
1

The Valuation of Cancellable

Structured Note

Alex Yang

Abstract

Many derivatives have callable or cancellable features that impact both value and risk

significantly. This article presents a valuation model for generic cancellable structured notes. The

model calculates the expectation of cancellation notes with respect to the probability that

cancellation occurs.

Key words: derivatives products, cancellable structured note, derivatives valuation

2

1 Introduction

During a lifetime of a structured product, events will happen that affect its

value. Generally, these are two types of events: payment events and

cancellable/callable events.

On payment events, payments are made to one of the parties in the

deal. Market observables that the payment depends on are fixed on a

fixing date, and the amount to be paid is accrued over the accrual

period, specified by start and end dates. In practice the dates are rolled

according to rolling conventions and holiday calendars used, so one

refers to adjusted and unadjusted dates. The significance is that,

intuitively, a payment is made for the period between unadjusted start

date and unadjusted end date.

On cancellable evetns, the remaining part of the trade is potentially

cancelled as a result of a trigger condition or an exercise option.

Commonly there is a penalty or redemption payment associated. The

decision to exercise is made, or the trigger condition is checked on

notice date, and the cancellation takes effect on the effective

cancellation date. What this means in practice will depend on the

product definition. In most cases, once a cancellation occurred, no

payments are made after the effective cancellation date. Similarly, to a

fixing date, notice date is always adjusted, and similarly to start and end

date, one can talk about adjusted or unadjusted effective dates.

Practitioners commonly think (and describe products) in terms of

accrual periods, so that each payment is made for a period and a

3

cancellation event cancels all periods starting from the next one. In

contrast, generic products normally only refer to one date per event,

(indeed, syntactically an event in a generic product definition is

associated with a single date). In practice, the date chosen is usually the

first date at which all the information is available to calculate the

payment value or make a decision to cancel. Thus, fixing date is

normally the event date for payment events and notice date is normally

the event date for cancellation events.

This means that in practice, in generic product description it is not

unusual to end up with a product definition where the effect of

cancellation is to cancel a payment that was already calculated (when

fixing date for the cancellable leg happens to be before the notice date), or

a payment after, but not immediately after the notice date event (this

situation is quite common with products where a cancellable leg is fixed

in arrears).

This article describes procedures to build most common kinds of

cancellation schedules, functions in the product description language

provided for describing such products and their implementation.

2 Product description language support

Within product description language all algorithms and methodology

described below are available through the expression Cancellation, taking a

variable number of parameters, depending on the number of cancellable

legs in the product.

If the expression evaluates to a non-zero value, cancellation occurs at

the event, if it evaluates to zero, cancellation does not occur.

4

As a special case, if the condition is just expression, the value of

optimal cancellation strategy would be computed. This feature

makes pricing callable products possible.

So, for example, to describe an opportunity to cancel all events on the

funding leg starting from (and including) 19th May 2005, and all events

on the structured leg starting from and including 20th May 2005, at the

cost of 10000 USD paid on 19th August 2005.

3 Cancellation legs

 Legs in a generic product are represented by columns of related events,

and generally correspond to product legs as described in a term-sheet. The

values of paying legs are total values of all payments on those legs

(regardless of cancellation) and the value of a cancellation leg is the

negated total value of cancelled flows on the paying legs.

This is a rather broad definition, covering both trigger-type products

and callable products. In practice even for callable products the decision

to exercise will depend on the current state of the market, and so these are

often modeled by introducing some kind of exercise boundary, i.e. a

function of market observables describing a multidimensional boundary

beyond which it is optimal to exercise. This has the advantage of

separating two problems - making a decision to exercise and calculating

the value of the cancellation leg.

For the most part, the subject of this document is the later of the two,

that is, the correct calculation of the value of a cancellation leg. There are

special cases where the two can be merged to great advantage that cannot

be ignored and these are considered below. We will, except where

otherwise stated, assume existence of a predicate indicating, when

5

computed for a particular cancellation event, whether cancellation

occurred.

In general, there may be any number of cancellation legs in a product,

and a cancellation leg will cancel a fixed number of other legs. Legs that

can be cancelled as an effect of valuation of a cancellation leg will be

referred to as cancellable legs. It is possible for a cancellation leg to be

cancellable by another cancellation leg.

We will however assume that in cases where there are more than one

cancellation legs cancelling same legs the term-sheet defines clearly an

order of precedence between them (i.e. which decision is made first), and

that if two cancellation legs cancel a single leg in common, then their

actions are mutually exclusive (i.e. cancellation can only occur on one

of them).

