard procedure is to use oCDM or

one of its variants to determine the dimensionless den-

sity parameters, which depend on assumptions of in-

flation, dark matter and dark energy. Since none of

these properties are substantiated by other independent

observations, they do not provide any support for this

cosmology. Moreover they are ad hoc models largely

determined by supernova observations. In other words,

there are no observations other than those for Type IA

supernova that show strong confirmation of the SALT2

analysis and the λCDM model.

4. PART B: CURVATURE-COSMOLOGY THEORY.

4.1. Introduction

Curvature-cosmology is a static tired-light cosmology

which is based on the two hypothesizes of Curvature-

redshift which is based on the propagation of a wave

in of curved space-time and Curvature-pressure which

opposes the mutual gravitational attraction of hot gases.

It is a static solution to the equation of general relativ-

ity that is described by the Friedmann equations with an

additional term that stabilizes the solution. This term

called Curvature-pressure is a reaction of high-speed

particles back on the material producing the curved

space-time. This sense of this reaction is to try and

reduce the curvature.

The basic cosmological model is one in which the cos-

mic plasma dominates the mass distribution and hence

the curvature of space-time. In this first-order model,

the gravitational effects of stars and galaxies are ne-

glected. The geometry is that of a three-dimensional

“surface” of a four-dimensional hyper-sphere, which is

common to most cosmologies.

For a static universe, there is no ambiguity in the

definition of distances and times. One can use a uni-

versal cosmic time and define distances in light travel

times or any other convenient measure. In a statistical

sense Curvature-cosmology obeys the perfect cosmolog-

ical principle of being the same at all places and at all

times.

Curvature-cosmology makes quite specific predictions

that can be refuted. Thus, any observations that unam-

biguously show changes in the universe with a redshift

would invalidate it. In Curvature-cosmology, there is a

continuous process in which some of the cosmic gas will

aggregate to form galaxies and then stars. The galaxies

and stars will evolve and eventually all their material

will be returned to the cosmic plasma. Thus, a char-

acteristic of Curvature-cosmology is that although in-

dividual galaxies will be born, live and die, the overall

population will be statistically the same for any observ-

able characteristic.

4.2. Derivation of Curvature-redshift

The derivation of Curvature-redshift is based on the

fundamental hypothesis of Einstein’s general theory of

relativity that space is curved. As a consequence, the

trajectories of initially parallel point particles, geodesics,

will move closer to each other, or further apart as time

increases. Consequently in space with a positive cur-

vature, the cross-sectional area of a bundle of geodesics

will slowly decrease.

In applying this idea to photons, we assume that a

photon is described in quantum mechanics as a local-

ized wave where the geodesics correspond to the rays of
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the wave. Note that this wave is quite separate from

an electromagnetic wave that corresponds to the effects

of many photons. It is fundamental to the hypothesis

that we can consider the motion in space of individual

photons.

Because the curvature of space causes the focusing of a

bundle of geodesics, this focusing also applies to a wave.

As the photon progresses, the cross-sectional area of the

wave associated with it will decrease. However, in quan-

tum mechanics properties such as angular momentum

are computed by an integration of a radial coordinate

over the volume of the wave and will be affected by the

focusing.

If the cross-sectional area of the wave decreases, then

the angular momentum will also decrease. However, an-

gular momentum is a quantized parameter that for pho-

tons has a fixed value. The solution to this dilemma

is that, from symmetry, the photon splits into two very

low-energy photons and a third that has the same direc-

tion as the original photon and nearly all the energy.

Since in quantum mechanics protons and other parti-

cles are considered as waves, a similar process will also

apply. It is argued that protons and other particles will

interact with curved space to lose energy by the emission

of very low-energy photons.

Einstein’s general theory of relativity requires that the

metric of space-time be determined by the distribution

of mass (and energy). In general this space-time will be

curved such that in a space of positive curvature, nearby

geodesics that are initially parallel will come closer to-

gether as the reference position moves along them. This

is directly analogous to the fact that on the earth lines

of longitude come closer together as they go from the

equator to either pole. In flat space-time, the separa-

tion remains constant.

The equation for geodesic deviation can be written

Misner, Thorne, & Wheeler (1973) as

d2ξ

dr2
= − ξ

R2
,

where ξ is a distance normal to the trajectory and r is

measured along the trajectory. The quantity 1/R2 is the

Gaussian curvature at the point of consideration.

Assume that a photon can be described by a localized

wave packet that has finite extent both along and normal

to its trajectory. This economic description is sufficient

for the following derivation. From de Broglie’s equation

the frequency of a photon with energy E is ν = E/h and

its wavelength as λ = hc/E where E is its energy. These

definitions do not imply that we can ascribe a frequency

or a wavelength to an individual photon; they are prop-

erties of groups of photons. The derivation requires that

the wavelength is short compared to the size of the wave

packet and that this is short compared to variations in

the curvature of space-time.

Furthermore, we assume that the rays follow null

geodesics and therefore any deviations from flat space-

time produce change in shape of the wave packet. In

other words, since the scale length of deviations from flat

space are large compared to the size of the wave packet

they act as a very small perturbation to the propagation

of the wave packet.

Consider a wave packet moving through a space-time

of constant positive curvature. Because of geodesic de-

viation, the rays come closer together as the wave packet

moves forward. They are focused. In particular the di-

rection θ, of a ray (geodesic) with initial separation ξ

after a distance r is (assuming small angles)

θ = − rξ

R2
,

where R is the radius of curvature.

Since the central geodesic is the direction of energy

flow, we can integrate the wave-energy-function times

the component of θ normal to the trajectory, over the

dimensions of the wave packet in order to calculate the

amount of energy that is now traveling normal to the

trajectory. The result is a finite energy that depends

on the average lateral extension of the wave packet, the

local radius of curvature, and the original photon energy.

The actual value is not important but rather the fact

that there is a finite fraction of the energy that is mov-

ing away from the trajectory of the original wave packet.

This suggests a photon interaction in which the pho-

ton interacts with curved space-time with the hypoth-

esis that the energy flow normal to the trajectory goes

into the emission of secondary photons normal to its

trajectory.

From a quantum-mechanical point of view, there is a
strong argument that some interaction must take place.

If the spin of the photon is directly related to the angular

momentum of the wave packet about its trajectory then

the computation of the angular momentum is a similar

integral.

Then because of focussing the angular momentum

clearly changes along the trajectory, which disagrees

with the quantum requirement that the angular momen-

tum, that is the spin, of the photon is constant. The

Heisenberg uncertainty principle requires that an incor-

rect value of spin can only be tolerated for a small time

before something happens to restore the correct value.

We now consider the consequences.

Consider motion on the surface of a three-dimensional

sphere with radius r. As described above, two adjacent

geodesics will move closer together due to focusing. Sim-

ple kinematics tells us that a body with velocity v asso-
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ciated with these geodesics has acceleration v2/r, where

r is the radius of curvature. This acceleration is directly

experienced by the body.

The geometry of a three-dimensional “surface” with

curvature in the fourth dimension is essentially the same

as motion in three dimensions except that the focusing

now applies to the cross-sectional area and not to the

separation.

Since wave packet that is subject to focusing has ac-

celeration in an orthogonal dimension will also experi-

ence an acceleration of c2/r normal to the surface of the

sphere. Then a wave packet (and hence a photon) that

has its cross-sectional area focused by curvature in the

fourth dimension with radius r would have an energy

loss rate proportional to this acceleration. The essence

of the Curvature-redshift hypothesis is that the focus-

ing causes the photon to interact and that the energy

loss rate is proportional to c2/R. For a photon with en-

ergy E the loss rate per unit time is cE/R, and per unit

distance it is E/R.

In general relativity the crucial equation for the focus-

ing of a bundle of geodesics was derived by Raychaud-

huri (1955), also see Misner et al. (1973) and Ellis (1984)

and for the current context we can assume that the bun-

dle has zero shear and zero vorticity. Since any change

in geodesic deviation along the trajectory will not alter

the direction of the geodesics, we need consider only the

cross-sectional area A of the geodesic bundle to get the

equation

1

A

d2A

dr2
= −RαβU

αUβ = − 1

R2
, (9)

where R is the Ricci tensor (it is the contraction of the

Riemann-Christoffel tensor), U is the 4-velocity of the

reference geodesic and R is the local radius of curva-

ture. This focusing can be interpreted as the second

order rate of change of cross-sectional area of a geodesic

bundle that is on the three-dimensional surface in four-

dimensional space. Then if we consider that a photon is

a wave packet we find that the rate at which the photon

loses energy per unit distance is E/R or more explicitly.

1

E

dE

dr
= − 1

R
= −

(
RαβU

αUβ
)1/2

, (10)

What is interesting about this equation is that, for the

Schwarzschild (and Kerr) solutions for the external field

for a mass, the Ricci tensor is zero; hence, there is no

focusing and no energy loss. A geodesic bundle passing

a mass such as the sun experiences a distortion but the

wave packet has not changed in area. Hence, this model

predicts that photons passing near the limb of the sun

will not suffer any energy loss due to curvature-redshift.

4.3. Gravitation is not a force

The phrase gravitational force is not only a popular

expression but is endemic throughout physics. In par-

ticular, gravitation is classified as one of the four funda-

mental forces with its heritage going back to Newton’s

law of gravitation. I argue that the formulation of grav-

itation as a force is a misconception. In both Newtonian

theory and general relativity, gravitation is acceleration.

To begin let us examine the original Newtonian gravita-

tion equation.

mIa = F = −GMmG

r3
r, (11)

where (following Longair (1991)) we identify mI as the

inertial mass of the test object, M as the active gravita-

tional mass of the second object and mG as the passive

gravitational mass of the test object. The vector a is its

acceleration and r is its displacement from the second

object. This equation is usually derived in two steps:

first, the derivation of a gravitational field and second,

the force produced by that field on the test mass. By

analogy with Coulomb’s law, the passive gravitational

mass has a similar role to the electric charge.

However many experiments by Eötvös, Pekár, &

Fekete (1922), Dicke (1964), and Braginskij & Panov

(1971) have shown that the passive gravitational mass

is equal to the inertial mass to about one part in 1012.

The usual interpretation of the agreement is that they

are fundamentally the same thing. However, an alterna-

tive viewpoint is that the basic equation is wrong and

that the passive gravitational mass and the inertial mass

should not appear in the equation. In this case the cor-

rect equation is

a = −GM
r3

r. (12)

Thus, the effect of gravitation is to produce accelera-

tions directly; there is no force involved. Some might

argue that since the two masses cancel the distinction is

unimportant. On the other hand, I would argue that the

application of Ockham’s razor dictates the use of Eq. 12

instead of Eq. 11.

The agreement of the inertial mass with the passive

gravitational mass is the basis of the weak equivalence

principle in that it applies regardless of the composition

of the matter used. Carlip (1998) Shows that it applies

to both the potential and the kinetic energy in the body.

The theory of general relativity is based on the principle

of equivalence as stated by Einstein: All local, freely

falling, non-rotating laboratories are fully equivalent for

the performance of physical experiments.

The relevance here is that it is impossible to distin-

guish between acceleration and a uniform gravitational
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field. Thus when gravitation is considered as accelera-

tion and not a force the passive gravitational mass is a

spurious quantity that is not required by either theory.

4.4. Derivation of Curvature-pressure.

The hypothesis of Curvature-pressure is that for mov-

ing particles there is a pressure generated that acts back

on the matter that causes the curved space-time. In this

case, Curvature-pressure acts on the matter (plasma)

that is producing curved space-time in such a way as

to try to decrease the curvature. In other words, the

plasma produces curved space-time through its den-

sity entering the stress-energy tensor in Einstein’s field

equations and the constraint of the plasma to a three-

dimensional hyper-“surface”.

A simple cosmological model using Newtonian physics

in four-dimensional space illustrates some of the ba-

sic physics subsequently used to derive the features

of Curvature-pressure. The model assumes that the

universe is composed of plasma confined to the three-

dimensional “surface” of a four-dimensional hyper-

sphere.

Since the visualization of four dimensions is difficult

let us suppress one of the normal dimensions and con-

sider the gas to occupy the two-dimensional surface of a

normal sphere. From Gauss’s law (i.e. the gravitational

effect of a spherical distribution of particles with radial

symmetry is identical to that of a point mass equal in

value to the total mass situated at the center of symme-

try) the gravitational acceleration at the radius r of the

surface is normal to the surface, directed inward and it

has the magnitude

r̈ = −GM
r2

, (13)

where M is the total mass of the particles and the dots

denote a time derivative. For equilibrium, and assuming

all the particles have the same mass and velocity we

can equate the radial acceleration to the gravitational

acceleration and get the simple equation from celestial

mechanics of
v2

r
=
GM

r2
.

