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Abstract.  
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(i is a positive integer), where x│X (ie. X is a multiple of x), y│Y, and z│Z are real numbers. This article also 

summarizes the relationships to Homotopy Theory, PDEs, Mathematical Cryptography and Analysis. The proofs 

are within the context of Sub-Rings. The additional common factor is that each of the variables x,y,z, v and 

dXYZ are multiples of (n-f), where n and f are real numbers. The solutions derived herein can be extended to 

other problems wherein (n-f) can take the form of polynomials/functions such as (6
d
-3), (14-5

c
), (a

i
-b

2i
), etc.. 

Some of the results are applicable where all variables are Integers.     
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1. Introduction.  

The Markoff equation Ma: X
2
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2
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2
 =aXYZ is not new in the literature - during 1779, Euler studied the equation 

X
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2
, and derived a solution that was somewhat different from Markoff’s solution. This article analyzes the 

properties of the equations x
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(i is a positive integer), where x│X (ie. X is a multiple of x), y│Y, and z│Z are real numbers. This group of 

equations have not been studied in detail in the literature. The second novelty in this study is that the scope of 

the solutions is real numbers and not only positive integers, and each of the equations is an ill-posed problem 

because their behavior can change drastically over any range of real numbers. The third novelty in this study is 

that taken together the equations x
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(i is a positive integer), exhibit or can exhibit: 

i) Super-Additive Horizontal Nonlinearity and Homomorphisms – wherein as more variables are added 

to the left side of each equation, the greater the absolute amount of, and probability of Nonlinearity. 

ii) Contingent Vertical Nonlinearity and Homomorphisms – wherein for each equation, the greater the 

absolute magnitudes of the independent variables (on the left side of each equation), the greater the 

Nonlinearity of the equation. Absolute Magnitude refers to magnitude of a variable without regard to its 

sign.      
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2. Existing Literature.    

Pienaar (2017) discussed Causality in the Quantum World. Allen, Barrett, et. al. (2017). proposed a 

quantum causal model based on a generalization of Reichenbach’s common cause principle. 

Abram, Lapointe & Reutenauer (2020), Jiang, Gao & Cao (2020) and Togbe, Kafle & Srinivasan (2020) 

analyzed the Markoff Equation X
2
+Y

2
+Z

2
= aXYZ (which perhaps is the most popular equation that is 

structurally similar to the equations studied in this article; but the properties and methods introduced herein are 

new). MacHale (1991) studied the equation X
3
+Y

3
+Z

3
 = 3XYZ. 

Fang (2011) analyzed the equation f(p+q+r)=f(p)+f(q)+f(r). Lindqvist (2018) studied generalized 

Fermat Equations (sums of three powers). Andreescu (2002) analyzed the equation (x+y+z)
2
=xyz. Ward (1948) 

analyzed sums of three fourth powers. 

Hayakawa & Takeuchi (1987) and Vijayalakshmi & Karpagam (2019) analyzed and developed 

solutions for singularities using Algebraic methods. Brudno (1970) studied the solutions of the diophantine 

equation A
6
B

6
+C

6
D

6
+E

6
+F

6
. Guy (2004) and Browning (2003) reviewed and analyzed respectively, solutions 

for equations of the type X
4
+Y

4
+Z

4
+U

4
=V

4
. Gar-el & Vaserstein (2002) studied the Diophantine Equation 

a
3
+b

3
+c

3
+d

3
= 0. Bremner (1981) discussed solutions for the equations of equal sums of fifth powers.   

Resta & Meyrignac (2003) studied the smallest solutions to the Diophantine equation x
6
+y

6
 = 

a
6
+b

6
+c

6
+d

6
+e

6
. Gerbicz, Meyrignac & Beckert (August, 2011) analyzed solutions of the Diophantine equation 

(a
6
+b

6
)=(c

6
+d

6
+e

6
+f

6
+g

6
) for a, b, c, d, e, f, g <250,000 (used a distributed Boinc project; and also listed 

primitive solutions up to 250,000 and the discoverer’s name, sorted in lexicographical order).     

Guy (2004) noted the following: 

i) Norrie (1911) discovered the equation: 30
4
+120

4
+272

4
+315

4
=353

4
.    

ii) Lander & Parkin (____) discovered the equation: 27
5
+84

5
+110

5
+133

5
=144

5
.      

 

The equation x
3
+y

3
+z

3
=k in positive/negative integers has remained a mathematical puzzle for decades. 

For the same equation x
3
+y

3
+z

3
=k, Huisman (2016) stated that as of 2016, solutions were known for all but 

thirteen values of k <1000 (the thirteen values were: 33,42,114,165,390,579,627,633,732,795,906,921,975). See 

Booker (2019) and note that during 2019, using computer simulations, Prof. Andrew Booker (Reader of Pure 

Mathematics from the Bristol University's School of Mathematics), found the solution
1
 for the equation 

x
3
+y

3
+z

3
=33; which is: (8,866,128,975,287,528)³ + (–8,778,405,442,862,239)³ + (–2,736,111,468,807,040)³. 

Furthermore, in 2019 and using computer simulations
2
, Prof. Booker and a research team also found the solution 

for the Diophantine Equation x³+y³+z³=42, which is: x=-80538738812075974, y=80435758145817515, and  

z=12602123297335631.  

Huisman (2016), Miller & Woollett (1955), Mordell (1953), Montgomery (1985), Koyama Tsuruoka & 

Sekigawa (1997), Bremner (1995), Cassels (1985), Elsenhans & Jahnel (2009), Beck, Pine, et. al. (2007), 

Lehmer (1956), Scarowsky & Boyarsky (1984), and Heath-Brown, Lioen & te Riele (1993) analyzed equations 

of the type x
3
+y

3
+z

3
=k in real numbers.  

MacHale (1991) studied the equation X
3
+Y

3
+Z

3
=3XYZ. Miyake (2009) analyzed Hesse’s elliptic 

curves of the type: U
3
+V

3
+W

3
=3μUVW. Dofs (1995) and Halbeisen & Hungerbuhler (2019) analyzed equations 

of the type: x
3
+y

3
+z

3
=nxyz. Mordell (1955) developed solutions of ax

3
+ay

3
+bz

3
=bc

3
. 

                                                 
1
 See: University of Bristol (April 2, 2019). Bristol Mathematician Cracks Diophantine Puzzle. 

https://phys.org/news/2019-04-bristol-mathematician-diophantine-puzzle.html. This same article in phys.org 

reported that as of 2019, the solutions of x
3
+y

3
+z

3
=k in the interval where 0<k<100, had been found except for 

the number k=42. 
2
 See: Miller, S. (2019). Sutherland Helps Solve Decades-Old Sum-Of-Three-Cubes Puzzle. Available at: 

https://science.mit.edu/sutherland-helps-solve.../.... 

See: Phys.org. (2019). Sum Of Three Cubes For 42 Finally Solved—Using Real Life Planetary Computer. 

Available at: <https://phys.org/.../2019-09-sum-cubes-solvedusing-real...> . 
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Gundersen (1998) analyzed the equation f
6
+g

6
+h

6
≡ 1. Brudno (1976) studied equations of the type 

X
6
+Y

6
+Z

6
=k. Elkies (1988) and Yuan (1996) analyzed equations of the type A

4
+B

4
+C

4
=D

4
.   

On Diophantine Equations in Analysis, see Zaidenberg (1988), Tohge (2011), Zadeh (2019), Bitim & 

Keskin (2013) and Gundersen (1998). On solutions to Diophantine Equations in Computer Mathematics, 

Mathematical Physics and Mathematical Chemistry, see: Ren & Yang (2012), Bremner (1986), Papp & Vizvari 

(2006), Ibarra & Dang (2006), and Rahmawati, Sugandha, et. al. (2019). 

The Beal Conjecture states that if a, b, c, x, y, and z are positive integers where a
x
+b

y
=c

z
, and x, y, z > 2, 

then a, b and c have a common prime factor. The methods introduced in this article may help resolve the Beal 

Conjecture and similar problems. 

 

3. Relationships To Mathematical Cryptography, Analysis, Group Theory And Prime Numbers.  

On Homomorphisms, see: Wang & Chin (2012). Chu (2008) and Lu & Wu (2016) studied dynamical 

systems pertaining to Diophantine equations (and equations such as x
2
+y

2
+z

2
+v

2
=rXYZ, and 

x
2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the Markoff Equation X

2
+Y
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+Z

2
 = rXYZ, x

3
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=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and 

x
i
+y

i
+z

i
=rXYZ and the Markoff Equation X

2
+Y

2
+Z

2
= aXYZ can approximate Dynamical Systems).  

Luca, Moree & Weger (2011) discussed Group Theory as it relates to Diophantine Equations. Elia 

(2005), Jones, Sato, et. al. (1976) and Matijasevič (1981) noted that primes can also be represented as 

Diophantine equations or as polynomials (ie. each of the equations x
2
+y

2
+z

2
+v

2
=rXYZ, and 

x
2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the Markoff Equation X

2
+Y

2
+Z

2
 = rXYZ, x

3
+y

3
+z

3
=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and 

x
i
+y

i
+z

i
=rXYZ and the Markoff Equation X

2
+Y

2
+Z

2
=aXYZ can represent a prime).  

On uses of Diophantine Equations in Cryptography, see: Ding, Kudo, et. al. (2018), Okumura (2015), 

and Ogura (2012) (ie. the equations x
2
+y

2
+z

2
+v

2
=rXYZ, and x

2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the Markoff Equation 

X
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 = rXYZ, x

3
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3
+z

3
=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and x

i
+y

i
+z

i
=rXYZ can be used in cryptoanalysis, and 

in the creation of public-keys).  

On solutions to Diophantine Equations in Analysis, see Zaidenberg (1988), Tohge (2011), and Zadeh 

(2019).  

On solutions to Diophantine Equations in Mathematical Physics, Mathematical Chemistry and 

Computer Science, see: Ren & Yang (2012), Bremner (1986), Papp & Vizvari (2006), Ibarra & Dang (2006), 

Abram, Lapointe & Reutenauer (2020) and Rahmawati, Sugandha, et. al. (2019). 

 

4. Relationships To Homotopy Theory  

As noted herein and above, a common factor in the proofs introduced for the equations studied herein (where 

x│X (ie. X is a multiple of x), y│Y, and z│Z are real numbers) is that each of the variables x, y, z and dXYZ 

are multiples of (n-f), all of which are real numbers. Thus, the solutions derived herein can be extended to other 

problems wherein (n-f) can be a function or polynomial such as (15
c
-3), (5

d
-√f), (a

s
-b

s
), etc.; or where (x

i
, [y

i
+z

i
], 

[z
i
+x

i
], etc.) are individual systems. More importantly, where (n-f) is a function, then in the solutions introduced 

herein, (n-f) can merge/map into, and create a Homotopy with each of the equations x
2
+y

2
+z

2
+v

2
=rXYZ, 

x
i
+y

i
+z

i
 +v

i
= rXYZ (where i is an integer), x

2
+y

2
+z

2
= rXYZ, x

2
+y

2
+z

2
+v

2
+u

2
=rXYZ, x

3
+y

3
+z

3
=rXYZ, and 

x
6
+y

6
+z

6
=rXYZ, and x

i
+y

i
+z

i
=rXYZ and the Markoff Equation X

2
+Y

2
+Z

2
=aXYZ 

 

5. Partial Differential Equations (PDEs), Invalidity of The “Variance-Inflation-Factor”, And (n-f) As A 

Measure Of Multicollinearity.  

 Nwogugu (2012: 324-330) and Nwogugu (2017: 280-284) explained why the core differentiation 

formulas are wrong (and thus many PDE solutions are or maybe wrong). In the realm of PDEs, (n-f) and the 

“multipliers” of x, y, z and v (a,b,c,j,k) can be used to find the sensitivity of each side (LHS and RHS) of the 

each of the equations x
2
+y

2
+z

2
+v

2
=rXYZ, and x

2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the Markoff Equation X

2
+Y

2
+Z

2
 = 

rXYZ, x
3
+y

3
+z

3
=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and x

i
+y

i
+z

i
=rXYZ and the Markoff Equation X

2
+Y

2
+Z

2
=aXYZ to 

changes in any of the variables x, y, z, X, Y and Z.  

