An Example of the Division by Zero Calculus Appeared in Conformal Mappings

Saburou Saitoh
Institute of Reproducing Kernels, saburou.saitoh@gmail.com

August 10, 2022

Abstract

We introduce an interesting example of conformal mappings (Joukowski transform) from the view point of the division by zero calculus. We give an interpretation of the identity, for $a>b>0$ $$
\frac{\rho+1 / \rho}{\rho-1 / \rho}=\frac{a}{b}, \quad \rho=\sqrt{\frac{a+b}{a-b}},
$$ for the case $a=b$. David Hilbert: The art of doing mathematics consists in finding that special case which contains all the germs of generality.

Oliver Heaviside: Mathematics is an experimental science, and definitions do not come first, but later on.

Key Words: Division by zero, division by zero calculus, conformal mapping, Joukowski transform.

2010 Mathematics Subject Classification: 30A10, 30H10, 30H20, 30C40.

1 A new type example

We introduce an interesting example of conformal mappings from the view point of the division by zero calculus.

For $a>b>0$, we consider the elementary mapping

$$
\begin{equation*}
W=\frac{c}{2}\left(z+\frac{1}{z}\right) \tag{1.1}
\end{equation*}
$$

with

$$
c=\sqrt{a^{2}-b^{2}}
$$

on the complex $z=x+i y$ plane. Then, with

$$
\rho=\sqrt{\frac{a+b}{a-b}}
$$

the annulus

$$
1<|z|<\rho
$$

is mapped conformally to the elliptic domain

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1
$$

deleted the segment

$$
[-c, c] .
$$

Then, the points $z=\rho, i \rho$ are mapped to the points $W=a, b$, respectively, furthermore we have the identity

$$
\begin{equation*}
\frac{\rho+1 / \rho}{\rho-1 / \rho}=\frac{a}{b} . \tag{1.2}
\end{equation*}
$$

Then, if $a=b$, by the division by zero calculus

$$
\rho^{2}=\frac{a+b}{a-b}=1
$$

Then, from

$$
\frac{\rho+1 / \rho}{\rho-1 / \rho}=\frac{\rho^{2}+1}{\rho^{2}-1}
$$

by the division by zero calculus we have the good result

$$
\left(\frac{\rho^{2}+1}{\rho^{2}-1}\right)_{\rho^{2}=1}=1
$$

2 Conclusion

For the identity with $a>b>0$

$$
\frac{\rho+1 / \rho}{\rho-1 / \rho}=\frac{a}{b}, \quad \rho=\sqrt{\frac{a+b}{a-b}}
$$

we gave an interpretation for $a=b$, by means of the division by zero calculus.

3 Essence of division by zero calculus

We state the essence of division by zero calculus.
For any Laurent expansion around $z=a$,

$$
\begin{equation*}
f(z)=\sum_{n=-\infty}^{-1} C_{n}(z-a)^{n}+C_{0}+\sum_{n=1}^{\infty} C_{n}(z-a)^{n} \tag{3.1}
\end{equation*}
$$

we will define

$$
\begin{equation*}
f(a)=C_{0} . \tag{3.2}
\end{equation*}
$$

For the correspondence (3.2) for the function $f(z)$, we will call it the division by zero calculus. By considering derivatives in (3.1), we can define any order derivatives of the function f at the singular point a; that is,

$$
f^{(n)}(a)=n!C_{n} .
$$

However, we can consider the more general definition of the division by zero calculus.

For a function $y=f(x)$ which is n order differentiable at $x=a$, we will define the value of the function, for $n>0$

$$
\frac{f(x)}{(x-a)^{n}}
$$

at the point $x=a$ by the value

$$
\frac{f^{(n)}(a)}{n!}
$$

For the important case of $n=1$,

$$
\begin{equation*}
\left.\frac{f(x)}{x-a}\right|_{x=a}=f^{\prime}(a) \tag{3.3}
\end{equation*}
$$

In particular, the values of the functions $y=1 / x$ and $y=0 / x$ at the origin $x=0$ are zero. We write them as $1 / 0=0$ and $0 / 0=0$, respectively. Of course, the definitions of $1 / 0=0$ and $0 / 0=0$ are not usual ones in the sense: $0 \cdot x=b$ and $x=b / 0$. Our division by zero is given in this sense and is not given by the usual sense as in stated in $[1,2,3,4]$.

In particular, note that for $a>0$

$$
\left[\frac{a^{n}}{n}\right]_{n=0}=\log a .
$$

This will mean that the concept of division by zero calculus is important.
Note that

$$
\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

and so

$$
\left(\frac{x^{n}}{n}\right)^{\prime}=x^{n-1}
$$

Here, we obtain the right result for $n=0$

$$
(\log x)^{\prime}=\frac{1}{x}
$$

by the division by zero calculus.

References

[1] H. Okumura, Geometry and division by zero calculus, International Journal of Division by Zero Calculus, 1(2021), 1-36.
[2] S. Saitoh, Introduction to the Division by Zero Calculus, Scientific Research Publishing, Inc. (2021), 202 pages.
[3] S. Saitoh, History of Division by Zero and Division by Zero Calculus, International Journal of Division by Zero Calculus, 1 (2021), 1-38.
[4] S. Saitoh, Division by Zero Calculus - History and Development, Scientific Research Publishing, Inc. (2021.11), 332 pages.