If there is conservation of energy, this stable situation is

directly analogous to the motion of a planet about the

sun.

When there is a mixture of particles with different

masses, there is an apparent problem. In general, parti-

cles will have a distribution of velocities and the heavier

ones can be expected to have, on average, lower veloci-

ties. Thus, equilibrium radii will vary with the velocity

of the particles.

However, the basis of this model is that all particles

are constrained to have the same radius regardless of

their mass or velocity with the value of the radius set

by the average radial acceleration. Thus for identical

particles with a distribution of velocities we average over

the squared velocities to get

〈
v2
〉
=
GM

r
. (14)

If there is more than one type of particle with different

masses then we invoke the precepts of Section 4.3 and

average over the accelerations to get the same result.

The effect of this balancing of the accelerations against

the gravitational potential is seen within the shell as a

Curvature-pressure that is a direct consequence of the

geometric constraint of confining the particles to a shell.

If the radius r decreases then there is an increase in

this Curvature-pressure that attempts to increase the

surface area by increasing the radius. For a small change

in radius in a quasi-equilibrium process where the par-

ticle velocities do not change the work done by this

Curvature-pressure (two dimensions) with an incremen-

tal increase of area dA is pcdA and this must equal the

gravitational force times the change in distance to give

pcdA =
GM2

r2
dr,

where M =
∑
mi with the sum going over all the par-

ticles and the negative sign shows that it is opposite

in effect to thermodynamic pressure. Therefore, using

Eq. 14 we can rewrite the previous equation in terms of

the velocities as

pcdA =
M

〈
v2
〉

r
dr.

Now dA/dr = 2A/r, hence the two-dimensional

Curvature-pressure is

pc =
M

〈
v2
〉

2A
.

This simple Newtonian model provides a guide as to

what the Curvature-pressure would be in the full general

relativistic model.

In deriving a more general model in analogy to the

Newtonian one, we first change dA/dr = 2A/r to

dV/dr = 3V/r (where V is the volume) and secondly

we include the correction γ2 needed for relativistic ve-

locities which refers to the dominant massive particles.

The result is

pc =

〈
β2

〉
Mc2

3V
=

〈
γ2 − 1

〉
Mc2

3V
. (15)
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Note that the 3 is the number of degrees of freedom.

In this case the constraint arises from the confinement

of all the particles within a three-dimensional hyper-

“surface”. Now we expect to be dealing with fully ion-

ized high temperature plasma with a mixture of elec-

trons, protons, and heavier ions where the averaging is

done over the accelerations. Define the average density

by ρ = M/V then the cosmological Curvature-pressure

is

pc =
1

3

〈
1− γ2

〉
ρc2. (16)

In effect, my hypothesis is that the cosmological model

must include this Curvature-pressure as well as ther-

modynamic pressure. Note that although this has a

similar form to thermodynamic pressure it is quite dif-

ferent. In particular, it is proportional to an average

over the squared velocities and the thermodynamic pres-

sure is proportional to an average over the kinetic en-

ergies. This means that, for plasma with free electrons

and approximate thermodynamic equilibrium, the elec-

trons will dominate the average due to their much larger

velocities. From a Newtonian point of view, Curvature-

pressure is opposed to gravitational mutual acceleration.

In general relativity, the plasma produces curved

space-time through its density entering the stress-energy

tensor in Einstein’s field equations. Then the constraint

of confining the particles to a three-dimensional shell

produces a pressure whose reaction is the Curvature-

pressure acting to decrease the magnitude of the curva-

ture and hence decrease the density of the plasma.

4.5. The Curvature-cosmological model

Curvature-cosmology can now be derived by includ-

ing Curvature-redshift and Curvature-pressure into the

equations of general relativity. This is done by using ho-

mogeneous isotropic plasma as a model for the real uni-

verse. The general theory of relativity enters through

the Friedmann equations for a homogeneous isotropic

gas.

Although such a model is simple compared to the real

universe, the important characteristics of Curvature-

cosmology can be derived by using this model. The

first step is to obtain the basic relationship between the

density of the gas and the radius of the universe. The

inclusion of Curvature-pressure is not only important

in determining the basic equations but it also provides

the necessary means of making the solution static and

stable.

Then it is shown that the effect of Curvature-redshift

is to produce a redshift that is a function of distance,

and the slope of this relationship is the Hubble equation.

The first-order model considers the universe to be a

gas with uniform density and complications such as den-

sity fluctuations, galaxies, and stars are ignored. In ad-

dition, we assume (to be verified later) that the gas is

at high temperature and is fully ionized plasma. Be-

cause of the high symmetry, the appropriate metric is

the one that satisfies the equations of general relativity

for a homogeneous, isotropic gas.

Based on the Robertson-Walker metric, the Fried-

mann equations for the homogeneous isotropic model

with constant density and pressure without the cosmo-

logical constant and with k = 1 are (Longair 1991)

Ṙ2=
8πGρ0

3
R2 − c2 (17)

R̈ =−4πG

3

(
ρ+

3p

c2

)
R,

where R is the radius, ρ is the density, p is the ther-

modynamic pressure, G is the Newtonian gravitational

constant and the superscript dots denote time deriva-

tives.

Assuming that the thermodynamic pressure is negli-

gible and including the Curvature-pressure, Eq. 16, the

modified second Friedmann equation is

R̈ = −4πGρ

3

[
1 +

〈
1− γ2

〉]
R, (18)

Clearly, there is a static solution with R̈ = 0 which

means that γ2 = 2.

The first Friedmann equation provides the radius of

the universe, R0, which is

R0=

√
3c2

8πGρ0
m, (19)

=1.268× 1013/
√
ρ0 m,

=3.112× 1026/
√
NH m,

=1.008× 104/
√
NH Mpc,

where NH is the number density measured in number of

hydrogen atoms per m3.

The basic instability of the static Einstein model is

well known (Tolman 1934; Ellis 1984). On the other

hand, the effect of Curvature-pressure is opposite in ef-

fect to the normal pressure thus Curvature-cosmology is

intrinsically stable.

Now the apparent “velocity”, v(z) is the rate of change

of z and by definition dr/dt = c, thus

v(z) =
dz

dt
= c

dz

dr
=
c(1 + z)

R0
. (20)

Since Hubble’s equation is equal to this velocity it is

H(z) =
c(1 + z)

R0
, (21)



Curvature-cosmology 13

and Hubble’s constant is H0 = c/r and has the value

H0= c/R0, s
−1, (22)

=2.364× 10−5√ρ s−1,

=9.6352× 10−19
√
NH s−1,

=29.73
√
NH kms−1Mpc−1,

=41.30 kms−1Mpc−1,

where the last line has used NH = 1.93 from section 5.2.

Since E = ch/λ and with the redshift and using Eq. 10

provides an important equation which shows the rela-

tionship between the cosmic distance and redshift and

is
1

E

dE

dr
= − 1

R0
, (23)

Thus the energy loss for this cosmic distance is

log(E(r)/E0) = −r/R0. (24)

Since z = (λ/λ0 − 1) and E = ch/λ then

r = R log(1 + z). (25)

With a constant density, integration provides an al-

ternative form for the redshift which is

z = exp(−r/R)− 1. (26)

Since Eq. 23 is valid for any function of time it means

that the Type Ia supernova light curve must have a (1+

z) width dependence.

Of interest is that the distance to the furthest point is

r/R = π which has a redshift of z = 22.141. The light

travel time to that point is πR0c = 7.439× 1010 years.

If there is a region in the cosmic plasma that has a

different density then the effective universe radius, R, is

provided by Eq.19 with the energy loss given by Eq. 24.

The total volume of the universe is 2π2R3
0 = 2.22 ×

1080 m3. Thus there are a total of 4.286×1080 hydrogen

atoms with a mass of 7.13× 1053kg.

4.6. Distance modulus.

The geometry of Curvature-cosmology is that of

a three-dimensional “surface” of a four-dimensional

hyper-sphere with radius R0. For this geometry the area

is

A(r) = 4π[R sin(r/R0)]
2.

Let a source have a luminosity L(ν) (WHz−1) at the

emission frequency ν. Then if energy is conserved, the

observed flux density, F (ν) (Wm−2 Hz−1) at a distance

parameter z is the luminosity divided by the area, which

is

F (ν)dν =
L(ν) dν

4π[R sin(r/R0)]2
.

However, because of Curvature-redshift there is an en-

ergy loss that is proportional to (1+z). The total energy

loss is equivalent to an integral of the incremental energy

loss as a function of r. But what is required is the total

energy loss as a function of z. Since dr/dz = 1/(1 + z)

this will cancel the intrinsic energy loss to provide

F (ν0)dν0 =
L(ν0) dν0

4π[R0 sin(log(1 + z))]2
.

Since the absolute magnitude is the apparent magnitude

when the object is at a distance of 10 pc then

F10(ν0) dν0 =
1

10pc/R0
,

where because 10 pc is negligible compared to R, ap-

proximations have been made. The flux density ratio

is

F (ν0) =

[
10pc/R0

sin(log(1 + z))

]2
.

The apparent magnitude is defined as m = −2.5 log(S)

where the base of the logarithm is 10 and the constant

2.5 is exact and M as the absolute magnitude we get

the distance modulus, µ = m−M to be

µ = 5 log10[sin(log(1 + z))] + 44.304. (27)

4.7. Temperature of the cosmic plasma

One of the most remarkable results of Curvature cos-

mology is that it predicts the temperature of the cosmic

plasma from fundamental constants. That is the pre-

dicted temperature is only dependent on the electron

density of the intra-galactic medium.

For a stable solution to Eq. 18 we need that < γ2 >=

2, where the average (denoted by (< >)) is taken over

the proton number densities. Since the total energy for

a particle is γmc2 the kinetic energy is E(γ− 1)mc2. In

this case for protons E = 3.391E−14 J and from E = kT

the plasma temperature is

T = 2.456E9 K. (28)

4.8. Black holes and Jets

Consider a very small homogeneous mass with a ra-

dius R. Its dynamics are described by the Friedmann

equations Eq. 17, and if the acceleration is zero then

ṘB = 0 and
8πGρ0R

2
1

3
= c2,

and substituting for the density ρ0 = 3m/(4πR3
1), the

radius is

RB =
2Gm

c2
. (29)
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This is the Schwarzschild radius for a simple theoret-

ical black hole,.

Since the acceleration is zero, it is an absolute min-

imum radius and smaller radii are inaccessible. This

object has all the external properties of a black hole,

such as accretion disks. Thus it looks like the theoreti-

cal black hole but is not a black hole.

Since the radii smaller that RB are inaccessible there

is no problem with the divergence of space time at zero

radius which may help the understanding of quantum

gravity.

If the compact object is rotating there is the tantaliz-

ing idea that Curvature-pressure may produce the emis-

sion of material in two jets parallel to the spin axis. The

limiting distance will be determined by the polar radius.

Thus radii greater than this, such as the equatorial radii

will still be able to emit energy that can be seen. Thus

the object will appear like a doughnut with zero radia-

tion at the center and with a very broad jet parallel to

the spin axis.

This could be the ‘jet engine’ that produces the as-

trophysical jets seen in stellar-like objects and in many

huge galactic radio sources. More importantly it acts to

recycle its mass to the cosmic plasma.

4.9. Inhibition of Curvature-redshift

from the discussion above it is clear that the process of

Curvature-redshift requires a gradual focusing to a criti-

cal limit, followed by the emission of secondary photons.

It is as if the photon gets slowly excited by the focus-

ing until the probability of secondary emission becomes

large enough for it to occur.

If there is any other interaction the excitation due to

focusing will be nullified. That is, roughly speaking,

Curvature-redshift interaction requires an undisturbed

path length of at least λsecondary for the interaction to

occur. Thus suitable criterion for inhibition to occur is

that the competing interaction has an interaction length

less than λsecondary
Although Compton or Thompson scattering are pos-

sible inhibitors, there is another interaction that has a

much larger cross-section. This is the coherent multiple

scattering that produces refractive index.

In classical electromagnetic theory, the refractive in-

dex of a medium is the ratio of the velocity of light

in vacuum to the group velocity in the medium. How-

ever, in quantum mechanics photons always travel at

the velocity of light in vacuum. In a medium, a group

of photons appears to have a slower velocity because

the individual photons interact with the electrons in the

medium and each interaction produces a time delay.

Because the interaction of a photon is with many elec-

trons spread over a finite volume, the only possible re-

sult of each interaction is the emission of another photon

with the same energy and momentum. Now consider the

absorption of a wave. In order to cancel the incoming

wave a new wave with the same frequency and ampli-

tude but with opposite phase must be produced. Thus,

the outgoing wave will be delayed by half a period with

respect to the incoming wave. If the phase difference was

not exactly half a period for an electromagnetic wave in-

cident on many electrons, the principle of conservation

of energy would be violated.