 

With regards to (n-f) and in the realm of PDEs: 

i) The common relationships are as follows:  

x = (n-f)a; X=lx; and X =(n-f)a*l; 

y = (n-f)b; Y=oy; and Y=(n-f)b*o; 
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z = (n-f)c; Z=qz; and Z = (n-f)c*q; 

 and the same for u, v, U and V. 

ii) Use of (n-f) and the “multipliers” of x, y and z (l; o; q) converts each of the equations 

x
2
+y

2
+z

2
+v

2
=rXYZ, and x

2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the Markoff Equation X

2
+Y

2
+Z

2
 = rXYZ, 

x
3
+y

3
+z

3
=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and x

i
+y

i
+z

i
=rXYZ and the Markoff Equation X

2
+Y

2
+Z

2
=aXYZ 

into a PDE. For example, x
2
+y

2
+z

2
=dXYZ becomes (X* 

∂X/∂x)
2
+(Y*[∂Y/∂y])

2
+(Z*[∂Z/∂z])

2
=d*[x*[∂X/∂x)]*YZ which is a PDE because ∂X/∂x =l, and so on 

for the other LHS variables. 

 

iii) (n-f) and the “multipliers” of x, y and z (l, o and q respectively) can be used to find the sensitivity of 

each side (LHS and RHS) of the equations x
2
+y

2
+z

2
+v

2
=rXYZ, and x

2
+y

2
+z

2
+v

2
+u

2
=rXYZ, and the 

Markoff Equation X
2
+Y

2
+Z

2
 = rXYZ, x

3
+y

3
+z

3
=rXYZ, and x

6
+y

6
+z

6
=rXYZ, and x

i
+y

i
+z

i
=rXYZ and the 

Markoff Equation X
2
+Y

2
+Z

2
=aXYZ to changes in any of the variables x, y, z, v, u, X, Y, Z, V and U. 

Following the above example, x
2
+y

2
+z

2
=rXYZ becomes (Xl)

2
+(Yo)

2
+(Zq)

2
=rXYZ, which is a PDE 

because ∂X/∂x=l, in which case ∂(XYZr)/∂x =l(a2) where a2 is a real number and is a function of (n-f).  

 

 

The Nwogugu (2013) proof of the invalidity of Variance/Semi-variance and Correlation also invalidates 

“Variance Inflation Factor” (VIF) – that is, for VIF to be valid, the conditions in the Nwogugu (2013) proofs 

must simultaneously exist, which is impossible. VIF is the main generally-accepted measure of 

multicollinearity; and thus, most of the regression-based empirical research done during the last fifty years is 

unreliable, and that may also account for the ongoing Replicability/Reproducibility Crisis in academic research.      

Given the foregoing, (n-f) quantifies and can serve as an indicator of multicollinearity in the following 

way. For the time series (of an equation such as x
2
+y

2
+z

2
+v

2
=rXYZ), (n-f) is calculated for each time-unit. If (n-

f) is relatively “stable” over time (doesn’t exceed stated upper and lower bounds), then “adjusted-average” (n-f) 

over the time-series can be a reliable indicator of the actual magnitude of multicollinearity.     

 

 

6. The Special Case Of x=y=z: Some Simulated Solutions Of The Equations x
3
+y

3
+z

3
=rXYZ, and 

x
6
+y

6
+z

6
=rXYZ, In Integers. 

For the special case where x=y=z, there appears to be infinitely many solutions for both x
3
+y

3
+z

3
=rXYZ, and 

x
6
+y

6
+z

6
=rXYZ, and Tables 1 & 2 below illustrates some of the solutions.  

 

Theorem-A: For the equations x
6
+y

6
+z

6
=rXYZ and x

3
+y

3
+z

3
=rXYZ, where x│X, y│Y and z│Z are 

positive integers and x=y=z; each of the equations x
6
+y

6
+z

6
=rXYZ and x

3
+y

3
+z

3
=rXYZ has potentially 

and infinitely many solutions in positive integers; and the conditions (x+y+z) ≤r and (xyz)≤r exist in most 

of the solution-sets. 

Proof: If x=y=z, xa1=X, and yb1=Y, and zc1=Z, then: the equation x
6
+y

6
+z

6
=rXYZ is equivalent to: 

3x
6
=rx

3
a1b1c1, and 3x

3
=ra1b1c1, and 3x

3
/[a1b1c1]=d. However, Table-2 in this article shows that the equation 

x
6
+y

6
+z

6
=rXYZ conforms to 3x

3
=r, only where x=y=z=X=Y=Z (in which case a1,b1,c1=1). Also, the equation 

x
6
+y

6
+z

6
=rXYZ  conforms to 3x

3
/[a1b1c1]=r, only where x=y=z, xa1=X, and yb1=Y, and zc1=Z; all of which is 

evidence that x
6
+y

6
+z

6
=rXYZ has potentially and infinitely many solutions for (x,y,z) in positive integers; and 

(x+y+z) ≤r and (xyz) ≤r in most of the solution-sets.   

 

If x=y=z, xa1=X, and yb1=Y, and zc1=Z, then: the equation x
3
+y

3
+z

3
=rXYZ is equivalent to: 3x

3
=rx

3
a1b1c1, and 

3=ra1b1c1, and 3/[a1b1c1]=d. However, Table-1 in this article shows that the equation x
3
+y

3
+z

3
=rXYZ conforms 

to 3x
3
=r, only where x=y=z=X=Y=Z (in which case a1,b1,c1=1). Also, the equation x

3
+y

3
+z

3
=rXYZ conforms to 

3/[a1b1c1]=r, only where x=y=z, xa1=X, and yb1=Y, and zc1=Z. All that is evidence that x
3
+y

3
+z

3
=rXYZ has 

potentially and infinitely many solutions for (x,y,z) in positive integers; and (x+y+z) ≤r and (xyz) ≤r exist in 

most of the solution-sets.    ▄ 
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Table-1: Simulated Solutions Of x
3
+y

3
+z

3
=rXYZ In Integers. 

 

x y z d 

1 1 1 3 

2 2 2 3 

3 3 3 3 

4 4 4 3 

5 5 5 3 

6 6 6 3 

7 7 7 3 

8 8 8 3 

9 9 9 3 

10 10 10 3 

11 11 11 3 

12 12 12 3 

13 13 13 3 

14 14 14 3 

15 15 15 3 

16 16 16 3 

17 17 17 3 

18 18 18 3 

19 19 19 3 

20 20 20 3 

21 21 21 3 

22 22 22 3 

23 23 23 3 

24 24 24 3 

250 250 250 3 

1,250.000  1,250.000  1,250.000  3 

6,250.000  6,250.000  6,250.000  3 

31,250.000  31,250.000  31,250.000  3 

156,250.000  156,250.000  156,250.000  3 

781,250.000  781,250.000  781,250.000  3 

3,906,250.000  3,906,250.000  3,906,250.000  3 

19,531,250.000  19,531,250.000  19,531,250.000  3 

97,656,250.000  97,656,250.000  97,656,250.000  3 

488,281,250.000  488,281,250.000  488,281,250.000  3 

2,441,406,250.000  2,441,406,250.000  2,441,406,250.000  3 

12,207,031,250.000  12,207,031,250.000  12,207,031,250.000  3 

61,035,156,250.000  61,035,156,250.000  61,035,156,250.000  3 

3.05176E+11 3.05176E+11 3.05176E+11 3 

1.52588E+12 1.52588E+12 1.52588E+12 3 

7.62939E+12 7.62939E+12 7.62939E+12 3 
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3.8147E+13 3.8147E+13 3.8147E+13 3 

1.90735E+14 1.90735E+14 1.90735E+14 3 

9.53674E+14 9.53674E+14 9.53674E+14 3 

4.76837E+15 4.76837E+15 4.76837E+15 3 

2.38419E+16 2.38419E+16 2.38419E+16 3 

1.19209E+17 1.19209E+17 1.19209E+17 3 

5.96046E+17 5.96046E+17 5.96046E+17 3 

2.98023E+18 2.98023E+18 2.98023E+18 3 

1.49012E+19 1.49012E+19 1.49012E+19 3 

7.45058E+19 7.45058E+19 7.45058E+19 3 

3.72529E+20 3.72529E+20 3.72529E+20 3 

1.86265E+21 1.86265E+21 1.86265E+21 3 

9.31323E+21 9.31323E+21 9.31323E+21 3 

4.65661E+22 4.65661E+22 4.65661E+22 3 

2.32831E+23 2.32831E+23 2.32831E+23 3 

1.16415E+24 1.16415E+24 1.16415E+24 3 

5.82077E+24 5.82077E+24 5.82077E+24 3 

2.91038E+25 2.91038E+25 2.91038E+25 3 

1.45519E+26 1.45519E+26 1.45519E+26 3 

7.27596E+26 7.27596E+26 7.27596E+26 3 

3.63798E+27 3.63798E+27 3.63798E+27 3 

1.81899E+28 1.81899E+28 1.81899E+28 3 

9.09495E+28 9.09495E+28 9.09495E+28 3 

4.54747E+29 4.54747E+29 4.54747E+29 3 

2.27374E+30 2.27374E+30 2.27374E+30 3 

1.13687E+31 1.13687E+31 1.13687E+31 3 

5.68434E+31 5.68434E+31 5.68434E+31 3 

2.84217E+32 2.84217E+32 2.84217E+32 3 

1.42109E+33 1.42109E+33 1.42109E+33 3 

7.10543E+33 7.10543E+33 7.10543E+33 3 

3.55271E+34 3.55271E+34 3.55271E+34 3 

1.77636E+35 1.77636E+35 1.77636E+35 3 

8.88178E+35 8.88178E+35 8.88178E+35 3 

4.44089E+36 4.44089E+36 4.44089E+36 3 

2.22045E+37 2.22045E+37 2.22045E+37 3 

1.11022E+38 1.11022E+38 1.11022E+38 3 

5.55112E+38 5.55112E+38 5.55112E+38 3 

2.77556E+39 2.77556E+39 2.77556E+39 3 

1.38778E+40 1.38778E+40 1.38778E+40 3 

6.93889E+40 6.93889E+40 6.93889E+40 3 

3.46945E+41 3.46945E+41 3.46945E+41 3 

1.73472E+42 1.73472E+42 1.73472E+42 3 

8.67362E+42 8.67362E+42 8.67362E+42 3 
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4.33681E+43 4.33681E+43 4.33681E+43 3 

2.1684E+44 2.1684E+44 2.1684E+44 3 

1.0842E+45 1.0842E+45 1.0842E+45 3 

5.42101E+45 5.42101E+45 5.42101E+45 3 

2.71051E+46 2.71051E+46 2.71051E+46 3 

1.35525E+47 1.35525E+47 1.35525E+47 3 

6.77626E+47 6.77626E+47 6.77626E+47 3 

3.38813E+48 3.38813E+48 3.38813E+48 3 

1.69407E+49 1.69407E+49 1.69407E+49 3 

8.47033E+49 8.47033E+49 8.47033E+49 3 

4.23516E+50 4.23516E+50 4.23516E+50 3 

2.11758E+51 2.11758E+51 2.11758E+51 3 

1.05879E+52 1.05879E+52 1.05879E+52 3 

5.29396E+52 5.29396E+52 5.29396E+52 3 

2.64698E+53 2.64698E+53 2.64698E+53 3 

1.32349E+54 1.32349E+54 1.32349E+54 3 

6.61744E+54 6.61744E+54 6.61744E+54 3 

3.30872E+55 3.30872E+55 3.30872E+55 3 

1.65436E+56 1.65436E+56 1.65436E+56 3 

8.27181E+56 8.27181E+56 8.27181E+56 3 

4.1359E+57 4.1359E+57 4.1359E+57 3 

2.06795E+58 2.06795E+58 2.06795E+58 3 

1.03398E+59 1.03398E+59 1.03398E+59 3 

5.16988E+59 5.16988E+59 5.16988E+59 3 

2.58494E+60 2.58494E+60 2.58494E+60 3 

1.29247E+61 1.29247E+61 1.29247E+61 3 

6.46235E+61 6.46235E+61 6.46235E+61 3 

3.23117E+62 3.23117E+62 3.23117E+62 3 

1.61559E+63 1.61559E+63 1.61559E+63 3 

8.07794E+63 8.07794E+63 8.07794E+63 3 

4.03897E+64 4.03897E+64 4.03897E+64 3 

2.01948E+65 2.01948E+65 2.01948E+65 3 

1.00974E+66 1.00974E+66 1.00974E+66 3 

5.04871E+66 5.04871E+66 5.04871E+66 3 

2.52435E+67 2.52435E+67 2.52435E+67 3 

1.26218E+68 1.26218E+68 1.26218E+68 3 

6.31089E+68 6.31089E+68 6.31089E+68 3 

3.15544E+69 3.15544E+69 3.15544E+69 3 

1.57772E+70 1.57772E+70 1.57772E+70 3 

7.88861E+70 7.88861E+70 7.88861E+70 3 

3.9443E+71 3.9443E+71 3.9443E+71 3 

1.97215E+72 1.97215E+72 1.97215E+72 3 

9.86076E+72 9.86076E+72 9.86076E+72 3 
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4.93038E+73 4.93038E+73 4.93038E+73 3 

