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Abstract
In this paper, we propose generalized attention mechanism (GAM) by

first suggesting a new interpretation for self-attention mechanism of Vaswani
et al. [5]. Following the interpretation, we provide description for differ-
ent variants of attention mechanism which together form GAM. Further,
we propose a new relative position representation within the framework of
GAM. This representation can be easily utilized for cases in which elements
next to each other in input sequence can be at random locations in actual
dataset/corpus.

1 Introduction

Vaswani et al. [5] proposed self-attention mechanism based neural network for se-
quence transduction, namely Transformer, as computationally efficient alternative
to recurrent and convolutional neural networks. Self-attention mechanism has been
interpreted in terms of query, key and value of different elements of the sequence.
Their work includes absolute position representation of these elements through
sine and cosine functions. Later Shaw et al. [4] improved it by including relative
position representation for different elements of sequence. Since then, within the
framework of self-attention mechanism, different models have been suggested for
relative position representation (see [1, 2] and references cited therein).

In this paper, we first describe self-attention mechanism as suggested by Vaswani
et al. [5] using tensor notations. We use Einstein summation convention (i.e. sum-
mation over repeated indices) while writing various equations in tensor notations.
An alternate interpretation for attention mechanism is suggested which does not
require query and key terminology. Then we provide details of our generalized
attention mechanism and inclusion of relative position.

2 Self-Attention Mechanism of Vaswani et al. [5, 4]

Consider input sequence Y of n elements yα where superscript α = 1, 2, 3, . . . , n
represents different elements of the sequence. For language processing each yα is
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a vector corresponding to a word/token να. Y can be written as

Y = (ν1, ν2, . . . , να, . . . , νn)

= (y1,y2, . . . ,yα, . . . ,yn). (1)

We use Einstein summation convention (i.e. summation over repeated indices)
while writing various equations in tensor notations in this paper. Each element yα

is tensor of rank R ≥ 0 and in present case of language processing we limit our
discussion to element being M -dimensional vector (tensor of R = 1), written as

yα = (yα1 , y
α
2 , . . . , y

α
M ) ≡ yαi where {i = 1, 2, . . . ,M}. (2)

Similarly, the output sequence Z of n elements zα (α = 1, 2, 3, . . . , n) can be
written as

zα = (zα1 , z
α
2 , . . . , z

α
Mv

) ≡ zαi where {i = 1, 2, . . . ,Mv}. (3)

For multi-head case, later we use azαi where superscript a = 1, 2, . . . , h on z is
used to represent output zα in particular head a from self-attention sub-layer.

The three parameter matrices aWQ, aWK , aWV for query (Q), key (K) and
value (V ), respectively, for a particular head a are written using tensor notation as

aWQ = aWQ
ij , (4)

aWK = aWK
ij , (5)

aWV = aW V
ij , (6)

(7)

where superscript a = 1, 2, . . . , h on W is used to represent any particular head a
in h multi-head. Also, subscripts i and j are used to represent different elements
of matrices.

The jth component of output vector from self-attention sub-layer of head a,
corresponding to element α of input sequence, is given by

azαj =

n∑
β=1

aΦαβ yβi (aW V
ij ). (8)

The weight coefficient aΦαβ is given by

aΦαβ =
exp(aeαβ)∑n
γ=1 exp(

aeαγ)
. (9)

Also
aeαβ =

1√
dk

{
yαr (aWQ

rs)
}{

yβt (aWK
tu )

}
δsu, (10)

where δsu is Kronecker delta (δsu = 1 when s = u and δsu = 0 when s ̸= u). It
should be noted that summation is implied on repeated indices in Eq. (10).
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3 Present Generalized Attention Mechanism (GAM)

Consider Eq. (10) which can be also written as

aeαβ =
{
yαr yβt

}
aBrt, (11)

where
aBrt =

{ 1√
dk

(aWQ
rs) (

aWK
tu ) δsu

}
. (12)

It should be noted in view of Eq. (11) that self-attention mechanism of Vaswani et
al. can be interpreted as combination of higher order features of input (i.e. yαr yβt )
and square matrix aB whose components are denoted by aBrt. These higher order
features along with aB are responsible for evolving value vectors of elements of
input sequence. The dot-product attention of Vaswani et al. can be completely
described (for head a) using two parameter matrices aB, aWV instead of three pa-
rameter matrices aWQ, aWK , aWV . And interpretation of their attention mech-
anism in terms of query and key may be abandoned.