This simple observation enables us to compute the

interaction length for refractive index n. If L is this

interaction length then it is

L =
λ0

2 |n− 1|
,

where n is the refractive index and the modulus allows

for plasma and other materials where the refractive in-

dex is less than zero.

Note that L is closely related to the extinction length

derived by Ewald and Oseen (see (Jackson 1975) or Born

&Wolf (1999)) which is a measure of the distance needed

for an incident electromagnetic wave with velocity c to

be replaced by a new wave.

For plasmas the refractive index is

n ∼= 1− NHλ
2
0

2πr0
,

where NH is the electron density and r0 is the classical

electron radius. We can combine these two equations to

get (for a plasma)

L = (NHr0λ0)
−1. (30)

Thus, we would expect the energy loss to be inhib-

ited if the average Curvature-redshift interaction dis-

tance is greater than that for refractive-index interac-

tions. Therefore, we can compute the ratio (assuming a

plasma with N ∼= NH) to get

λsecondary/L = 0.0106N
3/4
H λ

3/2
0 (31)

This result shows that Curvature-redshift will be inhib-

ited if this ratio is greater than one, which is equivalent

to λ0 ≥ 20.7N
−1/2
H m. For example, Curvature-redshift

for the 21 cm hydrogen line will be inhibited if the elec-

tron density is greater than about 104 m−3.

4.10. Possible laboratory tests.

It is apparent from the above analysis that to observe

the redshift in the laboratory we need to have sufficient
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density of gas (or plasma) to achieve a measurable ef-

fect but not enough for there to be inhibition by the

refractive index.

The obvious experiment is to use the Mössbauer ef-

fect for γ-rays that enable very precise measurement of

their frequency. Simply put, the rays are emitted by

nuclei in solids where there is minimal recoil or thermal

broadening of the emitted ray.

Since the recoil momentum of the nucleus is large com-

pared to the atomic thermal energies and since the nu-

cleus is locked into the solid so that the recoil momen-

tum is precisely defined, then the γ-ray energy is also

precisely defined. The absorption process is similar and

has a very narrow line width.

Such an experiment has already been done by Pound

& Snider (1965). They measured gravitational effects

on 14.4 keV γ-rays from 57Fe being sent up and down

a vertical path of 22.5m in helium near room pressure.

They found agreement to about 1% with the predicted

fractional redshift of 1.5 × 10−15, whereas fractional

Curvature-redshift predicted by Eq. 10 for this density

is 1.25× 10−12. Clearly, this is much larger.

At γ-ray frequencies, the electrons in the helium gas

are effectively free and we can use Eq. 30 to compute the

refractive index interaction length. For helium at STP,

it is L = 0.077 m, which is much less than Curvature-

redshift interaction length which for these conditions is

X=11 m. Hence, we do not expect to see any significant

Curvature-redshift in their results.

Pound and Snyder did observe one-way frequency

shifts but they were much smaller than Curvature-

redshift and could be explained by other aspects of the

experiment. However, the Pound and Snyder experi-

ment provide a guide to a possible test for the existence

of Curvature-redshift. Because Curvature-redshift has

a different density variation to that for the inhibiting

refractive index it is possible to find a density for which

Curvature-redshift is not inhibited.

Although there is a slight advantage in using heavier

gases than helium due to their higher atomic number to

atomic weight ratio, their increased absorption to γ-rays

rules them out. Hence, we stay with helium and from

Eq. 30 we can compute Curvature-redshift interaction

length to be

X = 10.8

(
p0
p

)1/4

m,

where p is the pressure and p0 is the pressure at STP.

For the same gas the refractive-index interaction length

is

L = 0.077

(
p0
p

)
m.

It follows that the Curvature-redshift will not be in-

hibited if X < L or in this case, the pressure is less than

0.0014p0 which is about 1 mm of Hg. For this pressure,

we find that X = 57 m which requires that the appa-

ratus must be much longer than 57 m. For argument

let us take the length to be 100 m then the fractional

redshift expected is 2.1× 10−13 which is detectable.

The experimental method would use a horizontal (to

eliminate gravitational redshifts) tube filled with helium

and with accurately controlled temperature. Then we

would measure the redshift as a function of pressure.

The above theory predicts that if it is free of inhibition

then the redshift should be proportional to the square

root of the pressure.

Alternatively, it may be possible to detect the sec-

ondary photons. For helium with a pressure of 1 mm

Hg the expected frequency of the secondary radiation

from 57Fe is about 100 kHz. The expected power from

a 1 Cu source is about 5× 10−22 W. Unfortunately, the

secondary radiation could be spread over a fairly wide

frequency band which makes its detection somewhat dif-

ficult but it may be possible to detect the radiation with

modulation techniques.

5. PART C: OBSERVATIONS

5.1. Type Ia supernova

For the 1,652 Type Ia supernova analyzed in Part A

the light curve width is

wobs(z) = 1.060± 0.009 + (1.080± 0.042) z, (32)

which shows an excellent agreement with the expected

(1 + z) width dependence.

The distribution of the apparent magnitudes is shown

in Figure 4. and the regression of the absolute mag-

nitude using Eq. 27, as a function of redshift for

Curvature-cosmology is

M(z) = −20.446± 0.012− (0.081± 0.057) z,

which also shows excellent agreement with a constant

value.

However as shown in section 3.7 the regression for the

1652 Type Ia supernova, using the intrinsic analysis and

the oCDM model, is

M(z) = −18, 562± 0.009 + (0.669± 0.059)z. (33)

It was argued there that this is because of a fault in the

SALT2 analysis.

In the standard model, this result is said to be the

consequence of dark energy that increases the apparent

velocity at large redshifts. For this set of Type Ia super-

nova, the apparent velocity is (1+z)+(0.697±0.064)z2.

A plot of their absolute magnitudes is shown in Figure 5.



16

Figure 4. The cosmological apparent magnitude of the
current Type Ia supernova as a function of redshift. The blue
curve is the distance modulus for the oCDM model. The red
curve is the distance modulus for Curvature-cosmology.

Figure 5. The absolute magnitude of the current Type
Ia supernova as a function of redshift for the oCDM model.
The blue curve shows the dark energy magnitude change of
(0.697± 0.064)z2.

5.2. X-ray background radiation

Since Giacconi et al. (1962) observed the X-ray back-

ground there have been many suggestions made to ex-

plain its characteristics. Although much of the unre-

solved X-ray emission comes from active galaxies, there

is a part of the spectrum between about 10 keV and 1

MeV that is not adequately explained by emission from

discrete sources. The very high energy range is most

likely due to external point sources. It is the intermedi-

ate range that is examined here.

In ΛCDM cosmology for the intermediate X-ray range

of about 10–300 keV, the production of X-rays in hot

cosmic plasma through the process of bremsstrahlung

has been suggested by Hoyle (1962); Gould & Bur-

bidge (1963); Field & Henry (1964); Cowsik & Kobetich

(1972).

In a review of the spectrum of the X-ray background

radiation Holt (1992) concluded that the measured spec-

tra of discrete sources are not consistent with the obser-

vations in the intermediate energy range but there is a

remarkable fit to a 40 keV (4.6× 108 K) bremsstrahlung

spectrum from a diffuse hot gas.

However, in an expanding universe most of the X-

rays are produced at redshifts of z ≈ 3 where the den-

sity is large enough to scatter the CMBR. This scat-

tering known as the Sunyaev–Zel’dovich effect (see Sec-

tion 5.12) makes a distinct change in the spectrum of

the CMBR. This predicted change in the spectrum has

not been observed and this is the major reason why the

bremsstrahlung model in ΛCDM is rejected.

In Curvature-cosmology, the basic component of the

universe is plasma with a very high temperature,

and with low enough density to avoid the Sunyaev–

Zel’dovich effect.

The background X-ray emission is produced in

this plasma by the process of free-free emission

(bremsstrahlung). The observations of the background

X-ray emission are analyzed in order to measure the

density and temperature of the plasma. In Curvature-

cosmology, this density is the major free parameter and

it determines the size of the universe and the value of

the Hubble constant.

In addition, the temperature of the plasma determined

from the X-ray measurements can be compared with

the predicted value from Curvature-cosmology for pure

hydrogen of 2.456× 109 K.

The first step is to calculate the expected X-ray emis-

sion from high temperature plasma in thermal equilib-

rium. Here the dominant mechanism is bremsstrahlung

radiation from electron-ion and electron-electron colli-

sions. With a temperature T and emission into the

frequency range ν to ν + dν the volume emissivity per

steradian can be written as

jν(ν)dν=

(
16

3

)(π
6

)1/2

r30mec
2

(
mec

2

kT

)1/2

×g(ν, T ) exp
(
− hν

kT

)
NH

∑
Z2
iNi dν,(34)

where g(ν, T ) is the Gaunt factor, NH is the elec-

tron number density, Ni is the ion number density and

r0 is the classical electron radius and the other sym-

bols have their usual significance (Nozawa, Itoh, & Ko-

hyama 1998). The intensity, jν(ν), has the units of

Wm−3 Hz−1.
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As it stands this equation does not include the

electron-electron contribution. Nozawa et al. (1998) and

Itoh et al. (2000) have done accurate calculations for

many light elements. Based on their calculations Profes-

sor Naoki Itoh (http://www.ph.sophia.ac.jp/) provides

a subroutine to calculate the Gaunt factor that is accu-

rate for temperatures greater than 3× 108 K. It is used

here.

Because of the very high temperature, we can assume

that all atoms are completely ionized. Thus, Eq. 34 in-

cluding the Gaunt factor provides the production rate of

X-ray photons as a function of the plasma temperature

and density.

The next step is to compute the expected intensity

at an X-ray detector. Consider an X-ray photon that

is produced at a distance r from the detector. During

its travel to the detector, it will have many Curvature-

redshift interactions. Although the photon is destroyed

in each interaction, there is a secondary photon pro-

duced that has the same direction but with a slightly

reduced energy.

It is convenient to consider this sequence of photons

as a single particle and to refer to it as a primary pho-

ton. The important result is that the number of these

primary photons is conserved. Therefore, we need the

production distribution of the number of photons per

unit energy interval. The number of photons emitted

per unit volume per unit time in the energy interval ε

to ε+ dε is given by

jn(ε) dε =
jν(ν)

ε
h dν, (35)

where ε = hν, h is Plank’s constant and jν(ν) is the

energy distribution per unit frequency interval.

Now consider the contribution to the number of X-

rays observed by a detector with unit area. Because

the universe is static, the area at a distance r from the

source is the same as the area at a distance r from the

detector. Since there is conservation of these photons,

the number coming from a shell at radius r per unit time

and per steradian within the energy interval ε to ε+ dε

is
dn(r)

dt
dε = jn(ε)dεr dχ.

Next, we integrate the photon rate per unit area and

per steradian from each shell where the emission energy

is ε and the received energy is ε0 to get

In(ε0) dε0 = r

∫ χm

0

jn(ε) dε dχ,

where ε = (1 + z)ε0 and it is assumed that the flux is

uniform over the 4π steradian. Furthermore, it is useful

to change the independent coordinate to the redshift

parameter z.

Then using Eq. 35 we get

Iν(ν0) dν0 =
c

H

∫ zm

0

jν(ν)

1 + z
dz dν0,

where H is the Hubble constant and the change in band-

width factor dν/dνo, cancels the (1+z) factor that comes

from the change in variable from dχ to dz but there is

another divisor of (1 + z) that accounts for the energy

lost by each photon.

Thus the energy flux per unit area, per unit energy

interval, per unit frequency and per solid angle is given

by Eq. 36 where Plank’s constant is included to change

the differential from frequency to energy. The zm limit

of 8.2 comes from the limit of χ ≤ π.

Iν =

(
16

3

)(π
6

)1/2 r30mec
3

h
(8πGMH)

−1/2

(
mc2

kT

)1/2

=×neniN3/2
H

zm∫
0

g ((1 + z)ν0, T )

(1 + z)
exp

(
−h(1 + z)ν0

kT

)
dz

=
1.9094× 103 keV

keVm2 s sr

(
mc2

kT

)1/2

neniN
3/2
H

×ε0

zm∫
0

g ((1 + z)ν0, T )

(1 + z)
exp

(
−h(1 + z)ν0

kT

)
dz, (36)

where Iν is a function of ν0.

The density NH is obtained by fitting Eq. 36 to the

observed data as a function of the temperature T , and

then extracting NH from the normalization constant.

The X-ray data used is tabulated in Table 4. It con-

sists of the background X-ray data cited in the literature

and assessed as being the latest or more accurate results.