2.46519E+74 2.46519E+74 2.46519E+74 3 

1.2326E+75 1.2326E+75 1.2326E+75 3 

6.16298E+75 6.16298E+75 6.16298E+75 3 

3.08149E+76 3.08149E+76 3.08149E+76 3 

1.54074E+77 1.54074E+77 1.54074E+77 3 

7.70372E+77 7.70372E+77 7.70372E+77 3 

3.85186E+78 3.85186E+78 3.85186E+78 3 

1.92593E+79 1.92593E+79 1.92593E+79 3 

9.62965E+79 9.62965E+79 9.62965E+79 3 

4.81482E+80 4.81482E+80 4.81482E+80 3 

2.40741E+81 2.40741E+81 2.40741E+81 3 

1.20371E+82 1.20371E+82 1.20371E+82 3 

6.01853E+82 6.01853E+82 6.01853E+82 3 

3.00927E+83 3.00927E+83 3.00927E+83 3 

1.50463E+84 1.50463E+84 1.50463E+84 3 

7.52316E+84 7.52316E+84 7.52316E+84 3 

3.76158E+85 3.76158E+85 3.76158E+85 3 

1.88079E+86 1.88079E+86 1.88079E+86 3 

9.40395E+86 9.40395E+86 9.40395E+86 3 

4.70198E+87 4.70198E+87 4.70198E+87 3 

2.35099E+88 2.35099E+88 2.35099E+88 3 

1.17549E+89 1.17549E+89 1.17549E+89 3 

5.87747E+89 5.87747E+89 5.87747E+89 3 

2.93874E+90 2.93874E+90 2.93874E+90 3 

1.46937E+91 1.46937E+91 1.46937E+91 3 

7.34684E+91 7.34684E+91 7.34684E+91 3 

3.67342E+92 3.67342E+92 3.67342E+92 3 

1.83671E+93 1.83671E+93 1.83671E+93 3 

9.18355E+93 9.18355E+93 9.18355E+93 3 

4.59177E+94 4.59177E+94 4.59177E+94 3 

2.29589E+95 2.29589E+95 2.29589E+95 3 

1.14794E+96 1.14794E+96 1.14794E+96 3 

5.73972E+96 5.73972E+96 5.73972E+96 3 

2.86986E+97 2.86986E+97 2.86986E+97 3 

1.43493E+98 1.43493E+98 1.43493E+98 3 

7.17465E+98 7.17465E+98 7.17465E+98 3 

3.5873E+99 3.5873E+99 3.5873E+99 3 

1.7937E+100 1.7937E+100 1.7937E+100 3 

8.9683E+100 8.9683E+100 8.9683E+100 3 

4.4842E+101 4.4842E+101 4.4842E+101 3 

2.2421E+102 2.2421E+102 2.2421E+102 3 
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Table-2: Simulated Solutions Of x
6
+y

6
+z

6
=rXYZ, In Integers.  

 

x y z d 

1 1 1 3 

2 2 2 24 

3 3 3 81 

4 4 4 192 

5 5 5 375 

6 6 6 648 

7 7 7 1,029.000  

8 8 8 1,536.000  

9 9 9 2,187.000  

10 10 10 3,000.000  

11 11 11 3,993.000  

12 12 12 5,184.000  

13 13 13 6,591.000  

14 14 14 8,232.000  

15 15 15 10,125.000  

16 16 16 12,288.000  

17 17 17 14,739.000  

18 18 18 17,496.000  

19 19 19 20,577.000  

20 20 20 24,000.000  

21 21 21 27,783.000  

22 22 22 31,944.000  

23 23 23 36,501.000  

24.000  24.000  24.000  41,472.000  

250.000  250.000  250.000  46,875,000.000  

1,250.000  1,250.000  1,250.000  5,859,375,000.000  

6,250.000  6,250.000  6,250.000  7.32422E+11 

31,250.000  31,250.000  31,250.000  9.15527E+13 

156,250.000  156,250.000  156,250.000  1.14441E+16 

781,250.000  781,250.000  781,250.000  1.43051E+18 

3,906,250.000  3,906,250.000  3,906,250.000  1.78814E+20 

19,531,250.000  19,531,250.000  19,531,250.000  2.23517E+22 

97,656,250.000  97,656,250.000  97,656,250.000  2.79397E+24 

488,281,250.000  488,281,250.000  488,281,250.000  3.49246E+26 

2,441,406,250.000  2,441,406,250.000  2,441,406,250.000  4.36557E+28 

12,207,031,250.000  12,207,031,250.000  12,207,031,250.000  5.45697E+30 

61,035,156,250.000  61,035,156,250.000  61,035,156,250.000  6.82121E+32 

3.05176E+11 3.05176E+11 3.05176E+11 8.52651E+34 

1.52588E+12 1.52588E+12 1.52588E+12 1.06581E+37 
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7.62939E+12 7.62939E+12 7.62939E+12 1.33227E+39 

3.8147E+13 3.8147E+13 3.8147E+13 1.66533E+41 

1.90735E+14 1.90735E+14 1.90735E+14 2.08167E+43 

9.53674E+14 9.53674E+14 9.53674E+14 2.60209E+45 

4.76837E+15 4.76837E+15 4.76837E+15 3.25261E+47 

2.38419E+16 2.38419E+16 2.38419E+16 4.06576E+49 

1.19209E+17 1.19209E+17 1.19209E+17 5.0822E+51 

5.96046E+17 5.96046E+17 5.96046E+17 6.35275E+53 

2.98023E+18 2.98023E+18 2.98023E+18 7.94093E+55 

1.49012E+19 1.49012E+19 1.49012E+19 9.92617E+57 

7.45058E+19 7.45058E+19 7.45058E+19 1.24077E+60 

3.72529E+20 3.72529E+20 3.72529E+20 1.55096E+62 

1.86265E+21 1.86265E+21 1.86265E+21 1.9387E+64 

9.31323E+21 9.31323E+21 9.31323E+21 2.42338E+66 

4.65661E+22 4.65661E+22 4.65661E+22 3.02923E+68 

2.32831E+23 2.32831E+23 2.32831E+23 3.78653E+70 

1.16415E+24 1.16415E+24 1.16415E+24 4.73317E+72 

5.82077E+24 5.82077E+24 5.82077E+24 5.91646E+74 

2.91038E+25 2.91038E+25 2.91038E+25 7.39557E+76 

1.45519E+26 1.45519E+26 1.45519E+26 9.24446E+78 

7.27596E+26 7.27596E+26 7.27596E+26 1.15556E+81 

3.63798E+27 3.63798E+27 3.63798E+27 1.44445E+83 

1.81899E+28 1.81899E+28 1.81899E+28 1.80556E+85 

9.09495E+28 9.09495E+28 9.09495E+28 2.25695E+87 

4.54747E+29 4.54747E+29 4.54747E+29 2.82119E+89 

2.27374E+30 2.27374E+30 2.27374E+30 3.52648E+91 

1.13687E+31 1.13687E+31 1.13687E+31 4.4081E+93 

5.68434E+31 5.68434E+31 5.68434E+31 5.51013E+95 

2.84217E+32 2.84217E+32 2.84217E+32 6.88766E+97 

1.42109E+33 1.42109E+33 1.42109E+33 8.6096E+99 

7.10543E+33 7.10543E+33 7.10543E+33 1.0762E+102 

3.55271E+34 3.55271E+34 3.55271E+34 1.3452E+104 

1.77636E+35 1.77636E+35 1.77636E+35 1.6816E+106 

8.88178E+35 8.88178E+35 8.88178E+35 2.1019E+108 

4.44089E+36 4.44089E+36 4.44089E+36 2.6274E+110 

2.22045E+37 2.22045E+37 2.22045E+37 3.2843E+112 

1.11022E+38 1.11022E+38 1.11022E+38 4.1054E+114 

5.55112E+38 5.55112E+38 5.55112E+38 5.1317E+116 

2.77556E+39 2.77556E+39 2.77556E+39 6.4146E+118 

1.38778E+40 1.38778E+40 1.38778E+40 8.0183E+120 

6.93889E+40 6.93889E+40 6.93889E+40 1.0023E+123 

3.46945E+41 3.46945E+41 3.46945E+41 1.2529E+125 

1.73472E+42 1.73472E+42 1.73472E+42 1.5661E+127 
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8.67362E+42 8.67362E+42 8.67362E+42 1.9576E+129 

4.33681E+43 4.33681E+43 4.33681E+43 2.447E+131 

2.1684E+44 2.1684E+44 2.1684E+44 3.0587E+133 

1.0842E+45 1.0842E+45 1.0842E+45 3.8234E+135 

5.42101E+45 5.42101E+45 5.42101E+45 4.7793E+137 

2.71051E+46 2.71051E+46 2.71051E+46 5.9741E+139 

1.35525E+47 1.35525E+47 1.35525E+47 7.4676E+141 

6.77626E+47 6.77626E+47 6.77626E+47 9.3345E+143 

3.38813E+48 3.38813E+48 3.38813E+48 1.1668E+146 

1.69407E+49 1.69407E+49 1.69407E+49 1.4585E+148 

8.47033E+49 8.47033E+49 8.47033E+49 1.8231E+150 

4.23516E+50 4.23516E+50 4.23516E+50 2.2789E+152 

 

 

 

 

 

7. The Theorems.  

 

Theorem-1: For the equation x
2
+y

2
+z

2
+v

2
= rXYZ, in real numbers where x│X (ie. X is a multiple of x), 

y│Y, z│Z and v│V exist; and a, b, c and j are multiplicative components of X, Y, Z and V respectively 

(each of X, Y, Z and V are derived by multiplying a, b, c and j respectively by (n-f), another real number):  

i) If XYZg = (n-f), then XYZg = (ea)*(pb)*(hc)*(kj), for some real numbers g, e, p, h and k. 

ii) If XYZr = (n-f), then XYZr = (ea)*(pb)*(hc) *(kj), for some real numbers e, p, h and k. 

Proof:  

This first section proves that XYZg =(ea)*(pb)*(hc)*(kj), for some real numbers g, e, p, h and k. 

 

Let: 

X= xl; Y=yo; Z=zq; V=vs; where l, o, q and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j     

XYZg = (n-f)     

 

XYZg = (n-f)
3
(abc)g    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abc)g    

Thus 1 = (n-f)
2
(abc)g    

 

If XYZg = (ea)*(pb)*(hc)*(kj), 

Then: (XYZg)/(abcj) = ephk 

but: (ephk)(abcj) = (n-f)
3
(abcj)g     

Thus, (ephk) =(n-f)
3
g = [(XYZ)/(abcj)]g 

And: =(n-f)
3
 = [(XYZ)/(abcj)] 

From above, if XYZg = (n-f)
3
(abcj)g; then XYZ = (n-f)

3
(abcj)      

 

This second section proves that XYZr =(ea)*(pb)*(hc)*(kj), for some real numbers e, p, h and k. 

Let:   

X= xl; Y=yo; Z=zi; V=vs; where l, o, i and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j     

XYZr = (n-f)     
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The following are “Sub-Theorems” each of which completely proves this theorem and can stand-alone as an 

independent theorem. 