 These assumptions are not restrictive in practice as they will hold for

any “reasonable” product, and even if they do not, it is always possible to

split a single cancellation leg into a number of legs, each checking the

same condition on same dates but affecting different cancellable legs. We

will also assume that all legs cancellable by a particular cancellation leg

appear to the left of it in the product definition. This makes computation

more efficient and helps prevent errors in coding, and is again not

restrictive as all valuation engines consider product legs in isolation.

Further, we will be concerned only with Bermudan trades, that is, we

will assume that the decision to cancel the deal must be made on one of

the set of pre-agreed dates. This type of products fit naturally within the

structure of generic products definition language, and we are still to come

across a realistic product that cannot be described in terms of a finite

set of dates.

6

Finally, depending on whether the valuation environment is backwards

looking (Monte Carlo) or forward looking (backwards induction engines),

value of a cancellation leg is calculated differently and the two cases will

be considered separately.

3.1 Cancellation and continuation values

 When implementing optional cancellation using numerical methods it is

common to compare the values of the product when cancellation occurs

and when it does not. The two quantities are also useful in computing the

value of a cancellation leg, it being the difference of the two. So we

define:

• Cancellation value of a product for a particular cancellation event date

on a particular cancellation leg, is the value of cancellable legs if

cancellation does occur on that event date and on that leg.

• Continuation value of a product for a particular cancellation leg is the

total value of all legs cancellable by that cancellation leg if cancellation

does not occur on that cancellation leg.

It can now be seen that the value of a cancellation leg is the negated

expectation of a difference between continuation value and cancellation

value for that cancellation leg and for the event date when cancellation

occurred.

3.2 Cancellation schedules

7

A schedule in generic products is a collection of dates pertaining to a

product leg. There will typically be several dates associated with each

event, only one of which is actually used as an event date in the product

definition. For a typical paying leg these would be:

• Unadjusted start and end date - the unadjusted start and end of the

accrual period.

• Adjusted start and end date - the adjusted start and end of the accrual

period.

• Fixing date - the event fixing date, always adjusted.

• Payment date - the date when the payment is made, always

adjusted. These are built from a number of parameters.

The structure of the schedule for payment legs reflects the fact that each

payment made on the leg pertains to a period. In contrast, a cancellation

event is global, it pertains to the whole of the product duration and

effectively divides the product schedule into two parts - time before

cancellation, that is, a collection of events that will not be cancelled, and

time after cancellation, that is, the collection of events that will be

cancelled if cancellation does occur on the cancellation event. Further,

depending of the nature of the product, there may be additional entries in

the schedule for the penalty payment dates and accrual end date for

product that pay accrued coupon on cancellation.

A general cancellation schedule would contain, for each event:

8

• Unadjusted effective date

Always unadjusted. Calculated by repeatedly adding a cancellation period

to previous effective date for the duration of the cancellation term.

• Notice date

Always adjusted. Calculated by subtracting a notice period from

effective date.

• Penalty payment date

Always adjusted. Calculated by adding a payment lag to the effective

date.

• Accrual end date

Normally equal to the adjusted effective date.

• First cancelled event dates

There is one of these for each leg cancellable by the cancellation leg.

These are most complicated dates to build, and the procedure will in

general depend on the product definition. In most cases, it is the

fixing date of the event on the cancellable leg, whose unadjusted start is

on or after the unadjusted effective date.

• Accrued event dates

9

When the product pays the last paid coupon pro-rated, this is the

event date of the pro-rated payment. Again, there will be one of

these for each cancellable leg. A simple way to calculate is as the

event date before the first cancelled event.

4 Computing the value of a cancellation leg

We will now consider the process of computing the value of an arbitrary

cancellation leg, and introduce notation that will be used in the rest of the

document.

di i-th event date

dx cancellation notice date

dv valuation date

de last event date in the product

li i-th cancellable leg

lx cancellation leg

df (li) first cancelled date on the i-th cancellable leg

P a penalty payment

cont(l1, l2, ...) continuation value for legs 1, 2, ...

canc(dx, l1, l2, ...) cancellation value for date dx and legs 1, 2, ...