Preliminary analysis showed that there were some dis-

crepant data points that are listed in Table 5 in order of

exclusion.

Very hard X-rays cannot be produced even by this hot

plasma and are presumably due to discrete sources (Holt

1992).

The results of the fit of the data to this model of pure

hydrogen is a temperature of

(2.62± 0.13)× 109 K, (37)

which is good agreement with the predicted temperature

of 2.456× 109 K.

The measured density is

1.93± 0.13 H atoms per m3, (38)
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Table 4. List of background X-ray data used.

Name Instrument Reference

Gruber HEAO 1 A-4 Gruber et al. (1999)

Kinzer HEAO 1 MED Kinzer et al. (1997)

Dennis OSO-5 Dennis et al. (1973)

Mazets Kosmos 541 Mazets et al. (1975)

Mandrou Balloon Mandrou et al. (1979)

Trombka Apollo 16, 17 Trombka et al. (1977)

Santalogo Rocket Santangelo et al. (1973)

Fukada Rocket Fukada et al. (1975)

Table 5. Background X-ray data: rejected points.

Source Energy Flux density χ2

keV keV/(keV cm2 s sr) (1 DoF)

Gruber 98.8 0.230±0.012 108.6

Gruber 119.6 0.216±0.022 65.2

Fukada 110.5 0.219±0.011 66.6

Gruber 152.6 0.140±0.022 50.9

Fukada 179.8 0.110±0.005 41.5

Gruber 63.9 0.484±0.034 25.1

Figure 6. Background X-ray spectrum. See Table 4 for list
of observations. The dashed (black) line is best fit from 10
keV to 300 keV for the pure hydrogen model.

which is the only free parameter in Curvature-

cosmology.

Most of the X-ray flux below 10 keV and part of the

flux just above 10 keV is emission from discrete sources.

The deviation from the curve at energies above about

300 keV arises from X-rays coming from discrete sources.

In the intermediate region where bremsstrahlung

should dominate, there are clear signs of some minor

systematic errors. In addition, there appears to be some

variation between the data sets. It is not clear whether

the discrepancy between the observed points and the

predicted flux densities is due to an inadequate theory,

inadequate X-ray emission model, or systematic errors

in the observations. After all the measurements are very

difficult and come from a wide range of rocket, bal-

loon and satellite experiments. In particular, the recent

HEAO results Kinzer et al. (1997) differ from earlier

results reported by Marshall et al. (1980).

5.3. Cosmic microwave background radiation.

The cosmic microwave background radiation (CMBR)

is one of the major success stories for the standard

model. The observed radiation has a spectrum that is

extremely close to a black body spectrum which means

that it can be described by a single parameter, its tem-

perature.

Observations of the CMBR spectrum were obtained

from the FIRAS instrument on the Cobe satellite by

Mather et al. (1990). They measured the temperature of

the CMBR to be 2.725 K. This temperature is in agree-

ment with the observations of Roth & Meyer (1995) who

measured a temperature of 2.729(+0.023,−0.031)K us-

ing cyanogen excitation in diffuse interstellar clouds.

More recently Fixsen (2009) using data from the Wilkin-

son Microwave Anisotropy Probe (WMAP) and many

earlier results provide a temperature of 2.72548 ±
0.00057K.

Since electrons and nucleons have wave properties

they are subject to Curvature-redshift where the basic

energy loss is ∆E = E0r/R, where E0 is the particle

energy and r is the distance traveled. With a velocity

of βc the distance traveled is r = βct and the rate of

energy loss is
∆E

dt
=
E0βc

R0
. (39)

The distribution of relativistic particles in equilib-

rium is the Maxwell-Jüttner distribution. With γ =

1/
√
1− v2/c2 it is

f(γ) =
γ2β

θK2(1/θ)
exp(−γ/θ), (40)

where θ = kT/mc2 and K2 is the modified Bessel func-

tion of the second kind.

Here its application requires that θ is a constant value,

θ =
√

(2, then the integral over the range of γ is

∆E

dt
=
γ2β2c(γ − 1)mpc

2

R0
exp(−γ/θ)/A, (41)
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where A is the normalization constant and it is

A =

∫ ∞

1

γ2β(exp(−γ/θ)dγ. (42)

As explained earlier this lost energy consists of a pair

of identical photons whose usual interaction with the

electrons and photons bring them into thermal equilib-

rium. Since the total energy must be conserved, the en-

ergy lost by Curvature-redshift must be radiated by the

emittance of these photons. Then allowing for the pro-

ton number density NH = 1.93± 0.13, section 5.2, their

equilibrium temperature is 2.736± 0.092K. This radia-

tion is the cosmic microwave background radiation and

is within 0.4% of the WMAP value. Considering that

the theory has only one free parameter, the agreement

is exceptional good.

Clearly, the same analysis can be applied to the free

electrons. In this case the radiation has a temperature

of 0.419K with a wavelength of 34.4mm.

5.4. Tolman surface density.

This test, suggested by Tolman (1934), relies on the

observation that the surface brightness (SB) of objects

does not depend on the geometry of the universe. Al-

though it is obviously true for Euclidean geometry, it

is also true for most non-Euclidean geometries. For a

uniform source, the quantity of light received per unit

angular area is independent of distance. However, the

quantity of light is also sensitive to non-geometric ef-

fects, which make it an excellent test to distinguish be-

tween cosmologies. For expanding universe cosmologies

the surface brightness is predicted to vary as (1 + z)−4,

where one factor of (1 + z) comes from the decrease in

energy of each photon due to the redshift, another factor

comes from the decrease in the rate of their arrival and

two factors come from the apparent decrease in area

due to aberration. This aberration is simply the rate

of change of area for a fixed solid angle with redshift.

In a static, tired-light, cosmology (such as Curvature-

cosmology) only the first factor is present. Thus an ap-

propriate test for Tolman surface brightness is the value

of this exponent.

The obvious candidates for surface brightness tests are

elliptic and S0 galaxies which have minimal projection

effects compared to spiral galaxies . The major problem

is that surface brightness measurements are intrinsically

difficult due to the strong intensity gradients across their

images. In a series of papers Sandage & Lubin (2001);

Lubin & Sandage (2001a,b,c) (hereafter SL01) have in-

vestigated the Tolman surface brightness test for ellipti-

cal and S0 galaxies. More recently Sandage (2010) has

done a more comprehensive analysis but since he came

to the same conclusion as the earlier papers and since

the earlier papers are better known this analysis will

concentrate on them.

The observational difficulties are thoroughly discussed

by Sandage & Lubin (2001) with the conclusion that

the use of Petrosian metric radii helps solve many of

the problems. Petrosian (1976); Djorgovski & Spinrad

(1981); Sandage & Perelmuter (1990) showed that if the

ratio of the average surface brightness within a radius

is equal to η times the surface brightness at that radius

then that defines the Petrosian metric radius, η. The

procedure is to examine an image and to vary the angu-

lar radius until the specified Petrosian radius is achieved.

Thus, the aim is to measure the mean surface bright-

ness for each galaxy at the same value of η. The choice of

Petrosian radii greatly diminishes the differences in sur-

face brightness due to the luminosity distribution across

the galaxies. However, there still is a dependence of the

surface brightness on the size of the galaxy which is the

Kormendy relationship (Kormendy 1977).

The purpose of the preliminary analysis done by SL01

is not only to determine the low redshift absolute lu-

minosity but also to determine the surface brightness

verses linear size relationship that can be used to cor-

rect for effects of size variation in distant galaxies. The

data on the nearby galaxies used by SL01 was taken

from Postman & Lauer (1995) and consists of extensive

data on the brightest cluster galaxies (BCG) from 119

nearby Abell clusters. All magnitudes for these galaxies

are in the RC (Cape/Landolt) system.

Since the results for different Petrosian radii are highly

correlated the analysis repeated here using similar pro-

cedures will use only the Petrosian η = 2 radius. Al-

though the actual value used for the Hubble constant

does not alter any significant results here, it is set to

h=50 km s−1 Mpc−1 for numerical consistency. A minor

difference is that the angular radius used here is pro-

vided by Curvature-cosmology whereas SL01 used the

older Mattig equation.

The higher z data comes from SL01. They made Hub-

ble Space Telescope observations of galaxies in three

clusters and measured their surface brightness and radii.

The names and redshifts of these clusters are given in

Table 6 which also shows the number of galaxies in each

cluster, N , the logarithm of the average metric radius

in kpc, log(SBB), and the average apparent magnitude

and the absolute magnitude. In order to avoid confusion

in BB denotes a measurement made using the standard

ΛCDM cosmology. Note that the original magnitudes

for Cl 1324+3011 and Cl 1604+4304 were observed in

the I band.
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Table 6. Galactic properties for Petrosian radius η = 2.0

Cluster N log(SBB) mBB MBB

Nearby 74 4.69±0.28 22.56±0.84 -23.84±0.66

1324+3011 11 3.99±0.21 22.87±0.75 -23.28±0.65

1604+4304 6 4.05±0.17 22.34±0.60 -23.51±0.68

1604+4321 13 4.00±0.15 22.35±0.78 -23.33±0.64

In order to get a reference surface brightness at z = 0

all the surface brightness values, SB, of the nearby galax-

ies were reduced to absolute surface brightness by using

Eq. 43. Since all the redshifts are small, this reduction

is essentially identical for all cosmological models. How-

ever the calculation of the metric radii for the distant

galaxies is very dependent on the cosmological model.

This procedure of using the same cosmology in analyz-

ing a test of that cosmology is discussed in SL01. Their

conclusion is that it reduces the significance of a positive

result from being strongly supportive to being consistent

with the model. Of interest is that Table 6 shows that on

average the distant galaxies are fainter than the nearby

galaxies.

Then a linear least squares fit of the absolute surface

brightness as a function of log(SBB), the Kormendy re-

lationship, for the nearby galaxies results in the equation

SB = 9.29± 0.50 + (2.83± 0.11) log(SBB), (43)

whereas SL01 found the slightly different equation

SB = 8.69± 0.06 + (2.97± 0.05) log(SBB). (44)

Although a small part of the discrepancy is due to

slightly different procedures, the main reason for the

discrepancy is unknown. Of the 74 galaxies used, there
were 19 that had extrapolated estimates for either the

radius or the surface brightness or both. In addition

there were only three galaxies that differed from the

straight line by more than 2σ. They were A147 (2.9σ),

A1016 (2.0σ)and A3565 (-2.4σ). Omission of all or some

of these galaxies did not improve the agreement. The

importance of this preliminary analysis is that Eq. 43

contains all the information that is needed from the

nearby galaxies in order to calibrate the distant clus-

ter galaxies.

Next we use the galaxies’ radius and Eq. 43 to correct

the apparent surface brightness of the distant galaxies

for the Kormendy relation and then do least squares fit

to the difference between the corrected surface bright-

ness and its absolute surface brightness as a function

of 2.5 log(1 + z) to estimate the exponent, n, where

SB ∝ (1 + z)n. If needed the non-linear corrections

Table 7. Fitted exponents for distant clusters (η = 2.0)

.
Cluster Col z nBB nSL01

1324+3011 I 0.757 1.98±0.19 1.99±0.15

1604+4304 I 0.897 2.22±0.22 2.29±0.21

1604+4321 R 0.924 2.24±0.18 2.48±0.25

given by Sandage (2010) were applied to the nearby sur-

face brightness values. For the I band galaxies, the ab-

solute surface brightness included the color correction

< R− I >= 0.62 Lubin & Sandage (2001c).

The results for the exponent, n, for each cluster are

shown in Table 7 together with the values from SL01

(column 5) where the second column is the band (color)

in which the cluster was observed.

Because the definition of magnitude contains a nega-

tive sign the expected value for n in BB is four. Nearly

all of the difference between these results and those from

SL01 arise from the use of a different Kormendy relation-

ship. If the Kormendy relationship used by SL01 Eq. 44

is used instead of Eq. 43) the agreement is excellent. If

it is assumed that there is no evolutionary or other dif-

ferences between the three clusters and all the data are

combined the resulting exponent is nBB = 2.16± 0.13.

Clearly, there is a highly significant disagreement be-

tween the observed exponents and the expected expo-

nent of four. Both SL01 and Sandage (2010) claim that

the difference is due to the effects of luminosity evolu-

tion. Based on a range of theoretical models SL01 show

that the amount of luminosity evolution expressed as the

exponent, p = 4− nBB , varies between p =0.85–2.36 in

the R band and p =0.76–2.07 in the I band. In conclu-

sion, to their analysis, they assert that they have either

(1) detected the evolutionary brightening directly from

the SB observations on the assumption that the Tolman

effect exists or (2) confirmed that the Tolman test for

the reality of the expansion is positive, provided that the

theoretical luminosity correction for evolution is real.