 

Sub-Theorem-1A:  

x= (n-f)a/l; y=(n-f)b/o; z=(n-f)c; v=(n-f)j/s     

XYZr = x
2
+y

2
+z

2
+v

2
= (n-f)

3
(abc)r    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abc)r    

Thus: 1 = (n-f)
2
(abc)r    

If XYZr = (n-f) = (ea)*(pb)*(hc)*(kj) = (ephk)(abcj)/1:   

(n-f) = (ephk)(abcj)/[(n-f)
2
(abc)r] 

(n-f)
3
(abc)r = (ephk)(abcj) 

XYZr = (ephk)(abcj) ▄ 

 

Sub-Theorem-1B:  

XYZr = x
2
+y

2
+z

2
+v

2
= (n-f)

3
(abc)r    

Therefore: XYZ = (n-f)
3
(abc)    

If XYZr = (ea)*(pb)*(hc)*(kj) = (ephk)(abcj):   

Then: (XYZr)/(abcj) = ephk 

but: (ephk)(abcj) = XYZr = (n-f)
3
(abc)r    

Thus, (ephk)j =(n-f)
3
r = [(XYZrj)/(abcj)] 

And: (n-f)
3
 = [(XYZ)/(abc)] 

And: XYZ = (n-f)
3
(abc)     ▄ 

 

Sub-Theorem-1C: 

X= xl; Y=yo; Z=zi; V=vs; where l, o, i and t are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j;    

XYZr = (n-f)     

(n-f) = X/a=Y/b = Z/c = V/j = (ephk)(abcj) 

X= (ephk)(abcj)a 

Y= (ephk)(abcj)b 

Z= (ephk)(abcj)c 

XYZr = (ephk)
3
(abcj)

3
(abc)r = (ephk)(abcj) 

abc = [(ephk)(abcj)]/[(ephk)
3
(abcj)

3
r] = [1/[(ephk)

2
(abcj)

2
r]] 

Therefore, XYZr = [(ephk)
3
(abcj)

3
r]*[1/[(ephk)

2
(abcj)

2
r]] 

XYZr = [(ephk)(abcj)] ▄ 

 

Theorem-1: For the equation x
2
+y

2
+z

2
+v

2
= rXYZ, in real numbers where x│X (ie. X is a multiple of x), 

y│Y, z│Z and v│V exist; and a, b, c and j are multiplicative components of X, Y, Z and V respectively 

(each of x, y, z and v are derived by multiplying a, b, c and j respectively by (n-f), another real number):  

i) If XYZg = (n-f), then XYZg = (ea)*(pb)*(hc)*(kj), for some real numbers g, e, p, h and k. 

ii) If XYZr = (n-f), then XYZr = (ea)*(pb)*(hc) *(kj), for some real numbers e, p, h and k. 

Proof:  

This first section proves that XYZg =(ea)*(pb)*(hc)*(kj), for some real numbers g, e, p, h and k. 

 

Let: 

X= xl; Y=yo; Z=zq; V=vs; where l, o, q and s are real numbers.  

x=(n-f)a; y=(n-f)b; z=(n-f)c; v(n-f)j; and thus: 

X= la(n-f); Y=bo(n-f); z=qc(n-f); v=js(n-f);      

XYZg = (n-f)     

 

XYZg = (n-f)
3
(abc)(loq)g    

XYZ = (n-f)
3
(abc) (loq)   
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(n-f) = (n-f)
3
(abc)(loq)g    

Thus 1 = (n-f)
2
(abc)(loq)g    

 

If XYZg = (ea)*(pb)*(hc)*(kj), 

Then: (XYZg)/(abcj) = ephk 

but: (ephk)(abcj) = (n-f)
3
(abcj)(loq)g     

Thus, (ephk) =(n-f)
3
g = [(XYZ)/(abcj)(loq)]g 

And: =(n-f)
3
 = [(XYZ)/(abcj)(loq)] 

From above, if XYZg = (n-f)
3
(abcj)(loq)g; then XYZ = (n-f)

3
(abcj)(loq)      

 

This second section proves that XYZr =(ea)*(pb)*(hc)*(kj), for some real numbers e, p, h and k. 

Let:   

X= xl; Y=yo; Z=zq; V=vs; where l, o, q and s are real numbers.  

x=(n-f)a; y=(n-f)b; z=(n-f)c; v(n-f)j; and thus: 

X= la(n-f); Y=bo(n-f); z=qc(n-f); v=js(n-f);      

XYZr = (n-f)     

 

The following are “Sub-Theorems” each of which completely proves this theorem and can stand-alone as an 

independent theorem. 

 

Sub-Theorem-1A:  

x= (n-f)a; y=(n-f)b; z=(n-f)c; v=(n-f)j     

XYZr = x
2
+y

2
+z

2
+v

2
= (n-f)

3
(abc)(loq)r    

XYZ = (n-f)
3
(abc)(loq)    

(n-f) = (n-f)
3
(abc)(loq)r    

Thus: 1 = (n-f)
2
(abc)(loq)r    

If XYZr = (n-f) = (ea)*(pb)*(hc)*(kj) = (ephk)(abcj)/1, then:   

(n-f) = (ephk)(abcj)/[(n-f)
2
(abc)(loq)r] 

(n-f)
3
(abc)(loq)r = (ephk)(abcj) 

XYZr = (ephk)(abcj) ▄ 

 

Sub-Theorem-1B:  

XYZr = x
2
+y

2
+z

2
+v

2
= (n-f)

3
(abc)r    

Therefore: XYZ = (n-f)
3
(abc)(loq)    

If XYZr = (ea)*(pb)*(hc)*(kj) = (ephk)(abcj), then:   

Then: (XYZr)/(abcj) = ephk 

but: (ephk)(abcj) = XYZr = (n-f)
3
(abc)(loq)r    

Thus, (ephk)j =(n-f)
3
r(loq) = [(XYZrj)/(abcj)] 

And: (n-f)
3
 = [(XYZ)/(abc)(loq)] 

And: XYZ = (n-f)
3
(abc)(loq)     ▄ 

 

Sub-Theorem-1C: 

X= xl; Y=yo; Z=zi; V=vs; where l, o, i and t are real numbers.  

x=(n-f)a; y=(n-f)b; z=(n-f)c; v(n-f)j; and thus: 

X= la(n-f); Y=bo(n-f); z=qc(n-f); v=js(n-f);      

XYZr = (n-f)     

(n-f) = X/la=Y/ob = Z/qc = V/js = (ephk)(abcj) 

X= (ephk)(abcj)a 

Y= (ephk)(abcj)b 

Z= (ephk)(abcj)c 

XYZr = (ephk)
3
(abcj)

3
(abc)r = (ephk)(abcj) 

abc = [(ephk)(abcj)]/[(ephk)
3
(abcj)

3
r] = [1/[(ephk)

2
(abcj)

2
r]] 

Therefore, XYZr = [(ephk)
3
(abcj)

3
r]*[1/[(ephk)

2
(abcj)

2
r]] 
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XYZr = [(ephk)(abcj)] ▄ 

 

 

Theorem-2: For the equation x
2
+y

2
+z

2
= rXYZ in real numbers where x│X (ie. X is a multiple of x), y│Y 

and z│Z exist, and a, b and c in real numbers are multiplicative components of X, Y and Z respectively 

(each of X, Y and Z are derived by multiplying a, b and c respectively by (n-f), another real number):  

i) If XYZg = (n-f), then XYZg = (ea)*(pb)*(hc), for some real numbers g, e, p and h. 

ii) If XYZr = (n-f), then XYZr = (ea)*(pb)*(hc), for some real numbers e, p and h. 

Proof:  

This first section proves that XYZg = (ea)*(pb)*(hc), for some real numbers g, e, p and h. 

  

Let: 

X= xl; Y=yo; Z=zi; where l,o and i are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c   

XYZg = (n-f)     

Then: XYZg = (n-f)
3
(abc)g; and XYZ = (n-f)

3
(abc)    

(n-f) = (n-f)
3
(abc)g    

Thus: 1 = (n-f)
2
(abc)g    

 

(ea)*(pb)*(hc) = (eph)(abc) 

If XYZg = (ea)*(pb)*(hc); then:  

(XYZg)/(abc) = eph 

but: (eph)(abc) = (n-f)
3
(abc)g    

Thus, (eph) =(n-f)
3
g = [(XYZ)/(abc)]g 

And: (n-f)
3
 = [(XYZ)/(abc)] 

From above, if XYZg = (n-f)
3
(abc)g; then XYZ = (n-f)

3
(abc).      

 

This second section proves that XYZr = (ea)*(pb)*(hc), for some real numbers e, p and h. 

Let:   

XYZr = (n-f)     

 

The following are “Sub-Theorems” each of which completely proves this theorem and can stand-alone as an 

independent theorem. 

 

Sub-Theorem-2A:  

x= (n-f)a/l; y=(n-f)b/o; z=(n-f)c; 

XYZr = x
2
+y

2
+z

2
= (n-f)

3
(abc)r    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abc)r    

Thus: 1 = (n-f)
2
(abc)r    

If XYZr = (n-f) = (ea)*(pb)*(hc) = (eph)(abc)/1; then:   

(n-f) = (eph)(abc)/[(n-f)
2
(abc)r] 

(n-f)
3
(abc)r = (eph)(abc) 

XYZr = (eph)(abc) ▄ 

 

Sub-Theorem-2B:  

XYZr = x
2
+y

2
+z

2
= (n-f)

3
(abc)r    

Therefore: XYZ = (n-f)
3
(abc)    

If XYZr = (ea)*(pb)*(hc) = (eph)(abc):   

Then: (XYZr)/(abc) = eph 

but: (eph)(abc) = XYZr = (n-f)
3
(abc)r    

Thus, (eph) =(n-f)
3
r = [(XYZr)/(abc)] 

And: (n-f)
3
 = [(XYZ)/(abc)] 
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And: XYZ = (n-f)
3
(abc)    

And:  XYZr = (n-f)
3
(abc)r    ▄ 

 

Sub-Theorem-2C: 

X= xl; Y=yo; Z=zi; where l, o and i are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c;   

XYZr = (n-f)     

(n-f) = X/a=Y/b = Z/c = (eph)(abc) 

X= (eph)(abc)a 

Y= (eph)(abc)b 

Z= (eph)(abc)c 

XYZr = (eph)
3
(abc)

3
(abc)r = (eph)(abc) 

abc= [(eph)(abc)]/[(eph)
3
(abc)

3
r] = [1/[(eph)

2
(abc)

2
r]] 

Therefore, XYZr = [(eph)
3
(abc)

3
r]* [1/[(eph)

2
(abc)

2
r]] 

XYZr = [(eph)(abc)] ▄ 

 

 

Theorem-3: For the equations x
2
+y

2
+z

2
+v

2
+u

2=rXYZ and XYZg = (n-f) in real numbers where x│X (ie. X 

is a multiple of x), y│Y, z│Z, v│V and u│U exist; and a, b, c, j and m are multiplicative components of X, 

Y, Z, V and U respectively (each of X, Y, Z, V and U are derived by multiplying each of a, b, c, j and m 

respectively by (n-f)), and:  

i) If XYZg = (n-f), then XYZg = (ea)*(pb)*(hc)*(kj)*(qm), for some real numbers g, e, p, h, k and 

q. 

ii) If XYZr = (n-f), then XYZr = (ea)*(pb)*(hc) *(kj)*(qm), for some real numbers e, p, h, k and q. 

 

Proof:  

This first section proves that XYZg = (ea)*(pb)*(hc)*(kj)*(qm), for some real numbers g, e, p, h, k and q. 

  

Let: 

X= xl; Y=yo; Z=zi; V=vs; U=ut; where l, o, i, t and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m    

XYZg = (n-f)     

Then: XYZg = (n-f)
3
(abc)g; and XYZ = (n-f)

3
(abc)    

(n-f) = (n-f)
3
(abc)g, or  1 = (n-f)

2
(abc)g; which implies that: (abcg)≤1    

Thus: 1 = (n-f)
2
(abc)g    

 

If XYZg = (ea)*(pb)*(hc) *(kj)*(qm), then:  

(XYZg)/(abcjm) = ephkq 

but: (ephkq)(abcjm) = (n-f)
3
(abc)g    

Thus, (ephkq)jm = (n-f)
3
g = [(XYZ)/(abc)]g 

And: (n-f)
3
 = [(XYZ)/(abc)] 

From above, if XYZg = (n-f)
3
(abc)g; then XYZ = (n-f)

3
(abc).      

 

This second section proves that XYZr =(ea)*(pb)*(hc)*(kj)*(qm), for some real numbers e, p, h, k and q. 