We base generalized attention model (GAM) on Eqs. (8,9,11) requiring learn-
able parameter matrices aB and aWV . The GAM equations can be written as

azαj =
n∑

β=1

aΦαβ yβi (aW V
ij ), (13)

aΦαβ =

NB∑
i=1

WP
i (aΨαβ

i ), (14)

where
aΨαβ

i =
exp(aϵαβi )∑n
γ=1 exp(

aϵαγi )
, (15)

aϵαβi = f(yαr yβt )
[
(a,i)Brt

]
, (16)

and NB are number of different parameter matrix (a,i)B in the same attention head.
Each (a,i)B of head a can be think of as different portion of ’brain’ in the head.
Also f(. . .) represents function of yαr yβt and superscript (a, i) on the left of B
represents ith parameter matrix (a,i)B in attention head a. Two functional form
for f(yαr yβt ) of power law and polynomial types can be considered for GAM and
which are written as

Power law type:
f(yαr yβt ) = (yαr y

β
t )

n1 , n1 > 0, (17)

Polynomial type:

f(yαr yβt ) =
L∑
l=1

Al(y
α
r y

β
t )

l. (18)
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where Al’s are learnable scalar parameters.
Also, WP

i can be either considered equal to 1/NB or following constraint can
be utilized during learning:

NB∑
i=1

WP
i = 1. (19)

4 Relative Position in GAM

Different models exist for inclusion of relative position representation within the
framework of self-attention mechanism, for example see references [4, 3, 1, 2].
Here we suggest yet another model to include effect of relative position of input
elements within the framework of GAM.

In this section, we assume that position related information are not included
in yα of GAM equations which are written above. Linear combination of contri-
butions from relative position aπα

j and azαj become output of GAM and can be
written as

[azαj ]total = (c1) (
azαj ) + (1− c1) (

aπα
j ), 0 < c1 < 1, (20)

where
aπα

j =
n∑

β=1

aΘαβ yβi (aW V
ij ), (21)

aΘαβ =

NB∑
i=1

WS
i (aξαβi ), (22)

where
aξαβi =

exp(aδαβi )∑n
γ=1 exp(

aδαγi )
(23)

aδαβi = f(pαr p
β
t )

[
(a,i)BP

rt

]
. (24)

The function f(. . .) of pαr p
β
t can be considered as power law type (Eq. 17) or

polynomial type (Eq. 18). Here constraint on Another possibility for [azαj ]total
which can be explored is geometric average, written as

[azαj ]total =
√
(azαj )(

aπα
j ). (25)

Now we discuss methodology to obtain relative position vector pαr . Consider
pα as embedded relative position vector corresponding to input element yα. The
dimension of pα is identical to that of yα and is equal to M . The embedded vector
can be written as

pα = (pα1 , p
α
2 , . . . , p

α
M ) ≡ pαi where {i = 1, 2, . . . ,M}. (26)
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The embedded vector for different α = 1, 2, . . . , n can be learned during training
from known input relative position vector rα whose dimension is equal to n. rα

can be written as

rα = (rα1 , r
α
2 , . . . , r

α
n) ≡ rαi where {i = 1, 2, . . . , n}, (27)

where
rαα = 1, (28)

rαi = 2 + ne when α ̸= i. (29)

Here ne is number of elements (in actual dataset/corpus) between elements at lo-
cation α and i of input sequence Y. For example, consider actual corpus as

My name is Vikram (30)

and n = 3 for input sequence Y. When

Y = (ν1, ν2, ν3), (31)

= (My, name, is), (32)

input relative position vectors rα can be written as

r1 = (r11, r
1
2, r

1
3) = (1, 2, 3), (33)

r2 = (r21, r
2
2, r

2
3) = (2, 1, 2), (34)

r3 = (r31, r
3
2, r

3
3) = (3, 2, 1). (35)

(36)

And when

Y = (ν1, ν2, ν3) (37)

= (My, name, V ikram), (38)

rα can be written as

r1 = (r11, r
1
2, r

1
3) = (1, 2, 4), (39)

r2 = (r21, r
2
2, r

2
3) = (2, 1, 3), (40)

r3 = (r31, r
3
2, r

3
3) = (4, 3, 1). (41)

(42)

5 Conclusion

We have proposed generalized attention mechanism (GAM) which also includes a
new way of representing relative position of elements in actual dataset/corpus. In
doing so, we have suggested different interpretation for attention mechanism which
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abandons requirement of query and key. In GAM, similar to self-attention mech-
anism of Vaswani et al. [5], initial static vector representation of various elements
of input sequence are transformed into value vectors. These value vectors evolve
into dynamic representations [azαj ]total under the influence of interactions among
different elements of the sequence and their relative positions. These interactions
are quantified in terms of higher order features of input elements, their relative
positions and parameter matrices (a,i)B. The study on performance of GAM for
various experiments of language processing and comparison with results of self-
attention mechanism of Vaswani et al. [5, 4] will be performed in near future.
Also, the application of GAM to time series analysis will be explored in detail.
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