SL01 also claims that their results are completely in-

consistent with a tired light cosmology. Although this

is explored for Curvature-cosmology in the next subsec-

tion, it is interesting to consider a very simple model.

The essential property of a tired light model is that it

does not include the time dilation factor of (1 + z) in

its angular radius equation. Thus assuming BB but

without the (1 + z) term all values of log(SBB) will

be increased by log(1 + z). Hence the predicted ab-

solute surface brightness will be (numerically) increased

by (2.83/2.5)log(1 + z). For example, the exponent for
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Table 8. Radii and fitted exponents for distant clusters
(η = 2.0)

Cluster N ¯log(S) M̄ n

nearby 74 4.70±0.28 -23.78±0.66

1324+3011 11 4.18±0.21 -22.41±0.66 1.19±0.19

1604+4304 6 4.27±0.17 -22.54±0.65 1.45±0.21

1604+4321 13 4.23±0.15 -22.33±0.68 1.48±0.17

all clusters will be changed to

ntired light = 2.16± 0.16− 2.83

2.5
= 1.03± 0.16.

This is clearly close to the expected value of unity pre-

dicted by a tired-light cosmology and thus disagrees with

the conclusion of SL01 that the data are incompatible

with a tired light cosmology.

There are two major criticisms of this work. The first

is that relying on theoretical models to cover a large

gap between the expected index and the measured in-

dex makes the argument very weak. Although SL01 in-

directly consider the effects of relatively common galaxy

interactions and mergers in the very wide estimates they

provide for the evolution, the fact that there is such a

wide spread makes the argument that Tolman surface

brightness for this data is consistent with ΛCDM possi-

ble but weak.

Ideally, there would be an independent estimate of p

based on other observations. The second criticism is

that the nearby galaxies are not the same as the dis-

tant cluster galaxies. The nearby galaxies are all bright-

est cluster galaxies (BCG) whereas the distant cluster

galaxies are normal cluster galaxies. It is well known

that BCG (Blanton & Moustakas 2009) are in general

much brighter and larger than would be expected for the

largest member of a normal cluster of galaxies. Whether

or not this amounts to a significant variation is unknown

but it does violate the basic rule that like should be com-

pared with like.

Unsurprisingly it is found that using Curvature-

cosmology the relationship between absolute surface

brightness and radius is identical to that shown in Ta-

ble 6. What is different is the average radius, the ab-

solute magnitudes and the observed exponent n. These

are shown in Table 8.

The result for all clusters is n = 1.38± 0.13 which is in

agreement with unity. Note that the critical difference

from the standard analysis is in the size of the radii.

They are not only much closer to the nearby galaxy radii

but because they are larger they do not require the non-

linear corrections for the Kormendy relation. As before

we note that the nearby galaxies are BCG which may

have a brighter SB than the normal field galaxies. If

this is true, it would bias the exponent to a larger value.

If we assume that Curvature-cosmology is correct then

this data shows that on average the BCG galaxies are

−0.64±0.08 mag (which is a factor of 1.8 in luminosity)

brighter than the general cluster galaxies.

The SL01 data for the surface brightness of elliptic

galaxies is consistent with ΛCDM but only if a large

unknown effect of luminosity evolution is included. The

data do not support expansion and are in complete

agreement with Curvature-cosmology.

5.5. Dark matter and Coma cluster

All observational evidence for dark matter comes from

the application of Newtonian gravitational physics to

either clusters of objects or the rotation of galaxies.

Galaxy rotation will be dealt with in Section 5.19. The

original concept for dark matter comes from apply-

ing the virial theorem to the Coma cluster of galaxies

(Zwicky 1937). The virial theorem is a statistical the-

orem that states that for an inverse square law the av-

erage kinetic energy of a bound system is equal to half

the potential energy (i.e. 2T + V = 0).

Then with knowing the linear size of the cluster and

measuring the mean square spread of velocities we can

estimate the total mass of the cluster. There is no doubt

that applying the virial theorem to the Coma and other

clusters of galaxies provides mass estimates that can be

several hundred times the mass expected from the to-

tal luminosity. Even the mass of intergalactic gas is not

enough to overcome this imbalance. In ΛCDM cosmol-

ogy dark matter has been introduced to make up for the

shortfall of mass.

However if Curvature-cosmology is valid then it is pos-

sible that the observed redshifts are not due to kinematic

velocities but are Curvature-redshifts produced by the

intergalactic gas. The purpose of this section is to show

that Curvature-redshift can explain the galactic veloci-

ties without requiring dark matter.

For simplicity, we will use the Coma cluster as a test

bed. Not only is it very well studied, but it also has a

high degree of symmetry and the presence of an inter-

galactic gas cloud is known from X-ray observations.

Watt et al. (1992) and Hughes (1989) have fitted the

density of the gas cloud to an isothermal model with the

form

ρ = ρ0

(
1 +

(
r

re

))−α

, (45)

with a center at 12h59m10s, 27◦59′56′′ (J2000) and with

re = 8.8′ ± 0.7′, α = 1.37 ± 0.09, ρ0 = (2.67 ± 0.22) ×
103NH . The central density is obtained from the X-ray
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luminosity and has a strong dependence on the distance.

Watt et al. (1992) assumed a Hubble constant of h=50

km s−1 Mpc−1. With a mean velocity of 6,853 km s−1

(Colless & Dunn 1996) and with this Hubble constant,

the distance to the Coma cluster is 137 Mpc. Recently

Rood (1988) using the Tully–Fisher relation to measure

the distance modulus to the galaxies in the Coma clus-

ter, to observe a value of 34.4±0.2 mag whereas Liu &

Graham (2001) using infrared surface brightness fluctu-

ations get 34.99±0.21 mag. The average is 34.7 mag

that corresponds to a distance of 87.1 Mpc. This is con-

sistent with the distance of 85.6 Mpc given by Freedman

et al. (2001).

The galactic velocity data are taken from Beijersber-

gen (2003) who provide information for 583 galaxies.

The velocity centroid of the Coma cluster is 12h59m19s,

27◦52′2′′ (J2000). They find that early-type galaxies

(E+S0+E/S0) have a mean velocity of 9,926 km s−1

and a rms (root-mean-square) velocity, of 893 km s−1.

Let us assume that all the galactic velocities are due to

Curvature-redshift. That is we assume that the actual

velocities, the peculiar velocities, are negligible. Then

the redshifts for the galaxies are calculated (in velocity

units) by

v = v0 +

∫ Z

0

51.691
√
N (Z) dZ km s−1, (46)

where Z is the distance from the central plane of the

Coma cluster to the galaxy measured in Mpc, N(Z) is

the density of the intergalactic gas cloud and v0 is the av-

erage velocity of the galaxies in the cluster. The problem

here is that we do not know Z distances. Nevertheless,

we can still get a good estimate by assuming that the

distribution in Z is statistically identical to that in X

and in Y . In a Monte Carlo simulation, each galaxy was

given a Z distance that was the same as the X (or Y )

distance of one of the other galaxies in the sample chosen

at random. For 50 trials, the computed dispersion was

554kms−1 which can be compared with the measured

dispersion of 893kms−1. Curvature-cosmology has pre-

dicted the observed dispersion of galactic velocities in

the Coma cluster to within a factor of two.

Considering that this is a prediction of the cosmolog-

ical model without fitting any parameters and ignoring

all the complications of the structure both in the gas

and galactic distributions the agreement is remarkable.

Since the distance to the Coma cluster is an impor-

tant variable, the computed velocity dispersion from the

Monte Carlo simulation for some different distances (all

the other parameters are the same) is shown in Ta-

ble 9. Thus, the redshift dispersion (in velocity units) is

approximately a linear function of the Coma distance.

Table 9. Coma velocity dispersions for some distances.

Distance/Mpc 50 87 100 150

Dispersion /km s−1 318 554 636 955

This is not surprising since in this context the distance

is mainly a scale factor.

Beijersbergen (2003) note that a better fit to the ve-

locity distribution is provided by the sum of two Gaus-

sian curves. Their best fit parameters for these two

Gaussians are v1 = 7, 501 ± 187 km s−1, with σ1 =

650 ± 216 km s−1 and v2 = 6641 ± 470 km s−1, with

σ2 = 1, 004± 120 km s−1. This double structure is sup-

ported by Colless & Dunn (1996) who argue for an on-

going merger between two sub clusters centered in pro-

jection on the dominant galaxies NGC 4874 and NGC

4889.

In addition, Briel, Henry, & Boehringer (1992) found

evidence for substructure in the X-ray emission and

Finoguenov et al. (2004) and White, Briel, & Henry

(1993) have measured the X-ray luminosity of individ-

ual galaxies in the Coma cluster showing that the model

for the gas used above is too simple. The net effect of

this substructure is that the observed velocity disper-

sion would be different from that predicted by a simple

symmetric model. Thus, it appears that substructure

makes it very difficult to achieve a more accurate test of

Curvature-cosmology using the Coma cluster.

There is an important difference between Curvature-

redshift and models that assume that the redshifts of the

galaxies within a cluster are due to their velocities. Since

the laws of celestial mechanics are symmetric in time,

any galaxy could equally likely be going in the opposite

direction. Thus a galaxy with a high relative (Z) velocity

could be in the near side of the cluster or equally likely

on the far side of the cluster. However, if the redshifts

are determined by Curvature-redshift then there will be

a strong correlation in that the higher redshifts will come

from galaxies on the far side of the cluster.

A possible test is to see if the apparent magnitudes are

a function of relative redshift. With a distance of 87.1

Mpc the required change in magnitude is about 0.025

magMpc−1. A simple regression between magnitude of

Coma galaxies (each relative to its type average) and

velocity did not show any significant dependence.

Although this was disappointing, several factors can

explain the null result. The first is the presence of the

substructure; the second is that the magnitudes for a

given galactic type have a standard deviation of about

one magnitude, which in itself is sufficient to wash out

the predicted effect; and thirdly mistyping will produce

erroneous magnitudes due to the different average veloc-
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ities of different types. In support of the second factor,

we note that for 335 galaxies with known types and mag-

nitudes, the standard deviation of the magnitude is 1.08

mag and if we assume that the variance of the Z distribu-

tion is equal to the average of the variances for theX and

Y distributions then the expected standard deviation of

the slope is 0.076 magMpc−1. Clearly, this is such larger

than the expected result of 0.025 magMpc−1. It is ex-

pected that better measurements or new techniques of

measuring differential distances will in the future make

this a very important cosmological test.

In ΛCDM observations of the velocity dispersion of

clusters of galaxies cannot be explained without invok-

ing an ad hoc premise such as dark matter. However

Curvature-cosmology not only explains the observations

but also makes a good prediction, without any free pa-

rameters, of its numerical value.

5.6. Angular size

Closely related to surface brightness is relationship be-

tween the observed angular size of a distant object and

its actual linear transverse size.

The major distinction in angular size is that

Curvature-cosmology, like all tired-light cosmologies,

does not include the (1 + z) aberration factor. Its re-

lationship between the observed angular size and the

linear size is very close (for small redshifts) to the Eu-

clidean equation.

Gurvits, Kellermann, & Frey (1999) provide a compre-

hensive history of studies for a wide range of objects that

generally show a 1/z or Euclidean dependence. Most ob-

servers suggest that the probable cause is some form of

size evolution. Recently López-Corredoira (2010) used

393 galaxies with redshift range of 0.2 < z < 3.2 in order

to test many cosmologies.

Briefly, his conclusions are

: The average angular size of galaxies is approximately

proportional to z−α with α between 0.7 and 1.2.

: Any model of an expanding universe without evolution

is totally unable to fit the angular size data . . .

: Static Euclidean models with a linear Hubble law or

simple tired-light fit the shape of the angular size

vs z dependence very well: there is a difference in

amplitude of 20%–30%, which is within the possi-

ble systematic errors.

: It is also remarkable that the explanation of the test

results with an expanding model require four coin-

cidences:

1. The combination of expansion and (very

strong evolution) size evolution gives nearly

the same result as a static Euclidean universe

with a linear Hubble law: θ ∝ z−1.

2. This hypothetical evolution in size for galax-

ies is the same in normal galaxies as in

quasars, as in radio galaxies, as in first

ranked cluster galaxies, as the separation

among bright galaxies in cluster

3. The concordance model gives approximately

the same (differences of less than 0.2 mag

within z < 4.5) distance modulus in a Hubble

diagram as the static Euclidean universe with

a linear law.

4. The combination of expansion, (very strong)

size evolution, and dark matter ratio varia-

tion gives the same result for the velocity dis-

persion in elliptical galaxies (the result is that

it is nearly constant with z) as for a simple

static model with no evolution in size and no

dark matter ratio variation.