Let: 

X= xl; Y=yo; Z=zi; V=vs; U=ut; where l, o, s, t and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m    

XYZr = (n-f)     

 

The following are “Sub-Theorems” each of which completely and separately proves this theorem (and can 

stand-alone as an independent theorem). 
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Sub-Theorem-3A:  

x= (n-f)a/l; y=(n-f)b/o; z=(n-f)c; v=(n-f)j/s     

XYZr = x
2
+y

2
+z

2
+v

2
+u

2 
= (n-f)

3
(abc)r    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abc)r    

Thus: 1 = (n-f)
2
(abc)r    

If XYZr = (n-f) = (ea)*(pb)*(hc)*(kj)*(qm) = (ephkq)(abcjm)/1; then:   

(n-f) = (ephkq)(abcjm)/[(n-f)
2
(abc)r] 

(n-f)
3
(abc)r = (ephkq)(abcjm) 

XYZr = (ephkq)(abcjm) ▄ 

 

Sub-Theorem-3B:  

XYZr = x
2
+y

2
+z

2
+v

2
+u

2 
= (n-f)

3
(abc)r    

Therefore: XYZ = (n-f)
3
(abc)    

If XYZr = (ea)*(pb)*(hc)*(kj)*(qm) = (ephkq)(abcjm):   

Then: (XYZr)/(abcjm) = ephkq 

but: (ephkq)(abcjm) = XYZr = (n-f)
3
(abc)r    

Thus, (ephkq)jm =(n-f)
3
r = [(XYZrjm)/(abcjm)] 

And: (n-f)
3
 = [(XYZ)/(abc)] 

And: XYZ = (n-f)
3
(abc)     ▄ 

 

Sub-Theorem-3C: 

X= xl; Y=yo; Z=zi; V=vs; U=ut; where l, o, i, t and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m    

XYZr = (n-f)     

(n-f) = X/a=Y/b = Z/c = V/j = U/m = (ephkq)(abcjm) 

X= (ephkq)(abcjm)a 

Y= (ephkq)(abcjm)b 

Z= (ephkq)(abcjm)c 

XYZr = (ephkq)
3
(abcjm)

3
(abc)r = (ephkq)(abcjm) 

abc= [(ephkq)(abcjm)]/ [(ephkq)
3
(abcjm)

3
r] = [1/ [(ephkq)

2
(abcjm)

2
r]] 

Therefore, XYZr = [(ephkq)
3
(abcjm)

3
r]* [1/ [(ephkq)

2
(abcjm)

2
r]] 

XYZr = [(ephkq)(abcjm)] ▄ 

 

 

Theorem-4: For the equations x
2
+y

2
+z

2
+v

2
= rXYZ and XYZg = (n-f) in real numbers where x│X (ie. X is 

a multiple of x), y│Y, z│Z and v│V exist; if a, b, c and j are multiplicative components of X, Y, Z and V 

respectively (each of X, Y, Z and V are derived by multiplying each of a, b, c and j respectively by (n-f)), 

then the upper-bounds and lower-bounds of both g and (n-f) can be defined.  
Proof:  

Let: 

X= xl; Y=yo; Z=zq; V=vs; where l, o, q and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j     

XYZg = (n-f)     

a = 1/YZg; and b =1/XZg; and c=1/XYg; and j= V/XYZg 

 

XYZg = (n-f)
3
(abc)g    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abcg), and 1= (n-f)

2
(abcg); and g = 1/[(n-f)

2
(abc)]; which implies that: 

1) (abcg)≤ 1≤ [(n-f)
2
, (n-f)] (hereafter, “LB(n-f)” or the “Lower-Bound of [n-f]).   

2) g<1. 

3) (n-f) ≤ XYZr (hereafter, “UB(n-f)” or the “Upper-Bound of [n-f]).       

4) As (n-f) →+∞, (abc)g→-∞;  
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In x
2
+y

2
+z

2
+v

2
= rXYZ, r varies vary primarily with the magnitudes (and to a lesser extent, the signs) of X,Y, V 

and Z. However, given X, Y, Z and V, then a,b, c and j can be determined by substituting a = 1/YZg, b = 1/XZg 

and c = 1/XYg, and j= V/XYZ,  into X/a = Y/b = Z/c = V/j = (n-f) = XYZg 

 

In x
2
+y

2
+z

2
+v

2
= rXYZ, both n and f vary primarily with the magnitudes (and to a lesser extent, the signs) of 

X,Y and Z.   

 

XYZg = (n-f)
3
(abc)g    

n = XYZg+f 

n = [XYZ/(abc)]
1/3

+f 

Thus XYZg = [XYZ/(abc)]
1/3

         

g = {[XYZ/(abc)]
1/3

}/XYZ (referred to as “LBg” or “Lower Bound of g”)                         

but also g = 1/[(n-f)
2
(abc)] (referred to as “UBg” or “Upper Bound of g”)             

As the denominator in UBg tends to zero, g in UBg can become greater than one and significant – that can occur 

if 0<a, or b or c<1, and or if 0<(n-f)<1.  

As the denominator in UBg tends to minus infinity from zero, g in UBg becomes smaller – that can occur if (a, or 

b or c)<0.  

 

On the contrary, as the denominator in LBg tends to zero, g in LBg can become much smaller (unless 0<abc<1) – 

that can occur if 0<X, or Y or Z<1, and or if 0<a,b,c, or if (XYZ)<(abc).  

As the denominator in LBg tends to minus infinity from zero, g in LBg can become smaller or bigger depending 

on the magnitude of abc.         

Thus, its more likely that LBg defines the lower bound of g, while UBg defines upper bound of g.   ▄ 

 

 

Theorem-5: For the equations x
2
+y

2
+z

2
= rXYZ and gXYZ = (n-f) in real numbers where x│X (ie. X is a 

multiple of x), y│Y and z│Z exist; if a, b and c are multiplicative components of X, Y and Z respectively 

(each of X, Y and Z are derived by multiplying each of a, b and c respectively by (n-f)), and given 

Theorems herein, the upper-bounds and lower-bounds of both g and (n-f) can be defined.  

Proof:  

Let: 

X= xl; Y=yo; Z=zq; where l, o and q are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c;    

XYZg = (n-f)     

a = 1/YZg; and b =1/XZg; and c=1/XYg; 

 

XYZg = (n-f)
3
(abc)g    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abcg), and 1= (n-f)

2
(abcg); and g = 1/[(n-f)

2
(abc)]; which implies that: 

1) (abcg)≤ 1≤ [(n-f)
2
, (n-f)] (hereafter, “LB(n-f)” or the “Lower-Bound of (n-f)).   

2) g<1. 

3) (n-f) ≤ XYZr (hereafter, “UB(n-f)” or the “Upper-Bound of (n-f)).       

4) As (n-f) →+∞, (abc)r→-∞;  

 

In x
2
+y

2
+z

2
 = rXYZ, r varies with the magnitudes (and not the signs) of X, Y and Z. However, X, Y and Z, a, b, 

and c can be determined by substituting a = 1/YZr, b = 1/XZr and c = 1/XYr, into X/a = Y/b = Z/c = (n-f) = 

XYZg 

  

In x
2
+y

2
+z

2
 = rXYZ, both n and f vary primarily with the magnitudes (and to a much lesser extent, the signs) of 

X, Y and Z.   

 

XYZg = (n-f)
3
(abc)g    
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(n-f) = XYZg 

n = XYZg + f 

n = [XYZ/(abc)]
1/3

+f 

Thus: XYZg = [XYZ/(abc)]
1/3

         

g = {[XYZ/(abc)]
1/3

}/XYZ; (referred to as “LBg” or “Lower Bound of g”)             

but also g = 1/[(n-f)
2
(abc)] (referred to as “UBg” or “Upper Bound of g”)             

 

As the denominator in UBg tends to zero, g in UBg can become greater than one and significant – that can occur 

if 0<a, or b or c<1, and or if 0<(n-f)<1.  

As the denominator in UBg tends to minus infinity from zero, g in UBg becomes smaller – that can occur if (a, or 

b or c)<0.  

 

On the contrary, as the denominator in LBg tends to zero, g in LBg can become much smaller (unless 0<abc<1) – 

that can occur if 0<X, or Y or Z<1, and or if 0<a,b,c, or if (XYZ)<(abc).  

As the denominator in LBg tends to minus infinity from zero, g in LBg can become smaller or bigger depending 

on the magnitude of abc.         

Thus, LBg defines the lower bound of g, while UBg defines upper bound of g.  ▄ 

 

 

Theorem-6: For the equations x
2
+y

2
+z

2
+v

2
+u

2
= rXYZ and XYZg = (n-f) in real numbers where x│X (ie. X 

is a multiple of x), y│Y, z│Z, v│V and u│U exist; if a, b, c, j and m in real numbers are multiplicative 

components of X, Y, Z, V and U respectively (each of X, Y, Z, V and U are derived by multiplying each of 

a, b, c, j and m respectively by (n-f)), the upper-bounds and lower-bounds of both g and (n-f) can be 

defined.      

Proof:  

Let: 

X= xl; Y=yo; Z=zq; V=vs; U=ut; where l, o, q, t and s are real numbers.  

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m     

XYZg = (n-f)     

a = 1/YZr; and b = 1/XZr; and c = 1/XYr; and j= V/XYZr; and m= U/XYZr 

 

XYZg = (n-f)
3
(abc)g    

XYZ = (n-f)
3
(abc)    

(n-f) = (n-f)
3
(abcg), and 1= (n-f)

2
(abcg); and g = 1/[(n-f)

2
(abc)]; all of which implies that: 

1) (abcg)≤ 1≤ [(n-f)
2
, (n-f)] (hereafter, “LB(n-f)” or the “Lower-Bound of (n-f)).       

2) g<1. 

3) (n-f) ≤ rXYZ (hereafter, “UB(n-f)” or the “Upper-Bound of (n-f)).       

4) As (n-f) →+∞, (abc)g→-∞;  

 

In x
2
+y

2
+z

2
+v

2
+u

2
= rXYZ, r varies primarily with the magnitudes (and to a lesser extent, the signs) of x, y,z, v 

and u.   

 

Given X, Y, Z, V and U; then a,b, and c can be determined by substituting a = 1/YZr, b = 1/XZr and c = 1/XYr, 

into X/a = Y/b = Z/c = V/j = U/m = (n-f) = XYZr 

 

In x
2
+y

2
+z

2
+v

2
+u

2
= rXYZ, both n and f vary primarily with the magnitudes (and to a lesser extent, the signs) of 

X, Y and Z.   

 

XYZg = (n-f)
3
(abc)g    

n = XYZg+f 

n = [XYZ/(abc)]
1/3

+f 

Thus XYZg = [XYZ/(abc)]
1/3

         

g = {[XYZ/(abc)]
1/3

}/XYZ (referred to as “LBg” or “Lower-Bound of g”)             
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but also g = 1/[(n-f)
2
(abc)] (referred to as “UBg” or “Upper-Bound of g”)             

As the denominator in UBg tends to zero, g in UBg can become greater than one and significant – that can occur 

if 0<a, or b or c<1, and or if 0<(n-f)<1.  

As the denominator in UBg tends to minus infinity from zero, g in UBg becomes larger – that can occur if (a, or 

b or c)<0.  

 

On the contrary, as the denominator in LBg tends to zero, g in LBg can become much smaller (unless 0<abc<1) – 

that can occur if 0<X, or Y or Z<1, and or if 0<a,b,c, or if (XYZ)<(abc).  

As the denominator in LBg tends to negative-infinity from zero, g in LBg can become smaller or bigger 

depending on the magnitude of abc.         

Thus, LBg defines the lower bound of g, while UBg defines upper bound of g.  ▄ 

 

 

Theorem-7: For the equation X
2
+Y

2
+Z

2
+V

2
= rXYZ in real numbers, and given Theorems herein and 

above, if (n-f) is a multiplicative component of each of X,Y and Z (each of X, Y and Z are derived by 

multiplying (n-f) by another real number), then: 

1) If (n-f)=gXYZ, then for all n, f and g that are real numbers, g є r.  

2) rXYZ = (n-f), for some real numbers n and f.  

Proof:  

Let: 

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j;       

XYZg = (n-f)     

a = 1/YZg; and b = 1/XZg; and c = 1/XYg; and j= V/XYZg;   

 

Thus: X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and V = (gXYZ)(j) 

 

By substitution: [(g
2
X

2
Y

2
Z

2
)(a

2
)]+[(g

2
X

2
Y

2
Z

2
)(b

2
)]+[(g

2
X

2
Y

2
Z

2
)(c

2
)] + [(g

2
X

2
Y

2
Z

2
)(j

2
)]= rXYZ 

 

Then by dividing both sides of the equation by rXYZ and substituting a=(1/YZg), b=(1/XZg),  

c=(1/XYg), and j= V/XYZg, the result is: 

{[(g
2
X

2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
))]/rXYZ}+{[(g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
))]/rXYZ}+ {[(g

2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
))]/rXYZ} + 

{[(g
2
X

2
Y

2
Z

2
)(V

2
/(X

2
Y

2
Z

2
g

2
))]/rXYZ}= 1;   

and thus: [(X/rYZ)+(Y/rXZ)+(Z/rXY)] +(V
2
/rXYZ)]= 1   

 

By taking a common denominator rXYZ for the left-hand side of the equation, the result is: 

[(X
2
+Y

2
+V

2
+Z

2
)/rXYZ] = 1; 

and by multiplying both sides of the equation by rXYZ, the result is: X
2
+Y

2
+Z

2
+V

2
= rXYZ  

 

r can also be expressed solely in terms of X, Y, Z and V as follows:  

{[((X
2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
)))/XYZ] + 

[((g
2
X

2
Y

2
Z

2
) (V

2
/(X

2
Y

2
Z

2
g

2
)))/XYZ]}= r = [(X/YZ)+(Y/XZ)+(Z/XY)+ (V

2
/(XYZ))]   

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c) and V=(gXYZ)(j); and 

X
2
+Y

2
+Z

2
+ V

2
= rXYZ, for all n, f and g that are real numbers, g<r; and g є r.  