C(dx) value of the cancellation leg if cancellation occurs on date

dx EC(dx) value of the cancellation event

V oP (li, dj, dk) value of payments on leg li, between dates dj

and dk, including any payments on date dj

but not those on date dk, deflated or inflated as

appropriate

Pm(li) value of a payment on leg li on event date when

the function is evaluated

10

V (li, dj+) expected value of payments on leg i starting

from but not including date dj

V (li, dj) expected value of payments on leg i starting

from and including date dj
10

Lv(li, dj) total value of payments on leg li up to but

not including date dj, inflated or deflated as appropriate

Df (di, dj) discount factor between dates di and dj

C the set of indices of cancellable legs ({1, 2, ...})

L the set of names of cancellable legs ({li : i ∈ C})

All the functions above are assumed to be evaluated at a particular

event in the product definition, thus to be strict, they should all have an

additional parameter denoting the evaluation event date. It will however

always be clear from the context when the functions are being

evaluated, so for clarity we omit the parameter here.

Now, if we are to evaluate continuation and cancellation values on the

cancellation event, we have:

cont(L) = ∑ (𝐿𝑣(𝑙𝑖, 𝑑𝑓 (𝑙𝑖)) + 𝑉 (𝑙𝑖, 𝑑𝑓 (𝑙𝑖))) + 𝑉 (𝑙𝑥, 𝑑𝑥+)𝑖∈𝐶 (4.1)

canc(dx, L) = P +∑ 𝐿𝑣(𝑙𝑖, 𝑑𝑓 (𝑙𝑖))𝑖∈𝐶 (4.2)

C(dx) = P −∑ 𝑉 (𝑙𝑖, 𝑑𝑓 (𝑙𝑖))𝑖∈𝐶 − V (lx, dx+) (4.3)

 = canc(dx, L) − cont(L) (4.4)

where the last term is added to continuation value to cater for any

events that may have value on the cancellation leg after dx.

11

4.1 Valuation Engines

 A generic product is valued in the context of a valuation engine, an

abstraction encapsulated a valuation methodology, evaluation of

expressions, processing and collecting of valuation results. Within the

library there are implementations of several valuation engines that can be

broadly grouped, by the nature of the implemented methodology, into

forward looking, implementing any backwards induction methodology, and

backwards looking, implementing Monte Carlo simulations methodology.

 The most significant difference in terms of valuation of generic products

is in the order of valuation of ex- pressions. Forward looking valuation

engines evaluate expressions left-to-right and bottom-to-top, thus making

available information about events in the future; backwards looking

valuation engines evaluate expressions left-to-right and top-to-bottom,

thus making available information about events in the past (relative to

the event currently being evaluated).

 In both cases each product leg is considered in isolation, that is, a

valuation engine will evaluate, maintain and store values of separate legs

without regard for other legs in the product definition. Thus, the valuation

will consist of evaluating expressions in the prescribed order, maintaining

model state variables between “moves” from one event date to the next, and

collecting the values of legs into a report (the value of a leg being a total

value of all payments on that leg).

12

The interface between a valuation engine and a generic product

instance is a collection of data with the implied agreement on

ownership of data and maintenance of values. Regardless of the nature

of the valuation engine, the values maintained are well defined at all

times, and available during valuation of expressions. For the purposes of

this document, only the following groups of values are relevant:

• Accumulated leg values

For each leg in the product description there is a single number

used to store the value accumulated so far. The values stored here

have the property that if they are read at any point (at any event) and

the value returned as a payment, the discounted value is the same as

the total value of the events on the corresponding leg evaluated so

far.

Note that this means that the meaning of this value is different in

forward looking and backwards looking engines. Using notation

described above, if k-th entry from this collection is evaluated at event

di, in forward looking engines this corresponds to V (lk, di+), that is,

conditional expected value of all payment on the leg starting from but

not including the current event.

In backwards looking engines, the value corresponds to Lv(lk, di),

that is, accumulated values of all payments on the leg on the current

path, from the start to the current event, not including the current

event.

• Current leg values

13

For each leg in the product description there is again a single number

here, representing the value of any payments on the leg at the current

event level. In the notation above, Pm(li). Note that evaluation of

expressions left-to-right means that only values of legs to the left of the

current one are stored.

• Register values

This is storage for values used internally by the language interpreter

implementation. They are written, updated and read by the

implementation of expressions, and have the property that their

present value is maintained by valuation engines. This means that

forward looking engines maintain the conditional expectation of

values stored here, and backwards looking ones inflate them by the

ratio of numeraire as the valuation moves along.

These values are in fact an implementation artifact and discussed in

more detail elsewhere in the text. For the time being it is sufficient

to know that they provide means of implementing function VoP (li, dj,

dk) described above. In forward looking valuation engines both date

parameters must be on or after the current event date, and the value

is in fact conditional expectation of the payments between them.

In backwards looking engines, both date parameters must be on or

before the current event date, and the value is the total value of

payments made on the current path between the two dates. Note that

the “register values” are more general than this, and only described by

the property above - they are used for different purposes elsewhere.