With a redshift range of z < 3 the value of S is ap-

proximately proportional to z0.68 which shows that it

is consistent with these results. A full analysis requires

a fairly complicated procedure to correct the observed

sizes for variations in the absolute luminosity.

A simple example of the angular size test can be

done using double-lobed quasars. Using quasar cata-

logues, Buchalter et al. (1998) carefully selected 103

edge-brightened, double-lobed sources from the VLA

FIRST survey and measured their angular sizes directly

from the FIRST radio maps.

Since Buchalter et al. (1998) claim that three different

Friedmann ΛCDM models fit the data well but that a

Euclidean model had a relatively poor fit a reanalysis is

warranted.

Their angular sizes were converted to linear sizes for

each cosmology and were divided into six bins so that

there were 17 quasars in each bin. Because these double-

lobed sources are essentially one-dimensional a major

part of their variation in size is due to projection effects.

For the moment assume that in each bin they have

the same size, Ŝ, and the only variation is due to pro-

jection then the observed size is Ŝ sin(θ) where θ is the

projection angle. Clearly, we do not know the projec-

tion angle but we can assume that all angles are equally

likely so that if the N sources, in each bin, are sorted

into increasing size the i’th source in this list should

have, on average, an angle θi = π(2i− 1)/4N . Thus the

maximum likelihood estimate of Ŝ is

Ŝest =

∑N
i=1 sin(θi)Si∑N
i=1 sin

2(θi)
.
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Note that the sum in the denominator is a constant

and that the common procedure of using median values

is the same as using only the central term in the sum.

Next a regression was done between logarithm of the

estimated linear size in each bin and log(1 + z) where z

is the mean redshift. Then the significance of the test

was how close was the exponent, b, to zero. For ΛCDM

the exponent was b = −0.79 ± 0.44 and for Curvature-

cosmology, it was b = 0.16 ± 0.44. Although the large

uncertainties show that this is not a decisive discrim-

ination between the two cosmologies the slope for the

Curvature-cosmology suggests that no expansion is more

likely.

For angular size the conclusion is in favor of

Curvature-cosmology.

5.7. Galaxy distribution

Recently, large telescopes with wide fields and the

use of many filters have enabled a new type of galac-

tic survey. The light-collecting capability of the large

telescopes enables deep surveys to apparent magnitudes

of 24 mag or better and the wide field provides a fast

survey over large areas.

A major innovation is the use of many filters whose

response can be used to classify the objects with great

accuracy. Thus, galaxies can be separated from quasars

without needing morphological analysis. This photo-

metric method of analysis works because photometric

templates are available for a wide range of types of galax-

ies and other types of objects. In addition, accurate

redshifts are obtained from fitting the templates with-

out the tedious procedure of measuring the spectrum of

each object.

A typical example of this photometric method is the

COMBO-17 survey (Classifying Objects by Medium-

Band Observations in 17 filters) provided by Wolf et al.

(2004). The goal of this survey was to provide a sample

of 50,000 galaxies and 1000 quasars with rather precise

photometric redshifts based on 17 colors.

In practice, such a filter set provides a redshift accu-

racy of 0.03 for galaxies and 0.1 for quasars. The

central wavelength of the 17 filters varied from 364

nm to 914 nm and consisted of 5 broadband filters

(U,B, V,R, I) and 12 narrower-band filters. Wolf et al.

(2003) have analyzed this data and claim that there is

strong evolution for 0.2 < z < 1.2.

Instead of using generic K-corrections, the intrinsic

(rest frame) luminosity of all galaxies are individually

measured from their 17-filter spectrum. For each galaxy,

three rest-frame pass bands are considered, (i) the SDSS

r-band, (ii) the Johnston B-band and (iii) a synthetic

Table 10. M∗
CC for SED Type 1 galaxy luminosity distri-

butions.

z ∆µ M∗
r
a M∗

B M∗
280

0.3 0.426 -20.49 -19.06 -17.38

0.5 0.642 -20.49 -19.15 -17.84

0.7 0.822 -20.77 -19.37 -17.62

0.9 0.975 -20.54 -19.09 -17.79

1.1 1.107 -20.87 -19.23 -18.23

χ2 3.70 2.32 12.81
aAbsolute magnitude for the SDSS r-band

UV continuum band centered at λrest= 280 nm with 40

nm FWHM and rectangular transmission function.

A spectral energy distribution, SED, was determined

for each galaxy by template matching. For the evolution

analysis, they were assigned to one of four types. The

only type that showed a well-defined peak in their lu-

minosity distribution was Type 1 which covers the E-Sa
galactic types. The characteristics of the luminosity dis-

tribution were obtained by fitting a Schechter function

which is

ϕ(L)dLϕ∗(L/L∗)αeL/L∗
dL

where the luminosity L∗ (and its magnitude M∗) is a

measure of location and α is a measure of shape.

They found that a fixed value for α works quite well

for the luminosity functions of individual SED types.

Examination of their estimate of M∗ for Type 1 galax-

ies showed that if they were converted to Curvature-

cosmology magnitudes they were independent of red-

shift. This is shown in Table 10 where the data are taken

from the appendix to Wolf et al. (2003). The second col-

umn is the difference, ∆µ = µCC − µBB , between BB

and CC, (Curvature-cosmology), distance moduli. The

remaining columns show the CC absolute magnitudes

for the three rest-frame bands.

The last row shows the χ2 for the five magnitudes

relative to their mean using the given uncertainties (all

in the range 0.14-0.23).

With four degrees of freedom, the first two bands show

excellent agreement with a constant value. The values

forM∗
280 have less than a 2.5% chance of being constant.

However since most of the discrepancy comes from the

z = 0.3 value of -17.38 mag and most of this band at

small redshifts is outside the range of the 17 filters this

discrepancy can be ignored.

If this value is ignored, the χ2 is reduced from 12.81

to 6.12 (with 3 D0F) which is consistent with being con-

stant. Since α is independent of redshift, the result is

that if the data had been analyzed using Curvature-

cosmology the magnitude for these Type 1 galaxies does

not vary with redshift.
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Thus we have the surprising result that using ΛCDM a

class of galaxies has a well-defined luminosity evolution

that can be explained by Curvature-cosmology. In other

words, there is no expansion.

5.8. Quasar variability in time

One of the major differences between a tired-light cos-

mology and an expanding universe cosmology is that any

expanding universe cosmology predicts that time varia-

tions and clocks have the same dependence on redshift

as does the frequency of the radiation.

Hawkins (2010, 2003) has analyzed the variability of

800 quasars covering epoch scales from 50 days to 28

years. His data permitted the straightforward use of

Fourier analysis to measure the time scale of the vari-

ability. He showed that there was no significant change

in the time scale of the variability with increasing red-

shift. He considered and rejected various explanations

including that the time scales of variations were shorter

in bluer pass bands or that the variations were not in-

trinsic but were due to intervening processes such as

gravitational micro-lensing. His conclusion was either

that the quasars are not at cosmological distances or

that the expanding universe cosmologies are incorrect

in this prediction.

Curvature-cosmology predicts the observed quasar

epoch variability of zero.

5.9. The Butcher-Oemler effect

If there were evidence of significant change in the uni-

verse as a function of redshift, it would be a detrimental

to any static cosmology. Probably the most important

evidence for this cosmic evolution that appears to be in-

dependent of any cosmological model is the Butcher &

Oemler (1978) effect. Although the effect has been dis-

cussed in earlier papers, the definitive paper is Butcher

& Oemler (1984).

They observed that the fraction of blue galaxies in

galactic clusters appears to increase with redshift. Clus-

ters allow the study of large numbers of galaxies at

a common distance and out to large redshifts, which

makes them ideal for studies in evolution. The core re-

gions in a cluster are dominated by early-type (elliptical

and lenticular) galaxies, which have a tight correlation

between their colors and magnitudes.

We can calculate R30, the projected cluster-centric

radius that contains 30% of the total galaxy popula-

tion. The blue fraction, fB , is defined to be the fraction

of galaxies within R30 which are bluer than the color-

magnitude relationship for that cluster.

At first sight, this may appear to be a simple test

that could be done with apparent magnitudes. How-

ever to compare the ratio for distant clusters with that

for nearby ones the colors must be measured in the

rest frame of each cluster, hence the need to use K-

corrections.

The major advantage of the Butcher–Oemler effect is

that it is independent of the luminosity-distance rela-

tionship that is used. Therefore, to be more precise fB is

the fraction that has an absolute magnitude MV , whose

rest frame (B-V) color is at least 0.2 magnitudes bluer

than expected. A review by Pimbblet (2003) summaries

the important observations.

In its original form the Butcher–Oemler effect is de-

pendent on the apparent magnitude cut-off limits. It is

essential that selection effects are the same in the rest

frame for each cluster. There are further complications

in that the percentage of blue galaxies may or may not

depend on the richness of the cluster and the effect of

contamination from background galaxies.

Although Pimbblet (2003) concluded there was a def-

inite effect, his Fig. 1 shows that this conclusion is

open to debate. Since then there have been several at-

tempts to measure an unambiguous effect. Even though

they attempted to duplicate the original methodology

of Butcher & Oemler, Hawkins (2003) found essentially

no effect for K-selected galaxies.

Andreon, Lobo, & Iovino (2004) examined three clus-

ters around z=0.7 and did not find clear-cut evidence

for the effect. To quote one of their conclusions: Twenty

years after the original intuition by Butcher & Oemler,

we are still in the process of ascertaining the reality of

the Butcher–Oemler effect.

The Butcher-Oemler effect remains uncertain, and

therefore does not provide evidence to refute a static

cosmology.

5.10. Fluctuations in the CMBR

In the model proposed for Curvature-cosmology these

fluctuations will also occur but in this case they are due

to variations in the density of the cosmic plasma. The

CMBR seen through the denser gas within a galactic

cluster will have lower than average temperature. Cabré

et al. (2006) show some support for this model in that

they have correlated data from the Wilkinson Microwave

Anisotropy Probe (WMAP) with galaxy samples from

the SDSS DR4 galaxy survey and found a significant cor-

relation for the intensity fluctuations with galaxy den-

sity.

5.11. Pioneer 10 acceleration.

Precise tracking of the Pioneer 10/11, Galileo and

Ulysses spacecraft (Anderson et al. 2002) have shown

an anomalous constant acceleration for Pioneer 10 with

a magnitude (8.74±1.55)×10−10 ms−2 directed towards

the sun.
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The only method for monitoring Pioneer 10 is to mea-

sure the frequency shift of the signal returned by an

active phase-locked transponder. These frequency mea-

surements are then processed using celestial mechanics

in order to get the spacecraft trajectory.

The simplicity of this acceleration and its magnitude

suggests that Pioneer 10 could be a suitable candidate

for investigating the effects of Curvature-redshift. There

is a major problem in that the direction of the accel-

eration corresponds to a blue shift whereas Curvature-

redshift predicts a redshift.

Nevertheless, we will proceed, guided by the coun-

terintuitive observation that a drag force on a satellite

actually causes it to speed up. This is because the de-

crease in total energy makes the satellite change orbit

with a redistribution of kinetic and potential energy.

The crucial point of this analysis is that the only in-

formation available that can be used to get the Pioneer

10 trajectory is Doppler shift radar. There is no direct

measurement of distance.

Thus the trajectory is obtained by applying celestial

mechanics and requiring that the velocity matches the

observed frequency shift. Since the sun produces the

dominant acceleration, we can consider that all the other

planetary perturbations and know drag effects have been

applied to the observations and the required celestial

mechanics is to be simple two-body motion.

If the observed velocity (away from the sun) is in-

creased by an additional apparent velocity due to

Curvature-redshift the orbit determination program will

compensate by assuming that the spacecraft is closer to

the sun than its true distance. It will be shown that this

distance discrepancy produces an extra apparent accel-

eration that is directed towards the sun. The test of this

model is whether the densities required by Curvature-

redshift agree with the observed densities.

Let the actual velocity of Pioneer 10 at a distance r,

be denoted by v(r), then since the effect of Curvature-

redshift is seen as an additional velocity, ∆v(r) where

from Eq. 10

∆v(r) = 2
√
8πG

∫ r

0

√
ρ(r) dr, (47)

where the factor of 2 allows for the two-way trip and

the density at the distance r from the sun is ρ(r). Since

Pioneer 10 has a velocity away from the sun, this redshift

shows an increase in the magnitude of its velocity.

We will assume that all the perturbations and any

other accelerations that may influence the Pioneer 10

velocity have been removed as corrections to the ob-

served velocity and the remaining velocity, v(r), is due

to the gravitational attraction of the sun. In this case

the energy equation is

v(r)2 = v2∞ +
2µ

r
, (48)

where µ = GM is the gravitational constant times the

mass of the sun (µ = 1.327× 1020 m3 s−2) and v∞ is the

velocity at infinity.