 

This second section proves that XYZr = (n-f), for some real numbers n and f.  

 

Let: 

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m     

XYZr = (n-f)     

a = 1/YZr; and b = 1/XZr; and c = 1/XYr; and j= V/XYZr; and m= U/XYZr 

X/a = Y/b = Z/c =V/j= (n-f) = XYZVr 

a=1/YZr; and b=1/XZr; and c=1/XYr; and j=V/XYZr 
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Where -∞<n,f,a,b,c,j< +∞; and n,f,a,b, j and c are real numbers.  

 

X = (n-f)a; and X=xl; and x=(n-f)(a/l); 

Y = (n-f)b; and Y=yo; and y=(n-f)(b/o); 

Z = (n-f)c; and Z=zq; and z=(n-f)(c/q); 

V = (n-f)j; and V=vs; and v=(n-f)(j/s) 

 

Where -∞<n,f,a,b,c,l,o,q,s<+∞ are real numbers.  

 

x
2
 = (n-f)(a/l)*(n-f)(a/l) = (n-f)(n-f)(a/l)

2
 = (n

2
-nf-nf+f

2
)(a/l)

2
 = n

2
(a/l)-2nf(a/l)+f

2
(a/l) 

y
2
 = (n-f)(b/o)*(n-f)(b/o) = (n-f)(n-f)(b/o)

2
 = (n

2
-nf-nf+f

2
)(b/o)

2
 = n

2
(b/o)

2
-2nf(b/o)

2
+f

2
(b/o)

2
 

z
2
 = (n-f)(c/q)*(n-f)(c/q) = (n-f)(n-f)(c/q)

2
 = (n

2
-nf-nf+f

2
)(c/q)

2
 = n

2
(c/q)

2
-2nf(c/q)

2
+f

2
(c/q)

2
 

v
2
 = (n-f)(j/s)*(n-f)(j/s) = (n-f)(n-f)(j/s)

2
 = (n

2
-nf-nf+f

2
)(j/s)

2
 = n

2
(j/s)

2
-2nf(j/s)

2
+f

2
(j/s)

2
 

 

Thus:    

x
2
+y

2
+z

2
+v

2
 = n

2
((a/l)

2
+(b/o)

2
+(c/q)

2
+)j/s)

2
)-2nf((a/l)

2
+(b/o)

2
+(c/q)

2
+)j/s)

2
)-f

2
((a/l)

2
+(b/o)

2
+(c/q)

2
+)j/s)

2
) = (n

2
-

2nf+f
2
)((a/l)

2
+(b/o)

2
+(c/q)

2
+)j/s)

2
) 

 

If rXYZ=(n-f), then:  

x
2
+y

2
+z

2
+v

2
 = (n

2
-2nf+f

2
)((a/l)

2
+(b/o)

2
+(c/q)

2
+(j/s)

2
)  

= (n-f)(n-f)((a/l)
2
+(b/o)

2
+(c/q)

2
+)j/s)

2
)  

= (XYZr)
2
((a/l)

2
+(b/o)

2
+(c/q)

2
+)j/s)

2
)  

= [(XYZr)
2
(x/(XYZr)

2
)]+[(XYZr)

2
(y/(XYZr

2
))]+[(XYZr)

2
(z/(XYZr)

2
)]+[(XYZr)

2
(v/XYZr)

2
)]     

= x
2
+y

2
+z

2
+v

2
     ▄ 

 

 

Theorem-8: For the equation X
2
+Y

2
+Z

2
 = rXYZ in real numbers, and given Theorems herein and above, 

if (n-f) is a multiplicative component of each of X,Y and Z (each of X, Y and Z are derived by multiplying 

(n-f) by another real number), then: 

1) If (n-f)=gXYZ, then for all n, f and g that are real numbers, g є r.  

2) XYZr = (n-f), for some real numbers n and f.  

Proof:  

Let: 

X=(n-f)a; Y=(n-f)b; Z=(n-f)c;  

XYZg = (n-f)     

a = 1/YZg; and b = 1/XZg; and c = 1/XYg;  

 

Thus: X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c)   

 

If: X
2
+Y

2
+Z

2
= rXYZ; 

Then by substitution: [(g
2
X

2
Y

2
Z

2
)(a

2
)]+[(g

2
X

2
Y

2
Z

2
)(b

2
)]+[(g

2
X

2
Y

2
Z

2
)(c

2
)] = rXYZ 

 

Then by dividing both sides of the equation by rXYZ and substituting a=(1/YZg), b=(1/XZg) and  

c=(1/XYg), the result is: {[(g
2
X

2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
))]/rXYZ}+{[(g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
))]/rXYZ}+ 

{[(g
2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
))]/rXYZ} = 1;   

and thus: [(X/rYZ)+(Y/rXZ)+(Z/rXY)] = 1   

 

By taking a common denominator rXYZ for the left-hand side of the equation, the result is: 

[(X
2
+Y

2
+Z

2
)/rXYZ] = 1; 

and by multiplying both sides of the equation by rXYZ, the result is: X
2
+Y

2
+Z

2
 = rXYZ  

 

r can be expressed solely in terms of X, Y and Z as follows:  



21 

 

{[((X
2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
)))/XYZ]}= r =    

[(X/YZ)+(Y/XZ)+(Z/XY)]   

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and X
2
+Y

2
+Z

2
 = rXYZ, for 

all n, f and g that are real numbers, g<r; and g є r.      

 

This second section proves that XYZr = (n-f), for some real numbers n and f.  

 

X = (n-f)a; Y = (n-f)b; and Z = (n-f)c 

Thus: X/a = Y/b = Z/c = (n-f) = XYZr 

Then: a = 1/YZr; and b = 1/XZr; and c = 1/XYr; 

Where -∞<n,f,a,b,c,< +∞, are real numbers.  

 

X
2
 = (n-f)a*(n-f)a = (n-f)(n-f)a

2
 = (n

2
-nf-nf+f

2
)a

2
 = n

2
a

2
-2nf(a

2
)+f

2
a

2
 

Y
2
 = (n-f)b*(n-f)b = (n-f)(n-f)b

2
 = (n

2
-nf-nf+f

2
)b

2
 = n

2
b

2
-2nf(b

2
)+f

2
b

2
 

Z
2
 = (n-f)c*(n-f)c = (n-f)(n-f)c

2
 = (n

2
-nf-nf+f

2
)c

2
 = n

2
c

2
-2nf(c

2
)+f

2
c

2
 

 

X
2
+Y

2
+Z

2
= n

2
a

2
-2nf(a

2
)+f

2
a

2
 + n

2
b

2
-2nf(b

2
)+f

2
b

2
 + n

2
c

2
-2nf(c

2
)+f

2
c

2
 

= n
2
a

2 
+ n

2
b

2 
+ n

2
c

2
-2nf(a

2
) -2nf(b

2
) -2nf(c

2
)+f

2
a

2
 +f

2
b

2
 +f

2
c

2
 

= n
2
(a

2
+b

2
+c

2
)-2nf(a

2
+b

2
+c

2
)-f

2
(a

2
+b

2
+c

2
) = (n

2
-2nf+f

2
)(a

2
+b

2
+c

2
) 

 

Thus if XYZr = (n-f), then:    

X
2
+Y

2
+Z

2
 = (n

2
-2nf+f

2
)(a

2
+b

2
+c

2
)  

= (n-f)(n-f)(a
2
+b

2
+c

2
)  

= (XYZr)
2
(a

2
+b

2
+c

2
)  

= [(XYZr)
2
(1/(YZr)

2
)]+[(XYZr)

2
(1/(XZr

2
))]+[(XYZr)

2
(1/(XYr)

2
)]     

= [(XYZr)
2
/(YZr)

2
]+[(XYZr)

2
/XZr

2
)]+[(XYZr)

2
/(XYr)

2
)]    

= X
2
+Y

2
+Z

2
         ▄ 

 

 

Theorem-9: For the equation X
2
+Y

2
+Z

2
+V

2 
+U

2
 = rXYZ in real numbers, and given Theorems herein and 

above, if (n-f) is a multiplicative component of each of X,Y, V, Z and U (each of X,Y, V, U and Z are 

derived by multiplying (n-f) by another real number), then: 

1) If (n-f)=gXYZ, for all n, f and g that are real numbers, g є r.  

2) XYZr = (n-f), for some real numbers n and f.  

Proof:  

Let: 

X=(n-f)a; Y=(n-f)b; Z=(n-f)c; V=(n-f)j; U=(n-f)m     

XYZg = (n-f)     

a = 1/YZg; and b = 1/XZg; and c = 1/XYg; and j= V/XYZg; and m= U/XYZg 

 

Thus: X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c) and V = (gXYZ)(j) and U= (gXYZ)(m) 

 

If: X
2
+Y

2
+Z

2
+V

2 
+U

2
 = rXYZ; 

Then by substitution: [(g
2
X

2
Y

2
Z

2
)(a

2
)]+[(g

2
X

2
Y

2
Z

2
)(b

2
)]+[(g

2
X

2
Y

2
Z

2
)(c

2
)] + [(g

2
X

2
Y

2
Z

2
)(j

2
) + 

[(g
2
X

2
Y

2
Z

2
)(m

2
)]= rXYZ 

 

Then by dividing both sides of the equation by rXYZ and substituting a=(1/YZg), b=(1/XZg),  

c=(1/XYg), and j= V/XYZg, and m= U/XYZg, the result is: 

{[(g
2
X

2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
))]/rXYZ}+{[(g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
))]/rXYZ}+ {[(g

2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
))]/rXYZ} + 

{[(g
2
X

2
Y

2
Z

2
)(V

2
/(X

2
Y

2
Z

2
g

2
))]/rXYZ}+ {[(g

2
X

2
Y

2
Z

2
)(U

2
/(X

2
Y

2
Z

2
g

2
))]/rXYZ}= 1;   

and thus: [(X/rYZ)+(Y/rXZ)+(Z/rXY)] +(V
2
/rXYZ) +(U

2
/rXYZ)]= 1   
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By taking a common denominator rXYZ for the left-hand side of the equation, the result is: 

[(X
2
+Y

2
+Z

2
+V

2 
+U

2
)/rXYZ] = 1; 

and by multiplying both sides of the equation by rXYZ, the result is: X
2
+Y

2
+Z

2
+V

2 
+U

2
 = rXYZ  

 

r can be expressed solely in terms of X, Y, Z, V and U as follows:  

{[((X
2
Y

2
Z

2
)(1/(Y

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Z

2
g

2
)))/XYZ]+[((g

2
X

2
Y

2
Z

2
)(1/(X

2
Y

2
g

2
)))/XYZ] + 

[((g
2
X

2
Y

2
Z

2
) (V

2
/(X

2
Y

2
Z

2
g

2
)))/XYZ] + [((g

2
X

2
Y

2
Z

2
) (U

2
/(X

2
Y

2
Z

2
g

2
)))/XYZ]}= d = [(X/YZ)+(Y/XZ)+(Z/XY)+ 

(V
2
/(XYZ))+(U

2
/(XYZ))]   

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and V=(gXYZ)(j); and 

U=(gXYZ)(m); and X
2
+Y

2
+Z

2
+V

2 
+U

2
= rXYZ, for all n, f and g that are real numbers, g<r; and g є r.     

 

This second section proves that XYZr = (n-f), for some real numbers n and f.  

 

Let: 

X = (n-f)a; Y = (n-f)b; Z = (n-f)c; V = (n-f)j; U = (n-f)m 

Thus: X/a = Y/b = Z/c =V/j=U/m= (n-f) = XYZr 

Then: a=1/YZr; and b=1/XZr; and c=1/XYr; and j=V/XYZr; and m=U/XYZr 

Where -∞<n,f,a,b,c,j, m< +∞, are real numbers.  

