Synthetic Route to the 126th Element: Ba141+Yb173=Ch314

Gang Chen ${ }^{\dagger}$, Tianman Chen, Tianyi Chen
Guangzhou Huifu Research Institute Co., Ltd., Guangzhou, P. R. China
7-20-4, Greenwich Village, Wangjianglu 1, Chengdu, P. R. China
${ }^{\dagger}$ Correspondence to: gang137.chen@connect.polyu.hk

Abstract

In our previous papers ${ }^{1-12}$, we predicted the 119th to 173th ideal extended elements, and illustrated the 126th element Ch314 should have the best relative stability and should be worthy to be synthesized preferentially. In this paper, we define the natural number axis (NNA) and the natural number coordinate system (NNCS), and suppose that in the world of nuclides, NNA and NNCS would be applicable, so in the world of nuclides the square root of 2 , the square root of 3 and π would become rational numbers of $1.41,1.73$ and 3.14 with equation of $1.41+1.73=3.14$. Their relationships to some nuclides are exhibited to demonstrate this kind of principles, the relative stability of U238 and U235 and the fission mode of U235 are explained, and finally we design a synthetic route to the 126th element, which is $\mathrm{Ba} 141+\mathrm{Yb} 173=\mathrm{Ch} 314$.

Keywords: natural number axis; natural number coordinate system; rational numbers and irrational numbers; elements and nuclides; stability of Uranium; fission of U235; synthetic route; the 126th element.

\section*{1. Principles}

\section*{Principle 1: Definition of a Natural Number Axis (NNA)}

A natural number axis (NNA) is defined to be an axis with natural numbers sequentially located on it, but a specific natural number on it stands for a specific length of a line as follows (Fig. 1).

Fig. 1 A natural number axis (NNA) and a 10-parts divided natural axis (NNA-10)

On a NNA, a specific number such as 2 stands for a length from 1 to 2 or 0 to 2 . Most importantly, NNA is continuous with no need to add any irrational numbers on it. And the length between two adjacent natural numbers on a NNA is called a unit of the NNA. For example, a unit of the above NNA has a length of 1.

Every unit of a NNA can be divided to a number of sub-units, for example, 10 or 100 equal parts. And hence the corresponding divided NNA can be called NNA-10 or NNA-100. A unit of a NNA-10 has a length of 1.0 and a sub-unit of 0.1 . A sub-unit of a NNA is defined as a dot of the NNA. A dot of a NNA has a length and even a width with a shape, and it can't be divided further. If a NNA-10 is amplified 10 times, its subunit will become a unit of a new NNA. So a dot with a length and a NNA with continuity are equivalent to each other.

Principle 2: A Square in a Natural Number Coordinate System with a Diagonal length of Rational Numbers

Use divided natural number axis x and y to compose a rectangular plane coordinate system which is called natural number coordinate system (NNCS), and a square is located in this coordinate system. The line length of this square (1) is 1 , and the line width of this square (dl) is the sub-unite such as 0.1 or 0.01 . Then the diagonal length of the square would be 1.4 or 1.41 in the form of rational numbers especially in this natural number coordinate system as follows (Fig. 2 and Fig. 3).

Fig. 2 A square in a natural number coordinate system (NNCS-10) with diagonal length 1.4

Fig. 3 A square in a natural number coordinate system (NNCS-100) with diagonal length 1.41

So in a natural number coordinate system (NNCS), the diagonal length of a square should be a series of rational numbers according to the ratio of width to length of the square line (dl / l) as shown in Table 1.

Table 1 The diagonal length of a square in a natural number coordinate system (NNCS)

NNCS	d1/1	Diagonal Length	Number	Rationality	Irrationality
NNCS-10	0.1	1.4	rational	decreasing	increasing
NNCS-100	0.01	1.41			
NNCS-1000	0.001	1.414			
NNCS- -	1/m	1.414......	irrational		

We can define the following serial numbers as $\sqrt{2}$ sequence:
$\sqrt{2}\{1.4,1.41,1.14, \cdots, 1.414 \cdots\}$
$\mathrm{dl} / / \mathrm{l}$ increasing $\sqrt{2}\{1.4,1.41,1.14, \cdots, 1.414 \cdots\} \mathrm{d} / / \mathrm{l}$ decreasing
micro world $\sqrt{2}\{1.4,1.41,1.14, \cdots, 1.414 \cdots\}$ macro world
rationality increasing $\sqrt{2}\{1.4,1.41,1.14, \cdots, 1.414 \cdots\}$ irrationality increasing