The essence of this argument is that the tracking pro-

gram is written to keep energy conserved so that an

anomalous change in velocity, ∆v(r), will be interpreted

as a change in radial distance which is

∆r = −

√
2r3

µ
∆v(r).

Thus an increase in magnitude of the velocity will be

treated as a decrease in radial distance which, in order to

keep the total energy constant, implies an increase in the

magnitude of the acceleration. Either by using Newton’s

gravitational equation or by differentiating Eq. 48 the

acceleration a(r) is given by

a(r) = − µ

r2
. (49)

Hence with v∞ = 0 and therefore v(r) =
√
2µ/r we get

∆a(r) =
2µ

r3
∆r =

√
8µ

r3
∆r,

and then to the first order an increase in velocity of

∆v(r) will produce an apparent decrease in acceleration

of ∆a(r), and

∆a=8
√
πµGr−3/2

∫ r

0

√
ρ(r) dr

=16
√
πµGr−1/2 <

√
ρ(r) >

=6.90R−1/2 <
√
ρ(r) >,

where for the last equations we measure the distance in

AU so that r = 1.496 × 1011R and the angle brackets

show an average value.

Now fig. 7 from (Anderson et al. 2002) shows that after

about 20 AU the anomalous acceleration is essentially

constant. The first step is to get an estimate of the

required density and see if is feasible.

Using the observed acceleration of aP = 8.74× 10−10

ms−2 the required average density for the two-way path

is 1.60 × 10−20R kgm−3 and for R=20 it is 3.21 ×
10−19 kgm−3.

The only constituent of the interplanetary medium

that approaches this density is dust. One estimate by

Le Sergeant D’Hendecourt & Lamy (1980) of the inter-

planetary dust density at 1 AU is 1.3 × 10−19 kgm−3



Curvature-cosmology 27

and more recently, Grun et al. (1999) suggests a value

of 10−19 kgm−3 which is consistent with their earlier es-

timate of 9.6 × 10−20 kgm−3 (Grun, Zook, Fechtig, &

Giese 1985).

Although the authors do not provide uncertainties, it

is clear that their densities could be in error by a factor

of two or more. The main difficulties are the paucity of

information and that the observations do not span the

complete range of grain sizes.

The meteoroid experiment on board Pioneer 10 mea-

sures the flux of grains with masses larger than 10−10

g. The results show that after it left the influence of

Jupiter the flux (Anderson et al. 2002) was essentially

constant (in fact there may be a slight rise) out to a

distance of 18 AU.

It is thought that most of the grains are being con-

tinuously produced in the Kuiper belt. As the dust or-

bits evolve inwards due to Poynting-Robertson drag and

planetary perturbations, they achieve a roughly con-

stant spatial density. The conclusion is that interplane-

tary dust could provide the required density to explain

the anomalous acceleration by a frequency shift due to

Curvature- redshift.

Overall, this analysis has shown that it is possible to

explain the acceleration anomaly of Pioneer 10 but that

a more definitive result requires Curvature-redshift to be

included in the fitting program and more accurate esti-

mates of the dust density are certainly needed. Subject

to the caveat about the dust density, Curvature-redshift

could explain the anomaly in the acceleration of Pioneer

10 (and by inference other spacecraft).

Not only can Curvature-cosmology explain the anoma-

lous Pioneer 10 acceleration, it has a feasible prediction

of its value.

5.12. The Sunyaev–Zel’dovich effect

The Sunyaev–Zel’dovich effect (Sunyaev & Zeldovich

1970; Peebles 1993) is the effect of Thompson scattering

of background radiation by free electrons in the inter-

vening medium. The technique depends on knowing the

spectrum of the background source and then measur-

ing the changes in the spectrum due to the intervening

plasma.

In particular, it is the scattering in both angle and fre-

quency of the cosmic microwave background radiation

(CMBR) by electrons in the cosmic plasma. Because

of the rapidly changing density (like (1 + z)3) with red-

shift this is an important effect in ΛCDM cosmology.

The effect is often characterized by the dimensionless

Compton y-parameter, which for a distance x through

non-relativistic thermal plasma with an electron density

of NH has the value

y =
kTe
mec2

σTNHx = 3.46× 10−16NHTexMpc, (50)

where σT is the Thompson cross-section. An object

at redshift z is at the distance x = Rχ = 5.80 ×
103N

1/2
H log(1+z)Mpc. Hence, using Te = 2.62×109 K,

NH = 1.35m−3 we get y = 9.2× 10−6 log(1 + z).

Using the CMBR as a source the Sunyaev–Zel’dovich

effect has been observed and Mather et al. (1990) report

an observed upper limit of y = 0.001, and more recently

Fixsen et al. (1996) report y = 1.5× 10−5.

Using this limit with Eq. 50 shows that there is no

effect in Curvature-cosmology if z < 4.1. Although in

Curvature-cosmology the CMBR has a more local origin

it is of interest to note that this analysis assumes that

each photon has many Compton interactions. but

(Longair 1991; Sunyaev & Zeldovich 1980). Bielby

& Shanks (2007) extend the results of Lieu, Mittaz, &

Zhang (2006) to show that not only was the Sunyaev–

Zel’dovich effect less than what was expected but that

it tendered to disappear as the redshift went from 0.1 to

0.3. The conclusion is that Curvature-cosmology is com-

pletely consistent with the experimental observations of

the Sunyaev–Zel’dovich effect on the CMBR. Thus the

Sunyaev–Zel’dovich effect may be important in stan-

dard cosmology but it is not important in Curvature-

cosmology.

5.13. Gravitational lensing.

There are many gravitational lens where a quasar or

distant galaxy has one or more images produced by a

nearer lensing galaxy or cluster of galaxies. A set of

these lensing systems has been examined in the context

of Curvature-cosmology to see if it offers a consistent

and possibly simpler explanation. The two important

measures are the prediction of the mass of the lensing

galaxy and the determination of the Hubble constant

from the time delays between variations in the luminos-

ity of different images. Since the delay measurement

is easily done, all that is needed is to measure the dif-

ferent path lengths. This path difference involves both

geometric and general relativistic corrections.

One of the remarkable properties of gravitational

lenses is that the geometry is completely determined by

a two-dimensional lensing potential which can be ex-

pressed in terms of a surface density at the position of

the lensing galaxy. For thin lenses, any two systems with

the same surface density distribution have the same lens

effect. Now the usual way to determine the surface den-

sity is to measure the widths of spectral lines, assume

that the width is due to velocity and then use the virial

theorem to obtain the surface density.
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However in Curvature-cosmology the widths of spec-

tral lines are likely to have a large component due to

the effects of Curvature-redshift from dust and gas in

the lensing object. Thus the widths are not a reliable

measure of area density and this method cannot be used.

5.14. Lyman alpha forest

. The Lyman-α (Lyα) forest is the large number of

absorption lines seen in the spectra of quasars. Most

of the lines are due to absorption by clouds of neutral

hydrogen in the line of sight to the quasar. Some of

the lines are due to other elements or due to Lyman-β

absorption.

Because of the redshift between the absorbing cloud

and us, the lines are spread out over a range of wave-

lengths. Usually the analysis is confined to lines be-

tween the Lyα (at a wavelength of 121.6 nm) and Lyβ

(at 102.5 nm). Thus, each quasar provides a relatively

narrow spectrum of Ly-α lines at a redshift just less than

that for the quasar. Since the advent of spacecraft tele-

scopes, in which can observe the ultraviolet lines, and

by using many quasars the complete redshift range up

to the most distant quasar has been covered. The large

redshift range makes the Lyman α spectra potentially a

powerful cosmological tool.

The obvious cosmological observation is the density of

lines as a function of redshift but as discussed by Rauch

(1998) in an excellent review, there are many important

observational problems.

The first, which has now been overcome, is that the

spectra must have sufficient resolution to resolve every

line. The second is that most lines are very weak and

the number of resolved lines can depend greatly on the

signal-to-noise ratio. This is accentuated because the

steep spectrum for the density of lines as a function of
their strength means that a small decrease in the ac-

ceptance level can drastically increase the number of

observed lines. The third problem is that each quasar

only provides a set of lines in a narrow range of redshift

and there are considerable difficulties in getting uniform

cross-calibrations.

In addition to these problems, it will be shown that

Curvature-redshift can have a profound effect on the in-

terpretation of the line widths and column densities.

Since in Curvature-cosmology, the distribution of

clouds is independent of time or distance the expected

density of lines as a function of redshift is

dn

dz
=

AcNH

H(1 + z)
, (51)

where Nc is the volume density and A is the average

area of a cloud. Most observers have fitted a power law

with the form (1 + z)γ to the observed line densities

with a wide range of results. They vary from γ = 1.89

to γ = 5.5 (Rauch 1998). All of which are inconsistent

with the Curvature-cosmology prediction of γ = −1.

In Curvature-cosmology, there is the additional ef-

fect that much of the line broadening may be due to

Curvature-redshift. Curvature-redshift will be operat-

ing within the clouds so that the observed line width

will be a combination of the usual Voigt profile and the

change in the effective central frequency as the photons

pass through the cloud. If the cloud has a density ρ(x) at

the point x, measured along the photon trajectory then

the change in frequency from the entering frequency due

to Curvature-redshift is

∆ν

ν
=

1

c

∫ √
8πGρ(x)dx.

In units of N(x) = ρ(x)/mH this is (with N in m−3 and

dx in kpc)

∆ν

ν
= −∆λ

λ
=

∫
1.724× 10−7

√
N(x)dx.

Then the final profile will be the combination of the

natural line width, the Doppler width due to tempera-

ture, any width due to bulk motions and the Curvature-

redshift width. Now assuming pure hydrogen, the hy-

drogen column density is given by NH =
∫
N(x)dx.

Although it is unlikely that the line of sight goes

through the center of the cloud, it is reasonable to expect

a roughly symmetric distribution of gas with a shape

similar to a Gaussian. We can define an effective den-

sity width by

x2w =

∫
(x− x)

2
N(x)dx /

∫
N(x)dx.

Also define Nc = NH/xw and an effective velocity width

∆v = 51.68ηxw
√
Nc and where η is a small numeric con-

stant that depends on the exact shape of the density dis-

tribution. Eliminating the central density, we get (with

xw in kpc)

∆v2 = 8.656× 10−17η2NHxw. (52)

For values NH = 1019 m−2, xw=1 kpc and with η=1 we

get ∆v=29 km s−1.

Since there is a wide variation in column densities and

the effective widths are poorly known, it is clear that

Curvature-redshift could completely dominate many of

the Lyman-α line widths and the others would require a

convolution of the Doppler profile with the Curvature-

redshift density effect. What is also apparent is that the

very broad absorption lines may be due to Curvature-

redshift acting in very dense clouds.
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Although there is uncertainty about the observed re-

lationship between the line width and the column den-

sity, we note that for a fixed effective density width,

Eq. 52 predicts a square relationship that may be com-

pared with the exponent of 2.1 ± 0.3 found by Pet-

tini et al. (1990). Clearly, there needs to be a com-

plete re-evaluation of profile shapes, column densi-

ties, and cloud statistics that allows for the effects of

Curvature-cosmology. We must await this analysis to

see whether the Lyman-α forest can provide a critical

test of Curvature-cosmology.

5.15. Nuclear abundances

One of the successes of ΛCDM cosmology is in its

explanation of the primordial abundances of the light

elements. Since the proposed Curvature-cosmology is

static, there must be another method of getting the ‘pri-

mordial’ abundances of light elements. In Curvature-

cosmology, the primordial abundance refers to the abun-

dance in the cosmic gas from which the galaxies are

formed.

The first point to note is that in Curvature-cosmology

the predicted temperature of the cosmic plasma is

2.465 × 109K at which temperature nuclear reactions

can proceed.

It is postulated that in Curvature-cosmology there is a

continuous recycling of material from the cosmic plasma

to galaxies and stars and then back to the plasma. Be-

cause of the high temperature, nuclear reactions will

take place whereby the more complex nuclei are broken

down to hydrogen.

5.16. Galactic rotation curves

One of the most puzzling questions in astronomy is:

why does the observed velocity of rotation in spiral
galaxies not go to zero towards the edge of the galaxy.

Simple Keplerian mechanics suggest that there should

be a rapid rise to a maximum and then a decrease in

velocity that is inversely proportional to the square root

of the radius once nearly all the mass has been passed.

Although the details vary between galaxies, the ob-

servations typically show a rapid rise and then an essen-

tially constant tangential velocity as a function of radius

out to distances where the velocity cannot be measured

due to lack of material. The ΛCDM explanation is that

this is due to the gravitational attraction of a halo of

dark matter that extends well beyond the galaxy. We

examine whether this rotation curve can be explained

by Curvature-redshift.