 

X
2
 = (n-f)a*(n-f)a = (n-f)(n-f)a

2
 = (n

2
-nf-nf+f

2
)a

2
 = n

2
a

2
-2nf(a

2
)+f

2
a

2
 

Y
2
 = (n-f)b*(n-f)b = (n-f)(n-f)b

2
 = (n

2
-nf-nf+f

2
)b

2
 = n

2
b

2
-2nf(b

2
)+f

2
b

2
 

Z
2
 = (n-f)c*(n-f)c = (n-f)(n-f)c

2
 = (n

2
-nf-nf+f

2
)c

2
 = n

2
c

2
-2nf(c

2
)+f

2
c

2
 

V
2
 = (n-f)j*(n-f)j = (n-f)(n-f)j

2
 = (n

2
-nf-nf+f

2
)j

2
 = n

2
j
2
-2nf(j

2
)+f

2
j
2
 

U
2
 = (n-f)m*(n-f)m = (n-f)(n-f)m

2
 = (n

2
-nf-nf+f

2
)m

2
 = n

2
m

2
-2nf(m

2
)+f

2
m

2
 

 

Thus:    

If XYZr = (n-f), then: X
2
+Y

2
+Z

2
+V

2
+U

2
= n

2
(a

2
+b

2
+c

2
+j

2
+m

2
)-2nf(a

2
+b

2
+c

2
+j

2
+m

2
)+f

2
(a

2
+b

2
+c

2
+j

2
+m

2
)  

= (n
2
-2nf+f

2
)(a

2
+b

2
+c

2
+j

2
+m

2
) 

= (n-f)(n-f)(a
2
+b

2
+c

2
+j

2
+m

2
)  

= (XYZr)
2
(a

2
+b

2
+c

2
+j

2
+m

2
)  

= [(XYZr)
2
(1/(YZr)

2
)]+[(XYZr)

2
(1/(XZr

2
))]+[(XYZr)

2
(1/(XYr)

2
)]+[(XYZr)

2
(V/XYZr)

2
)] 

+[(XYZr)
2
(U/XYZr)

2
)]     

= [(XYZr)
2
/(YZr)

2
]+[(XYZr)

2
/XZr)

2
]+[(XYZr)

2
/(XYr)

2
)]+[V

2
(XYZr)

2
/(XYZr)

2
)]+[U

2
(XYZr)

2
/(XYZr)

2
)]   

= X
2
+Y

2
+Z

2
+V

2
+U

2
          ▄ 

 

Theorem-10: For the equation X
i
+Y

i
+Z

i
+V

i
= rXYZ, and given Theorems above, and for all values of X, Y, V 

and Z that are real numbers, if (n-f)=gXYZV, and (n-f) is a multiplicative component of each of X,Y, V and Z, 

then there exists a real number r such that X
i
+Y

i
+Z

i
 +V

i
= rXYZ; where for all g, X, Y, V and Z that are real 

numbers, g є r; and r can be expressed as r = [(X
(i-1)

/YZ)+(Y
(i-1)

/XZ)+(Z
(i-1)

/XY)+(V
(i-1)

/XYZ)].  

Proof: The proof is straightforward and follows from the prior proofs herein and above.     ▄ 

 

 

 

Theorem-11: For the equation x
3
+y

3
+z

3
=rXYZ in real numbers, where x│X (ie. X is a multiple of x), 

y│Y, and z│Z exist; if (n-f) is a multiplicative component of each of X, Y & Z (each of X,Y and Z are 

derived by multiplying (n-f) by another real number), then for all g, n and f that are real numbers: 

1) XYZg = (n-f), and  

2) g є r.  

Proof:  

Let: 

X = (n-f)a; and X=xa1; and x=(n-f)(a/a1); 

Y = (n-f)b; and Y=yb1; and y=(n-f)(b/b1); 
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Z = (n-f)c; and Z=zc1; and z=(n-f)(c/c1); 

 

Where -∞<n,f,a,b,c,a1,b1,c1<+∞ are real numbers.  

 

x
3
 = (n-f)(a/a1)*(n-f)(a/a1)*(n-f)(a/a1) = (n-f)(n-f)(n-f)(a/a1)

3
= (n

2
-nf-nf+f

2
)(n-f)(a/a1)

3
 = n

3
(a/a1)

3
-

3n
2
f(a/a1)

3
+3nf

2
(a/a1)

3
+f

3
(a/a1)

3
 

y
3
 = (n-f)(b/b1)*(n-f)(b/b1)*(n-f)(b/b1) = (n-f)(n-f)(n-f)(b/b1)

3
= (n

2
-nf-nf+f

2
)(n-f)(b/b1)

3
 = n

3
(b/b1)

3
-

3n
2
f(b/b1)

3
+3nf

2
(b/b1)

3
+f

3
(b/b1)

3
 

z
3
 = (n-f)(c/c1)*(n-f)(c/c1)*(n-f)(c/c1) = (n-f)(n-f)(n-f)(c/c1)

3
= (n

2
-nf-nf+f

2
)(n-f)(c/c1)

3
 = n

3
(c/c1)

3
-

3n
2
f(c/c1)

3
+3nf

2
(c/c1)

3
+f

3
(c/c1)

3
 

Thus:    

x
3
+y

3
+z

3
 = n

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)-3n

2
f((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) + 3nf

2
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) + 

f
3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)= (n

3
-3n

2
f-3nf

2
+f

3
)((a/a1)

3
+(b/b1)

3
+(c/c1)

3
= (n-f)

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) 

 

From above: X/a = Y/b = Z/c = (n-f) = XYZg 

a = 1/YZg; and (a/a1) = x/(n-f) = x/XYZg 

b = 1/XZg; and (b/b1) = y/(n-f) = y/XYZg  

c = 1/XYg; and (c/c1) = z/(n-f) = z/XYZg 

 

If XYZg = (n-f), then: x
3
+y

3
+z

3
 = (n-f)

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)  

= (XYZg)
3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) 

= [(XYZg)
3
(x/XYZg)

3
]+[(XYZg)

3
(y/XYZg)

3
]+[(XYZg)

3
(z/XYZg)

3
]   

= x
3
+y

3
+z

3
        

 

This second section proves that g є r. 

As stated herein and above:  

X = (n-f)a; X=a1x; and x = (n-f)(X/a1);  

Y = (n-f)b; Y=b1y; and y = (n-f)(Y/b1);  

Z = (n-f)c; Z=c1z; and z = (n-f)(Z/c1);  

(n-f) = XYZg 

 

a = x/XYZg 

b = y/XYZg 

c = z/XYZg 

  

Thus, gXYZ is a multiplicative component of each of x, y and z. That is:   

x=(gXYZ)(a); and y=(gXYZ)(b); and z=(gXYZ)(c)   

 

If: x
3
+y

3
+z

3
 = dXYZ, then by dividing both sides of the equation by rXYZ and substituting a=(x/XYZg), 

b=(y/XYZg) and c=(z/XYZg), the result is:  

[(g
3
X

3
Y

3
Z

3
)(a

3
)]+[(g

3
X

3
Y

3
Z

3
)(b

3
)]+[(g

3
X

3
Y

3
Z

3
)(c

3
)] = rXYZ; 

And: {[(g
3
X

3
Y

3
Z

3
)(x

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ}+{[(g

3
X

3
Y

3
Z

3
)(y

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ} + 

{[(g
3
X

3
Y

3
Z

3
)(z

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ} = 1;   

And: (x
3
/rXYZ)+(y

3
/rXYZ)+(z

3
/rXYZ) = 1;   

And: rXYZ = x
3
+y

3
+z

3
  

 

Given the foregoing and since x=(gXYZ)(a); and y=(gXYZ)(b); and z=(gXYZ)(c); and x
3
+y

3
+z

3
 =rXYZ, for all 

X, Y, Z and g that are real numbers, g є r.    ▄ 

 

 

Theorem-12: For the equation x
3
+y

3
+z

3
+x

6
+y

6
+z

6
=rXYZ in real numbers, where x│X (ie. X is a multiple 

of x), y│Y, and z│Z exist; if (n-f) is a multiplicative component of each of X, Y & Z (each of X,Y and Z 

are derived by multiplying (n-f) by another real number), then for all g, n and f that are real numbers:  
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1) XYZg = (n-f), and  

2) g є r.  
Proof:  

Let: 

X = (n-f)a; and X=xa1; and x=(n-f)(a/a1); 

Y = (n-f)b; and Y=yb1; and y=(n-f)(b/b1); 

Z = (n-f)c; and Z=zc1; and z=(n-f)(c/c1); 

 

Where -∞<n,f,a,b,c,a1,b1,c1< +∞ are real numbers.  

 

x
3
 = (n-f)(a/a1)*(n-f)(a/a1)*(n-f)(a/a1) = (n-f)(n-f)(n-f)(a/a1)

3
= (n

2
-nf-nf+f

2
)(n-f)(a/a1)

3
 = n

3
(a/a1)

3
-

3n
2
f(a/a1)

3
+3nf

2
(a/a1)

3
+f

3
(a/a1)

3
 

y
3
 = (n-f)(b/b1)*(n-f)(b/b1)*(n-f)(b/b1) = (n-f)(n-f)(n-f)(b/b1)

3
= (n

2
-nf-nf+f

2
)(n-f)(b/b1)

3
 = n

3
(b/b1)

3
-

3n
2
f(b/b1)

3
+3nf

2
(b/b1)

3
+f

3
(b/b1)

3
 

z
3
 = (n-f)(c/c1)*(n-f)(c/c1)*(n-f)(c/c1) = (n-f)(n-f)(n-f)(c/c1)

3
= (n

2
-nf-nf+f

2
)(n-f)(c/c1)

3
 = n

3
(c/c1)

3
-

3n
2
f(c/c1)

3
+3nf

2
(c/c1)

3
+f

3
(c/c1)

3
 

Thus:    

x
3
+y

3
+z

3
 = n

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)-3n

2
f((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) + 3nf

2
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) + 

f
3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)= (n

3
-3n

2
f-3nf

2
+f

3
)((a/a1)

3
+(b/b1)

3
+(c/c1)

3
= (n-f)

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
) 

 

x
6
 = (n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
 = (n-f)

2
(n-f)

2
(n-f)

2
(a/a1)

6
= (n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(a/a1)

6
 

=(n
4
-4n

3
f+6n

2
f

2
-4nf

3
+f

4
)(n

2
-2nf+f

2
)(a/a1)

6
 

= (n
6
-4n

5
f+6n

4
f

2
-4n

3
f

3
+n

2
f

4
-2n

5
f+8n

4
f

2
-12n

3
f

3
+8n

2
f

4
+2nf

5
+n

4
f

2
-4n

3
f

3
+6n

2
f

4
-4nf

5
+f

6
) (a/a1)

6
 

= (n
6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(a/a1)

6
. 

 

y
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(b/b1)

6
 

z
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(c/c1)

6
 

Thus:    

x
6
+y

6
+z

6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n2f

4
+f

6
)((a/a1)

6
+(b/b1)

3
+(c/c1)

6
) = (n-f)

6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) 

 

From above: X/a = Y/b = Z/c = (n-f) = XYZg 

a = 1/YZg; and (a/a1) = x/(n-f) = x/XYZg 

b = 1/XZg; and (b/b1) = y/(n-f) = y/XYZg  

c = 1/XYg; and (c/c1) = z/(n-f) = z/XYZg 

 

If XYZg = (n-f), then: x
3
+y

3
+z

3
+ x

6
+y

6
+z

6
 = [(n-f)

3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)]+ [(n-f)

6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
)] 

= [(XYZg)
3
((a/a1)

3
+(b/b1)

3
+(c/c1)

3
)]+ [(XYZg)

6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
)] 

= [(XYZg)
3
(x/XYZg)

3
]+[(XYZg)

3
(y/XYZg)

3
]+[(XYZg)

3
(z/XYZg)

3
] + [(XYZg)

6
(x/XYZg)

6
] + 

[(XYZg)
6
(y/XYZg)

6
] + [(XYZg)

6
(z/XYZg)

6
]   

= x
3
+y

3
+z

3
+x

6
+y

6
+z

6
.        

 

This following second section proves that g є r. 