2. The Square Root of $\mathbf{2}$ and its Relationships with Nuclides

We found that a 100-parts divided natural number coordinate system (NNCS-100) should be the applicable coordinate system in the world of nuclides because in the micro world the dl / l value of a line should not be too small or too large. It seems that the centesimal system is applicable in the world of nuclides, and this is a rule of nature or stipulated by the God. So in the world of nuclides, the square root of 2 must be a rational number such as $141 / 100$ or its good approximate rational ratios such as $140 / 99$ or $82 / 58$. The relationships between the square root of 2 and nuclides are shown as follows.

$$
\begin{aligned}
& \sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\frac{1.41}{2}=\frac{141}{2 \cdot 100} \approx \frac{140}{2 \cdot 99} \approx \frac{82}{2 \cdot 58} \\
& { }_{15}^{31} P_{16}{ }_{61}^{69,71} G a_{38,40}{ }_{21}^{45} S c_{24}{ }_{35}^{79,81} B r_{41,46}{ }_{45}^{103} R h_{58}{ }_{46}^{105} P d_{59}{ }_{50}^{120} S_{70}{ }^{140,142}{ }_{58}^{12} C_{82,84}{ }_{59}^{141} \mathrm{Pr}_{82} \\
& { }_{70}^{173} Y_{103}{ }_{71}^{176} L u_{105}{ }_{80}^{200} H_{120}{ }_{90}^{232} \mathrm{Th}_{142}^{*}{ }_{91}^{231} P a_{140}^{*}{ }_{130}^{330} \mathrm{Ch}_{200}^{\text {ie }}{ }_{138}^{6.58} F y_{210}^{\text {ie }} \\
& \text { 2021/12/28 } \\
& { }_{141}^{6.59} \mathrm{Ch}_{3.71}^{i e} \\
& \text { 2022.5.17 }
\end{aligned}
$$

3. The Square Root of $\mathbf{3}$ and its Relationships with Nuclides

According to the above same reasons, in the world of nuclides, the square root of 3 must be a rational number such as 173/100 or its good approximate rational ratios such as $13 / 15$ or $84 / 97$. The relationships between the square root of 3 and nuclides are shown as follows.

$$
\begin{aligned}
& \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}=\frac{1.73}{2}=\frac{173}{2 \cdot 100} \approx \frac{13}{15} \approx \frac{84}{97} \approx \frac{97}{112} \\
& { }_{13}^{27} A l_{14}{ }_{15}^{31} P_{16}{ }_{26}^{56} F e_{30}{ }_{42}^{97} \mathrm{Mo}_{55}{ }_{31}^{69,71} G a_{38,40} \quad{ }_{36}^{84} K r_{48}{ }_{39}^{89} Y_{50} \quad{ }_{44}^{100} R u_{56}{ }_{45}^{103} R h_{58}{ }_{48}^{112} C d_{64} \\
& { }_{50}^{120} \mathrm{Sn}_{70}{ }_{60}^{144} N d_{84}{ }_{66}^{163} \mathrm{Dy}_{97}{ }_{68}^{168} \mathrm{Er}_{100}{ }_{70}^{173} \mathrm{~Pb}_{103}{ }^{185,187}{ }_{75} \mathrm{Re}_{110,112}{ }_{80}^{200} \mathrm{Hg}_{120}{ }_{84}^{209} \mathrm{Po}_{125}^{*} \\
& { }_{97}^{13.19} B k_{150}^{*}{ }_{103}^{262} L_{159}^{*}{ }_{112}^{15.19} \mathrm{Cn}_{173}^{*}{ }_{125}^{24.13} \mathrm{Ch}_{187}^{i e} \quad{ }_{130}^{330} \mathrm{Ch}_{200}^{i e}{ }_{137}^{2.173} \mathrm{I}_{209}^{i e}{ }_{173}^{15.29} \mathrm{Ch}_{262}^{i e} \\
& \text { 2021/12/18 }
\end{aligned}
$$

4. 2π and its Relationships with Nuclides

According to the above same reason, in the world of nuclides, 2π must be a rational number such as $4 \times 157 / 100$ or its good approximate rational ratios such as $44 / 7$ or $10 \times 71 / 113$. The relationships between 2π and nuclides are shown as follows.