Observations show that our own Galaxy and other spi-

ral galaxies have a gas halo that is larger than the main

concentration of stars. It is clear that if the observed

redshifts are due to Curvature-redshift acting within this

halo, the halo must be asymmetric; otherwise, it could

not produce the asymmetric rotation curve.

Now the observed velocities in the flat part of the

curves are typically 100 to 200 km s−1. The first step

is to see if Curvature-redshift provides the right magni-

tude for the velocity. For a gas with an average den-

sity of NH the predicted redshift (in velocity units) is

5.17× 10−2d
√
N km s−1 where d is the distance in kpc.

For realistic values of d = 10 kpc and N = 1.0 × 105

m−3 the velocity is 163 km s−1. Thus, the magnitude is

feasible.

Although there could be a natural asymmetry in a

particular galaxy, the fact that the flattened rotation

curve is seen for most spiral galaxies suggests that there

is a common cause for the asymmetry.

A partial explanation is that the halos are rotating

more like a solid object and that the observed rotation

is genuine.

Another possibility is that the asymmetry could arise

from ram pressure. Since most galaxies are moving rel-

ative to the cosmic medium, it is expected that there

will be an enhanced density towards the leading point

of the galaxy. This asymmetric density could produce an

apparent velocity gradient across the galaxy that could

explain the apparent rotation curve.

Naturally, there would be range of orientations and

the apparent velocity gradient must be added to any in-

trinsic rotation curve to produce a wide diversity of re-

sults. Thus, Curvature-redshift could explain the galac-

tic rotation curves if there is an asymmetric distribution

of material in the galactic halo.

Both cosmologies have problems with galactic rotation

curves. ΛCDM cosmology not only requires dark matter

but does not have any definite models for its distribu-

tion. Curvature-cosmology has the problem of achieving

sufficient asymmetry to mimic a rotation curve.

5.17. Redshifts in our Galaxy

In our Galaxy, the Milky Way, there is an interesting

prediction. The density of the interstellar ionized gas

is high enough to inhibit Curvature-redshift for radio

frequencies.

From Eq. 31 it was shown that for wavelengths longer

than about 20.6N
−1/2
H m the effect of refractive index in

fully ionized plasma will inhibit Curvature-redshift. The

refractive index of neutral hydrogen is too low to inhibit

Curvature-redshift. However, any fully ionized plasma

with NH > 104m−3 will inhibit Curvature-redshift for

the 21 cm hydrogen line. Since the local interstel-

lar medium has an electron density of about 105 m−3
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Curvature-redshift will be inhibited for the 21 cm hy-

drogen in these local regions.

Thus for sight lines close to the Galactic plane we can

assume a similar density and thus a similar inhibition

with the result that the observed radio redshifts can be

correctly interpreted as genuine velocities. Thus, there

is little change needed to the current picture of galac-

tic structure and rotation derived from 21 cm redshifts.

However, there may be some Curvature-redshift present

in sight lines away from the plane and especially in the

Galactic halo.

Since optical redshifts have the full effects of

Curvature-redshift, it should be possible to find objects

with discrepant redshifts where the optical redshift is

greater than the radio redshift. The difficulty is that the

two types of radiation are produced in radically different

environments: the optical in compact high temperature

objects, such as stars, and the radio in very low-density

cold clouds. In addition, there is the complication that

within the galactic plane, optical extinction due to dust

limits the optical range to about 1 kpc.

Curvature-redshift may help to explain an old stel-

lar mystery. There is a long history provided by Arp

(1992) of observations of anomalous redshifts in bright

hot stars, which is called the K-term or K-effect.

Allen (1976) states that B0 stars typically show an

excess redshift of 5.1 m s−1, A0 have 1.4 km s−1 and F0

have 0.3 km s−1. This can be explained if these stars

have a large corona that produces a Curvature-redshift.

It is probably no coincidence that such stars have large

stellar winds and mass outflows. In order to see if it is

feasible let us consider a simple model for the outflow in

which the material has a constant velocity v0, and con-

servation of matter (Gauss’s Law) then requires that the

density has inverse square law dependence. Although

this is incorrect at small stellar radii, it is a reasonable

approximation further from the star.

Then if ρ1 is the density at some inner radius r1, then

integration of Eq. 24 out to a radius r2, the expected

redshift in velocity units is

v =

√
2GṀ

vo
log

(
r2
r1

)
,

where Ṁ is the observed stellar mass-loss-rate. Then

with Ṁ in solar masses per year, with v and v0 in km s−1,

the redshift is

v = 91.7

√
Ṁ

vo
log

(
r2
r1

)
km s−1,

With Ṁ = 10−5M⊙ yr−1 Cassinelli (1979), v0 =

1km s−1 and r2/r1 = 103 the predicted redshift (in ve-

Table 11. Velocity at, and average velocity within various
projected radii in the Coma cluster (distance = 87.1 Mpc).

Radiusa Velocity Mean velocity

/Mpc /km s−1 /km s−1

0.0 2327.7 2327.7

0.5 1477.7 1764.8

1.0 1033.4 1342.5

1.5 803.3 1096.9

2.0 658.6 933.2

2.5 557.0 814.4

3.0 481.0 723.3

3.5 421.7 650.7

4.0 374.0 541.2

4.5 334.8 541.2

5.0 302.0 498.7

a projected radius

locity units) is 2 km s−1 which is in reasonable agreement

with the observed K-effects mentioned above.

5.18. Voids

If Curvature-cosmology is valid then the redshift of

the galaxies in the Coma cluster (Section 5.5) will have

been increased, on average, by the additional redshift

due to the intergalactic gas. Thus, they will have, on

average, a larger redshift than an isolated galaxy at the

same distance.

Table 11 shows the predicted (effective) velocity for

a galaxy in the center plane of the Coma cluster as a

function of the projected radius. The second column

is the velocity at that exact radius and the third col-

umn shows the average velocity of galaxies (uniformly

spread in area) within that radius. This simulation also
showed that the average velocity offset for the galaxies

in the Coma cluster is 1206 kms−1 which means that

the redshift of the center of the Coma cluster is 6926-

1206=5720 kms−1. This offset is important for calcu-

lating the Hubble constant which from these figures is

5270/87.1=65.7 kms−1 Mpc−1.

In addition, the redshift of objects seen through a clus-

ter will be increased by Curvature-redshift from the in-

tergalactic gas.

Karoji, Nottale, & Vigier (1976) claim to have seen

this effect. They examined radio galaxies and classified

them into region A if their light does not pass through

a cluster and region B if their light passes through a

cluster. They found no significant differences in mag-

nitudes between the two regions but they did find a

significant difference in the average redshift that was

consistent over the complete range.
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Their result is that radio galaxies seen through a clus-

ter had an average extra redshift (in velocity units) of

2412±1327 km s−1. Overall the difference in the dis-

tance modulus was µ = 0.16± 0.04, which is just signif-

icant.

Since the density and distribution of the gas in the

clusters is unknown and the limiting radius of the clus-

ter is not stated, it is impossible to get an accurate pre-

diction.

Nevertheless, we note that for the Coma cluster with

a radius of 2 Mpc the average extra redshift (from Ta-

ble 11 with a factor of two) corresponds to 1866 km s−1

showing that Curvature-cosmology could explain the ef-

fect.

In a different study, Nottale (1976) and Nottale &

Vigier (1977) compared the magnitude of the brightest

galaxy in a cluster with that in another cluster with

similar redshift. They found that there was no signifi-

cant difference in magnitudes between clusters but that

the clusters with the largest number of galaxies had the

higher redshift difference between the pairs.

On average the redshift difference (in velocity units)

was 292±85 km s−1. This can be explained by the ex-

pected correlation between the number of galaxies and

size and density of the intergalactic gas. However it

should be noted that these observations have been dis-

puted by Rood & Struble (1982).

In his review of voids in the distribution of galax-

ies, Rood (1988) quotes Mayall (1960) who observed a

large void in the distribution of galaxies in front of the

Coma cluster. This void has a magnitude of about 3000

kms−1, which although somewhat larger, is not incon-

sistent with the expected value of about 1200 km s−1.

In other words, the Coma cluster galaxies have an

extra Curvature-redshift due to the intergalactic gas.

However, the galaxies just outside the cluster nearer to

us do not have this extra redshift and would appear to

be closer to us. Hence, we see an apparent void in the

redshift distribution in front of the Coma cluster.

A consequence of gas clouds and Curvature-redshift

is that the distribution of redshifts is similar to but not

identical to the distribution of z distances. Galaxies that

are behind a cloud will have a higher redshift than would

be expected from a simple redshift distance relationship.

Thus, we would expect to see anomalous voids and

enhancements in the redshift distribution. This will be

accentuated if the gas clouds have a higher than average

density of galaxies.

de Lapparent et al. (1986) show a redshift plot for a

region of the sky that includes the Coma cluster. Their

data are from the Center for Astrophysics redshift sur-

vey and their plot clearly shows several voids. They

suggest that the galaxies are distributed on the surfaces

of shells. However, this distribution could also arise from

the effects of Curvature-redshift in clouds of gas.

5.19. Entropy

Consider a stellar cluster or an isolated cloud of gas

in which collisions are negligible or elastic. In either

case the virial theorem states that the average kinetic

energy K, is related to the average potential energy V ,

by the equation V = V0 − 2K where V0 is the poten-

tial energy when there is zero kinetic energy. Let U be

the total energy then U = K + V = V0 − K . Thus,

we get the somewhat paradoxical situation that since

V0 is constant; an increase in total energy can cause a

decrease in kinetic energy. This happens because the av-

erage potential energy has increased by approximately

twice as much as the loss in kinetic energy. Since the

temperature is proportional to (or at the least a mono-

tonic increasing function of) the average kinetic energy,

it is apparent that an increase in total energy leads to a

decrease in temperature. This explains the often-quoted

remark that a self-gravitationally bound gas cloud has

a negative specific heat capacity. Thus, when gravity

is involved the whole construct of thermodynamics and

entropy needs to be reconsidered.

One of the common statements of the second law of

thermodynamics is that (Longair 1991): The energy of

the universe is Constant: the entropy of the Universe

tends to a maximum, (Feynman 1965): the entropy of

the universe is always increasing or from Wikipedia the

second law of thermodynamics is an expression of the

universal law of increasing entropy, stating that the en-

tropy of an isolated system which is not in equilibrium

will tend to increase over time, approaching a maximum

value at equilibrium.

Now the normal proof of the second law considers the

operation of reversible and non-reversible heat engines

working between two or more heat reservoirs. If we use a

self-gravitating gas cloud as a heat reservoir then we will

get quite different results since the extraction of energy

from it will lead to an increase in its temperature. Thus

if the universe is dominated by gravity the second law

of thermodynamics needs reconsideration. In addition,

it should be noted that we cannot have a shield that

hides gravity. To put it another way there is no adia-

batic container that is beyond the influence of external

gravitational fields. Thus we cannot have an isolated

system.

This discussion shows that in a static finite universe

dominated by gravity simple discussions of the second

law of thermodynamics can be misleading. The presence

of gravity means that it is impossible to have an isolated



32

system. To be convincing any proof of the second law

of thermodynamics should include the universe and its

gravitational interactions in the proof.

5.20. Olber’s Paradox

For Curvature-cosmology, Olber’s Paradox is not a

problem. Curvature-redshift is sufficient to move dis-

tant starlight out of the visible band. Visible light from

distant galaxies is shifted into the infrared where it is no

longer seen. Of course, with a finite universe, there is the

problem of conservation of energy and why we are not

saturated with very low frequency radiation produced by

Curvature-redshift. These low-energy photons are even-

tually absorbed by the cosmic plasma. Everything is re-

cycled. The plasma radiates energy into the microwave

background radiation and into X-rays. The galaxies de-

velop from the cosmic plasma and pass through their

normal evolution. Eventually all their material is re-

turned to the cosmic plasma. Curvature-pressure causes

most of the material from highly compact objects to be

returned to the surrounding region as jets.

5.21. Philip’s relation

Phillips (1993) Showed that there was a good corre-

lation between the peak magnitude and the width of

the light curve for Type Ia supernova. For the Philip’s

relation to be meaningful, it must be between the abso-

lute magnitude and the width corrected for its (1 + z)

dependence.

The slope of the regression of the absolute magni-

tudes (using the oCDM model and the intrinsic anal-

ysis) of Type Ia supernova for all the supernova versus

the widths divided by (1+z) is (−0.009±0.091). Which

shows that for these observations of Type I a supernova

there is no significant Phillip’s relation which implies

that SALT2 estimates of this relation may be an arti-

fact of the SALT2 analysis.
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