• Discount factors

14

Regardless of the methodology used, it is always possible to inflate or

deflate a value during valuation.

Differences in methodologies mean that implementation of the

computations described above will be significantly different in different

valuation environments. However, with the analysis below it is possible

to automate the process (almost) completely.

4.2 Relative position of dates

 The restrictions on date parameters to functions described above imply

that calculations of cancellation leg values have to be considered carefully

and that the algorithm used will depend on the position of “first cancelled”

dates in relation to cancellation notice date.

We will refer to the situation when the first cancelled date is before

the notice date (df (i) < dx) as past cancellation, and when the first

cancelled date is after or on the notice date (df (i) >= dx)as future

cancellation. It is important to remember that these terms do not refer

to payment dates, but to event dates (usually fixing dates), the actual cash

flows being cancelled are always after the notice date (even if they are

fixed before it).

4.3 Cancellation leg value in forward looking environment

 In forward looking environment, computing cancellation leg value in the

future cancellation case is straightforward, all the functions required in

(4.2) are readily available.

15

For past cancellation, we use the fact that the value of a leg is

propagated as a conditional expectation of discounted accumulated values

of payments made in the expressions evaluated so far, and split the

computation into two parts.

Consider the value of a cancellation event in a product description. On

points in the underlying grid in the model state space where the

cancellation condition is satisfied it is given by (4.3), and where no

cancellation occurs it is 0. In effect, we are calculating the expectation of

the value with respect to the probability that cancellation occurs.

To extend this to the case of past cancellation, let EC1(dx) denote the

expected value of events on the cancellation leg before the notice date,

and EC2(dx) of those on or after the notice date. We can easily evaluate

the value of EC2 on the cancellation event

Note that we only take into account the events on cancellable legs from

and including the cancellation event date, thus staying within the

limitations described in section 4.1. Once we reach the valuation date

through backwards induction, the value of the cancellation event will then

indeed be the conditional expectation (w.r.t. martingale measure) of the

discounted expectation (w.r.t. probability of cancellation) of the event

value.

Now, given the conditional probability of cancellation at the first

cancelled event(Pr(cancellation)), we could for the first cancellable leg (at

the event df (1)) compute

EC1(dx) = Pr(cancellation) ∗ (−VoP (l1, df (1), dx))

But,

16

L

 Pr(cancellation) = E(φCC()|Fdf)

where φCC() is the characteristic function.

Remembering that it is a property of registers that in forward looking

valuation engines they contain conditional expectations of discounted

values stored in them as valuation propagates backwards in time, we can

compute the value of φCC() at the cancellation date, store it in a register

and retrieve it at the first cancelled date to get:

E(Df (df (1), dx) ∗ φCC()|Fdf)

Dividing this by Df (df (1), dx) finally gives us Pr(cancellation).

This process should of course be applied for each cancellable leg whose first

cancelled date is before the notice date.

In summary, to compute the value of a cancellation event in a forward

looking environment when some of the first cancelled dates are before the

cancellation notice date:

• At the cancellation event compute the value of predicate. If it is true,

store 1 in a register, compute

P − i∈C V (li, max(dx, df (li))) − V (lx, dx+) and return it as the value of

the event. If it is false store 0 in the register, and return 0 as the value

of the event.

• For each cancellable leg i for which df (i) < dx, on each event date in the

range [df (i), dx) retrieve the value of the register, divide it by Df (df (1),

17

dx) and multiply it by −V oP (li, df (1), dx) and return it as the value of

the event.

4.3.1 Optional cancellation in forward looking environment

 Calculating the value of optional cancellation events in forward looking

environments is particularly simple. The basic idea is to compute

cancellation and continuation values and if cancellation value is the

largest of the two, cancel.

This can be rearranged to yield:

EC(dx) = Max(canc(dx, L) − cont(L), 0) = Max(C(dx), 0)

In the case of future valuation, this can be computed on the

cancellation event date. In the case of past cancellation, the only term

in the equation that must be computed on the cancellation date is the

penalty payment (since it may depend on the current state of the market),

everything else may be computed on the earliest first cancellation date.

So, we can compute the value of the penalty payment on the cancellation

date, store it in a register, and compute the value of EC on the earliest first

cancellation date, using the value in the register instead of the penalty

payment.

4.4 Cancellation leg value in backwards looking environment

 In backwards looking environment we make extensive use of (4.4), calculating

cancellation and continuation value for cancellation events.

As with valuation in forward looking environment, we make use of

18

the properties of registers and leg values and compute values at those

events at which all the information needed is available.