$$
\begin{aligned}
& 2 \pi=6.28=\frac{4 \cdot 157}{100}, 2 \pi=\frac{2 \cdot 22}{7}=\frac{44}{7}, 2 \pi=\frac{2 \cdot 355}{113}=\frac{10 \cdot 71}{113} \\
& { }_{7}^{14} N_{7}{ }_{14}^{28} S i_{14}{ }^{48,49,50}{ }_{22} T i_{26,27,28}{ }_{26}^{56} F e_{30}{ }_{31}^{69,71} G a_{38,40}{ }_{33}^{75} A s_{42}{ }_{38}^{86,87,88} S_{48,49,50}{ }_{44}^{100} T_{56}{ }_{48}^{112} C d_{64} \\
& { }_{19}^{113,115} I n_{64,66}{ }_{50}^{119,120,122}{ }_{50} S n_{69,70,72}{ }^{136,137,138}{ }_{56} B a_{80,81,82}{ }_{62}^{150} S_{88}{ }_{64}^{157} G d_{93}{ }_{68}^{168} E r_{100}{ }_{69}^{169} T m_{100} \\
& { }_{175,176}{ }_{71} L u_{104,105}{ }^{185,11 \cdot 17}{ }_{75} \mathrm{Re}_{110,112}{ }^{188,189}{ }_{76} O s_{112,113}{ }_{83}^{209} B i_{126}^{*}{ }_{84}^{209} O o_{125}^{*}{ }_{88}^{2 \cdot 113} \mathrm{Ra}_{138}^{*}{ }_{100}^{257} F_{157}^{*} \\
& { }_{112}^{285} C_{173}^{*}{ }_{3}^{4 \cdot 71,22 \cdot 13}{ }_{113} N h_{171,173}^{i e}{ }_{125}^{312} C h_{11.17}^{i e}{ }_{126}^{2.157} C h_{4.47}^{i e}{ }_{137}^{2.173} F_{209}^{i e}{ }_{148}^{22.17} C_{2.113}^{i e}{ }_{157}^{400} C h_{243}^{i e}{ }_{169}^{6.71} C h_{257}^{i e} \\
& \text { 2021/12/28 }
\end{aligned}
$$

5. Explanations to the Relative Stability of Uranium (U238 and U235) and the Fission mode of U235

We know that the 92th element Uranium has two main relatively stable isotopes, i.e., U238 with radioactive half-life of $4.468(3) \times 10^{9} y$ and U235 with half-life of $7.04(1) \times 10^{8} \mathrm{y}$. Their half-lives are close to the age of the earth, so there are U238 and U235 naturally existing in the earth with natural abundance of 99.28% and 0.71% respectively. U235 is important for both nuclear reactors and nuclear weapons because it is the only isotope existing in nature to any appreciable extent that is fissile,
that is, can be broken apart by thermal neutrons. U238 is also important because it absorbs neutrons to produce a radioactive isotope that subsequently decays to Pu239, which is also fissile and hence important to nuclear reactors ${ }^{13}$. We here try to explain the relative stability of U238 and U235 and the fission mode of U235 (Fig. 4).

Fig. 4 Fission mode of U235
Some stable numbers in the world of nuclides:
$56=4 \cdot 14$: the most stable number in nuclides;
136137 138: the numbers related to the fine-structure constant α, so 136137138 are called the fine-structure constant numbers, $136=8 \cdot 17,138=6 \cdot 23,1723$ are called inner prime fators of 136138 ;
$92=4 \cdot 23$, so 92 is related to the fine-structure constant number 138;
$238=14 \cdot 17$, so 238 is related to the most stable number 56 and the fine-structure constant number 136;
141: the number related to $\sqrt{2}$ or $\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2}=\frac{141}{2 \cdot 100}=\frac{3 \cdot 47}{2 \cdot 100}$,
47 is called the inner prime factor of $\sqrt{2}$;
$235=4 \cdot 47$, so 235 is related to $\sqrt{2}$, but should be less stable than 141 ;
36: a number related to the fine-structure constant α because:
$\alpha_{1}=\frac{36}{7 \cdot e^{2} \frac{e^{2}}{\left(\frac{2}{1}\right)^{3}} \frac{e^{2}\left(\frac{3}{2}\right)^{5}}{e^{2}} \frac{e^{2}}{\left(\frac{4}{3}\right)^{7}} \cdots \frac{e^{2}}{\left(\frac{113}{112}\right)^{225}}} \frac{1}{112+\frac{1}{75^{2}}}=1 / 137.035999037435$,
$144=4 \cdot 36=3 \cdot 48,48$ is a stable number in the world of nuclides;
146: ${ }_{146}^{370} \mathrm{Ch}_{224}^{i e}, 146=2 \cdot 73,224=2 \cdot 112=4 \cdot 56$, so 146 is also a stable number.