 

As stated herein and above:  

X = (n-f)a; X=a1x; and x = (n-f)(X/a1);  

Y = (n-f)b; Y=b1y; and y = (n-f)(Y/b1);  

Z = (n-f)c; Z=c1z; and z = (n-f)(Z/c1);  

(n-f) = XYZg 

 

a = x/XYZg 

b = y/XYZg 

c = z/XYZg 

 



25 

 

Thus, gXYZ is a multiplicative component of each of x, y and z. That is:   

x=(gXYZ)(a); and y=(gXYZ)(b); and z=(gXYZ)(c)   

 

If: x
3
+y

3
+z

3
+x

6
+y

6
+z

6
= rXYZ, then by substituting a=(x/XYZg), b=(z/XYZg) and c=(z/XYZg), and by dividing 

both sides of the equation by rXYZ, the result is:  

[(g
3
X

3
Y

3
Z

3
)(a

3
)]+[(g

3
X

3
Y

3
Z

3
)(b

3
)]+[(g

3
X

3
Y

3
Z

3
)(c

3
)] + [(g

6
X

6
Y

6
Z

6
)(a

6
)] + [(g

6
X

6
Y

6
Z

6
)(b

6
)] + 

[(g
6
X

6
Y

6
Z

6
)(c

6
)] = rXYZ;  

and: {[(g
3
X

3
Y

3
Z

3
)(x

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ}+{[(g

3
X

3
Y

3
Z

3
)(y

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ} + 

{[(g
3
X

3
Y

3
Z

3
)(z

3
/X

3
Y

3
Z

3
g

3
))]/rXYZ}+{[(g

6
X

6
Y

6
Z

6
)(x

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} + 

{[(g
6
X

6
Y

6
Z

6
)(y

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ}+{[(g

6
X

6
Y

6
Z

6
)(z

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} = 1;   

and thus: (x
3
/rXYZ)+(y

3
/rXYZ)+(z

3
/rXYZ) +(x

6
/rXYZ)+(y

6
/rXYZ)+(z

6
/rXYZ) = 1;   

and: x
3
+y

3
+z

3
+x

6
+y

6
+z

6
 = rXYZ  

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and x
3
+y

3
+z

3
+x

6
+y

6
+z

6
 = 

rXYZ, for all X, Y, Z and g that are real numbers, g<r; and g є r.    ▄ 

 

 

Theorem-13: For the equation x
6
+y

6
+z

6
=rXYZ in real numbers, where x│X (ie. X is a multiple of x), 

y│Y, and z│Z exist; if (n-f) is a multiplicative component of each of X, Y & Z (each of X,Y and Z are 

derived by multiplying (n-f) by another real number), then for all g, n and f that are real numbers: 

1) XYZg = (n-f), and  

2) g є r.  

Proof:  

Let: 

X = (n-f)a; and X=xa1; and x=(n-f)(a/a1); 

Y = (n-f)b; and Y=yb1; and y=(n-f)(b/b1); 

Z = (n-f)c; and Z=zc1; and z=(n-f)(c/c1); 

 

Where -∞<n,f,a,b,c,a1,b1,c1<+∞ are real numbers.  

 

x
6
 = (n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
 = (n-f)

2
(n-f)

2
(n-f)

2
(a/a1)

6
= (n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(a/a1)

6
 

=(n
4
-4n

3
f+6n

2
f

2
-4nf

3
+f

4
)(n

2
-2nf+f

2
)(a/a1)

6
 

= (n
6
-4n

5
f+6n

4
f

2
-4n

3
f

3
+n

2
f

4
-2n

5
f+8n

4
f

2
-12n

3
f

3
+8n

2
f

4
+2nf

5
+n

4
f

2
-4n

3
f

3
+6n

2
f

4
-4nf

5
+f

6
)(a/a1)

6
 

= (n
6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(a/a1)

6
 

 

y
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(b/b1)

6
 

z
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(c/c1)

6
 

Thus:    

x
6
+y

6
+z

6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) = (n-f)

6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) 

 

From above: X/a = Y/b = Z/c = (n-f) = XYZg 

a = 1/YZg; and (a/a1) = x/(n-f) = x/XYZg 

b = 1/XZg; and (b/b1) = y/(n-f) = y/XYZg  

c = 1/XYg; and (c/c1) = z/(n-f) = z/XYZg 

 

If XYZg = (n-f), then: x
6
+y

6
+z

6
 = (n-f)

6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) 

= (XYZg)
6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) 

= [(XYZg)
6
(x/XYZg)

6
]+[(XYZg)

6
(y/XYZg)

6
]+[(XYZg)

6
(z/XYZg)

6
]   

= x
6
+y

6
+z

6
       

 

This following second section proves that g є r. 

X = (n-f)a; X=a1x; and X = (n-f)a1a;  

Y = (n-f)b; Y=b1y; and Y = (n-f)b1b;  
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Z = (n-f)c; Z=c1z; and Z = (n-f)c1c;  

(n-f) = XYZg 

 

a = x/XYZg 

b = y/XYZg 

c = z/XYZg 

 

Thus, gXYZ is a multiplicative component of each of x, y and z. That is:   

x=(gXYZ)(a); and y=(gXYZ)(b); and z=(gXYZ)(c)   

 

If: x
6
+y

6
+z

6
 = dXYZ; then by dividing both sides of the equation by rXYZ and substituting a=(x/XYZg), 

b=(z/XYZg) and c=(z/XYZg), the result is:   

[(g
6
X

6
Y

6
Z

6
)(a

6
)]+[(g

6
X

6
Y

6
Z

6
)(b

6
)]+[(g

6
X

6
Y

6
Z

6
)(c

6
)] = rXYZ 

And: {[(g
6
X

6
Y

6
Z

6
)(x

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ}+{[(g

6
X

6
Y

6
Z

6
) (y

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ}+ 

{[(g
6
X

6
Y

6
Z

6
)(z

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} = 1;   

 And: (x
6
/rXYZ)+(y

6
/rXYZ)+(z

6
/rXYZ) = 1;   

And: x
6
+y

6
+z

6
 = rXYZ  

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and x
6
+y

6
+z

6
 = rXYZ, for 

all X, Y, Z and g that are real numbers, g<r; and g є r.    ▄ 

 

 

Theorem-14: For the equation [(x
12

+y
12

+z
12

)-(x
6
+y

6
+z

6
)]=rXYZ in real numbers, where x│X (ie. X is a 

multiple of x), y│Y, and z│Z exist; if (n-f) is a multiplicative component of each of X, Y & Z (each of X,Y 

and Z are derived by multiplying (n-f) by another real number), then for all g, n and f that are real 

numbers: 

1) XYZg = (n-f), and  

2) g є r.  

Proof:  

Let:  

X = (n-f)a; X=a1x; and X = (n-f)a1a;  

Y = (n-f)b; Y=b1y; and Y = (n-f)b1b;  

Z = (n-f)c; Z=c1z; and Z = (n-f)c1c;  

(n-f) = XYZg 

 

Where -∞<n,f,a,b,c,a1,b1,c1<+∞ are real numbers.  

 

x
6
 = (n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
*(n-f)

2
(a/a1)

2
 = (n-f)

2
(n-f)

2
(n-f)

2
(a/a1)

6
= (n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(n

2
-2nf+f

2
)(a/a1)

6
 

=(n
4
-4n

3
f+6n

2
f

2
-4nf

3
+f

4
)(n

2
-2nf+f

2
)(a/a1)

6
 

= (n
6
-4n

5
f+6n

4
f

2
-4n

3
f

3
+n

2
f

4
-2n

5
f+8n

4
f

2
-12n

3
f

3
+8n

2
f

4
+2nf

5
+n

4
f

2
-4n

3
f

3
+6n

2
f

4
-4nf

5
+f

6
)(a/a1)

6
 

= (n
6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(a/a1)

6
 

y
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(b/b1)

6
 

z
6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)(c/c1)

6
 

Thus:    

x
6
+y

6
+z

6
 = (n

6
-8n

5
f+15n

4
f

2
-20n

3
f

3
+15n

2
f

4
+f

6
)((a/a1)

6
+(b/b1)

6
+(c/c1)

6
) = (n-f)

6
[(a/a1)

6
+(b/b1)

6
+(c/c1)

6
] 

Similarly, x
12

+y
12

+z
12

 = (n-f)
12

[(a/a1)
12

+(b/b1)
12

+(c/c1)
12

] 

 

From above: X/a = Y/b = Z/c = (n-f) = XYZg 

a = 1/YZg; and (a/a1) = x/(n-f) = x/XYZg 

b = 1/XZg; and (b/b1) = y/(n-f) = y/XYZg  

c = 1/XYg; and (c/c1) = z/(n-f) = z/XYZg 
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If XYZg = (n-f), then: (x
12

+y
12

+z
12

)-(x
6
+y

6
+z

6
) = [(n-f)

12
((a/a1)

12
+(b/b1)

12
+(c/c1)

12
)]-[(n-

f)
6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
)] 

= [(XYZg)
12

((a/a1)
12

+(b/b1)
12

+(c/c1)
12

)]-[(XYZg)
6
((a/a1)

6
+(b/b1)

6
+(c/c1)

6
)] 

= ([(XYZg)
12

(x/XYZg)
12

]+[(XYZg)
12

(y/XYZg)
12

] + [(XYZg)
12

(z/XYZg)
12

]) -([(XYZg)
6
(x/XYZg)

6
] + 

[(XYZg)
6
(y/XYZg)

6
] + [(XYZg)

6
(z/XYZg)

6
])   

= (x
12

+y
12

+z
12

)-(x
6
+y

6
+z

6
)       

 

This following second section proves that g є r. 

 

As stated herein and above:  

x = (n-f)a; X=a1x; and x = (n-f)(X/a1);  

y = (n-f)b; Y=b1y; and y = (n-f)(Y/b1);  

z = (n-f)c; Z=c1z; and z = (n-f)(Z/c1);  

(n-f) = XYZg 

 

a = x/XYZg 

b = y/XYZg 

c = z/XYZg 

 

Thus, gXYZ is a multiplicative component of each of x, y and z. That is:   

x=(gXYZ)(a); and y=(gXYZ)(b); and z=(gXYZ)(c)   

 

If (x
12

+y
12

+z
12

)-(x
6
+y

6
+z

6
)= dXYZ; then by substituting a=(x/XYZg), b=(z/XYZg) and c=(z/XYZg), and 

dividing both sides of the equation by rXYZ and the result is:  

[(g
12

X
12

Y
12

Z
12

a
12

)+(g
12

X
12

Y
12

Z
12

b
12

)+(g
12

X
12

Y
12

Z
12

c
12

)] - [(g
6
X

6
Y

6
Z

6
a

6
) + (g

6
X

6
Y

6
Z

6
b

6
) + (g

6
X

6
Y

6
Z

6
c

6
)] 

= rXYZ; 

And: {[(g
12

X
12

Y
12

Z
12

)(x
12

/g
12

X
12

Y
12

Z
12

))]/rXYZ}+{[(g
12

X
12

Y
12

Z
12

) (y
12

/g
12

X
12

Y
12

Z
12

))]/rXYZ} + 

{[(g
12

X
12

Y
12

Z
12

)(z
12

/g
12

X
12

Y
12

Z
12

))]/rXYZ} - {[(g
6
X

6
Y

6
Z

6
)(x

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} - 

{[(g
6
X

6
Y

6
Z

6
)(y

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} - {[(g

6
X

6
Y

6
Z

6
)(z

6
/X

6
Y

6
Z

6
g

6
))]/rXYZ} = 1;   

and: [(x
12

/rXYZ)+(y
12

/rXYZ)+(z
12

/rXYZ)]-[(x
6
/rXYZ)+(y

6
/rXYZ)+(z

6
/rXYZ)] = 1;   

And: [(x
12

+y
12

+z
12

)-(x
6
+y

6
+z

6
)]/rXYZ = 1; and [(x

12
+y

12
+z

12
)-(x

6
+y

6
+z

6
)] = rXYZ.    

 

Given the foregoing and since X=(gXYZ)(a); and Y=(gXYZ)(b); and Z=(gXYZ)(c); and x
12

+y
12

+z
12

-x
6
-y

6
-z

6
= 

rXYZ, for all n, f and g that are real numbers, g<r; and g є r.    ▄ 

 

 

Theorem-15: For the equation x
i
+y

i
+z

i
=rXYZ, and where x=X, y=Y, z=Z, g, n and f are real numbers; and 

given Theorems herein and above, if (n-f)=gXYZ, and (n-f) is a multiplicative component of each of X,Y 

and Z, then g є r; and r can be expressed as r = [(X
(i-1)

/YZ)+(Y
(i-1)

/XZ)+(Z
(i-1)

/XY)].  

Proof: The proof is straightforward and follows from prior proofs above.    ▄ 

 

 

Conclusion.  

The equations studied herein exhibit patterns of Nonlinearity that have potential applications in Applied Math, 

Computer Science, Economics and Physics.  
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