To calculate continuation value, we make use of the fact that at the

last event date in the product (4.1) becomes:

cont(L) =∑ (𝐿𝑣(𝑙𝑖, 𝑑𝑒) + 𝑃𝑚(𝑙𝑖))𝑖∈𝐶

 All of the terms here are readily available in a backwards looking

environment. Cancellation value presents more of a challenge. Because of

restrictions described in section 4.1, we have to split the computation of

(4.2) into parts according to the events where the data needed becomes

available. This can be done as follows:

• For legs that are past cancelled the term Lv(li, df (li)) can be computed on

the cancellation date as Lv(li, dx) − V oP (li, df (li), dx)

• For legs where first cancelled date is the cancellation date we have, at

can- cellation event: Lv(li, df (li)) = Lv(li, dx)

• For legs where first cancelled date is after the cancellation date we

can compute:

· At the cancellation event: Lv(li, dx) + Pm(li)

· At every event after the cancellation event and before or on first

cancelled date we compute a “correction” to the cancellation value:

Pm(li)

19

 The penalty payment term can be computed at the cancellation event.

The sum of all the values thus computed gives the cancellation value. In

implementation, we can return these values from expressions at

appropriate events if condition was true on the cancellation event, and the

negated continuation value as the value of the last event on the

cancellation leg. This way, for a single path, the total value of the

cancellation leg will be 0 if no cancellation occurred and equal to (4.4) if

it did, as required.

4.4.1 Optional cancellation in backwards looking environment

 At present no algorithms are implemented for valuing generic product

with optional cancellation features in backwards looking environment.

However, any future implementation is likely to be using a sample of

cancellation and continuation values, and functionality is in place to

collect and store this data.

5 Notes on implementation

5.1 Expressions

 The implementation follows the method described in the previous

section closely, providing internal expressions (i.e. not creatable by

users) implementing every step of the computation.

Further, a number of internal expressions are implemented as private to

the class implementing the Cancellation expression. These are used by other

ex- pressions, but not directly available to users.

20

To support the methodology above, extensive use is made of the

ability to transform the product definition during compilation. All of the

above expressions are inserted into the appropriate positions according

to the procedures described above. Expression Cancellation is under

certain circumstances (in forward looking environment, section 4.3)

itself replaced with corresponding If or Max expression.

5.2 Registers

 The interface between valuation engines and a generic product

during valuation is encapsulated into a class Workspace. Product leg

values and register values are stored in a vector of known Values. As

valuation engines maintain the values in registers, it is crucial to be able

to minimize the number of them.

 This is achieved using a variant of register allocation algorithm (used

in com- piler design). The algorithm is demand driven, that is, the

objects that use a register need to request it, specifying the required

lifetime - the period during which they will be using it. The allocation

algorithm is run after all expressions requests are complete, a minimal

number of registers is computed and registers are allocated to

requesting expressions.

 The algorithm guarantees exclusive use of a register during the

lifetime requested, including the start date but not including the end

date. The implementation of the algorithm is very well commented and

the reader is referred to the source code for further details.

5.3 Cancellation information

21

 A massive amount of data about cancellation is potentially collected

during valuation. This is useful for implementations of optional

cancellation pricing in Monte Carlo environment and for providing

detailed valuation reports. The level of detail is specified by valuation

engines at runtime, but at least information about cancellation on the

current path is always collected - and used internally. Historic

valuation is treated as a single path during its run, and the data

collected is used as a base set of values for all Monte Carlo paths.

The logic and data storage are implemented in the class Cancellation

Information and instance of which is a member of the Workspace object. The

data structure is fairly complicated, reflecting the fact that there is a lot of

data collected and saving space is a priority.

References

[1] Brace, A., D. Gatarek, and M. Musiela. “The market model of interest rate dynamics.”

Mathematical Finance, Vol. 7, No. 4 (1997), pp. 127-155.

[2] FinPricing valuation, https://finpricing.com/lib/EqConvertible.html 2021.

[3] Gandhi, S. and P. Hunt. “Numerical option pricing using conditioned diffusions,”

Mathematics of Derivative Securities, Cambridge University Press, Cambridge, 1997.

[4] Martzoukos, H., and L. Trigeorgis. “Real (investment) options with multiple sources of

rare events.” European Journal of Operational Research, 136 (2002), 696-706.

[5] Piterbarg, V. “A Practitioner’s guide to pricing and hedging callable LIBOR exotics in

LIBOR Market Models.” SSRN Working paper, 2003.

https://finpricing.com/lib/EqConvertible.html