Explanations to the relative stablity of U238 and U235:
${ }_{92}^{238} U_{146}^{*}$ with three stable numbers: $92=4 \cdot 23,238=14 \cdot 17$ and $146=22 \cdot 73$;
${ }_{92}^{235} U_{143}^{*}$ with two stable numbers: $92=4 \cdot 23,235=5 \cdot 47$
the stability of these numbers should decrease in the above sequences

Explanations to the fission mode of U235:
${ }_{92}^{235} U_{143}^{*}+\mathrm{n} \rightarrow{ }_{92}^{236} U_{144}^{*} \rightarrow{ }_{36}^{92} K r_{56}^{*}+{ }_{56}^{141} B a_{85}^{*}+3 n$
in the first step, 144 is more stable than 143 , so there is energy releasing;
in the second step, the first step released energy brokes the nucleus of ${ }_{92}^{236} U_{144}^{*}$ to two pieces along with 3 neutrons;
${ }_{36}^{92} \mathrm{Kr}_{56}^{*}$ has stable numbers 56,36 and $92 ;{ }_{56}^{141} B a_{85}^{*}$ has stable numbers 56 and 141 ; so they are relatively stable products.
This should be the total and exact image of U235's fission.

6. Synthetic Route to the 126th Element: Ba141+Yb173=Ch314

In our previous papers ${ }^{1-12}$, we predicted the ideal extended elements from 119th to 173th, and illustrated the 126th element would have the best stability among these elements and should be worthy to be synthesized preferentially. So based on our analysis for the stability of some key numbers such as 141,173 and 314 , we design the following synthetic route to the 126th element Ch314 as follows and Fig. 5.

$$
\begin{aligned}
& { }_{92}^{235} U_{143}^{*}+\mathrm{n} \rightarrow{ }_{36}^{92} \mathrm{Kr}_{56}^{*}+{ }_{56}^{141} B a_{85}^{*}+3 n \\
& { }_{56}^{141} B a_{85}^{*}+{ }_{70}^{173} Y b_{103} \rightarrow{ }_{126}^{314} \mathrm{Ch}_{4 \cdot 47}^{i e}
\end{aligned}
$$

Total reaction:
${ }_{92}^{235} U_{143}^{*}+{ }_{70}^{173} Y b_{103}+\mathrm{n} \rightarrow{ }_{36}^{92} K r_{56}^{*}+{ }_{126}^{314} C h_{188}^{i e}+3 n$
2022.1.24

Or another route:
${ }_{92}^{238} U_{146}^{*}+{ }_{34}^{76} S e_{42} \rightarrow{ }_{126}^{314} C_{188}^{i e}$
2022.6.4

However, U238 is easy to broke, so the former route is better.
We know:
$\sin \frac{\pi}{4}=\frac{\sqrt{2}}{2} \approx \frac{1.41}{2}$ and $\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \approx \frac{1.73}{2}$
$1.41+1.73 \approx 3.14, \sqrt{2}+\sqrt{3} \approx \pi$
However, in world of nuclides the above \approx should become $=$, so:
$\sqrt{2}+\sqrt{3}=\pi$ or $\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}=\frac{\pi}{2}$ or $\sin \frac{\pi}{4}+\sin \frac{\pi}{3}=\frac{\pi}{2}$ (in nuclides)

Fig. 5 In the world of nuclides the square root of 2 plus the square root of 3 is equal to π

References:

1. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2002.0203.
2. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2008.0020.
3. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2010.0252.
4. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2012.0107.
5. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2101.0187.
6. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2102.0162.
7. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2103.0088.
8. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2104.0053.
9. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2106.0042.
10. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2106.0151.
11. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2108.0011.
12. G. Chen, T-M. Chen and T-Y. Chen, viXra e-prints, viXra:2108.0177.
13. https://www.chemeurope.com/en/encyclopedia/Isotopes_of_uranium.html

Acknowledgements

Yichang Huifu Silicon Material Co., Ltd., Guangzhou Huifu Research Institute Co., Ltd. and Yichang Huifu Nanometer Material Co., Ltd. have been giving Dr. Gang Chen a part-time employment since Dec. 2018. Thank these companies for their financial support. Specially thank Dr. Yuelin Wang and other colleagues of these companies for their appreciation, support and help.

Appendix I: Research History

Section	Page	Date	Location
Preparing this paper v1	$1-9$	$2022 / 8 / 1-5$	Chengdu
Note: Date was recorded according to Beijing Time.			

Appendix II: Version History

Version	Period	Pages	Upload	Open
v1	$2022 / 8 / 1-5$	9	$2022 / 8 / 5$	viXra:2208.xxxxv1

[^0]
[^0]: Note: Date was recorded according to Beijing Time.

