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Abstract. The integrals Rn,n obtained by Atkinson and van Steenwijk for

the resistance between points of an infinite set of unit resistors on the triangu-
lar lattice obey P-finite recurrences. The main cause of these are similarities

uncovered by partial integrations of their integral representations with alge-

braic kernels. All Rn,p resistances to points with integer coordinates n and p
relative to an origin in the lattice can be derived recursively.

1. Integral of Resistance in Infinite Triangular Lattice

The coordinates in the triangular lattice may be represented as integer pairs
(n, p) where n is the number of steps into the (1, 0) direction of the Cartesian coor-

dinates and p the number of steps into the (−1/2,
√

3/2) direction of the Cartesian
lattice. If all edges of the infinite lattice are equipped with resistors of a unit Ohm,
the resistance between the (arbitrary, fixed) origin of the lattice to another lattice
point at (n, p) is [2]

Definition 1.

(1) Rn,p ≡
1

π

∫ π/2

0

dy

sinhx cos y

[
1− e−|n−p|x cos(n+ p)y

]
where

(2) x ≡ arccosh(
2

cos y
− cos y).

Some published values are [2]

(3) R0,0 = 0; R1,0 = R0,1 = R1,1 =
1

3
.

(4) R2,0 = R0,2 = R2,2 =
8

3
− 4
√

3

π
;

(5) R1,2 = R2,1 = −2

3
+

2
√

3

π
;

(6) R1,3 = R3,1 = R2,3 = R3,2 = −5 +
10
√

3

π
;

The aim of this paper is to provide a recursive algorithm to derive these expressions
for arbitrary n and p.

The two principal integer parameters are:
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Definition 2.

(7) n ≡ |n− p|; n̄ ≡ n+ p.

2. Recurrences for Rn,n

2.1. Chebyshev Connection. In this section and we will consider the integral
values ‘on the diagonal’ where n = 0, i.e.,

(8) πRn,n =

∫ π/2

0

dy

sinhx cos y
[1− cos(2ny)],

i.e., the calculation of the numbers

Definition 3. (Integral on the ray n = 0)

(9) In̄ ≡
∫ π/2

0

dy

sinhx cos y
[1− cos(n̄y)] = I−n̄

for integer n̄.

(10) I0 = 0.

The Fourier term in the integral kernel has a Bernstein-Polynomial expansion of
the form [5, 1.331]

(11) cos(n̄y) =

bn̄/2c∑
j=0

(
n̄

2j

)
(−1)j cosn̄−2j y sin2j y, n̄ = 0, 1, 2, 3, . . .

The substitution cos y = u, du/dy = − sin y = −
√

1− u2 yields

(12) In̄ =

∫ 0

1

−du
u
√

1− u2 sinhx

1−
bn̄/2c∑
j=0

(
n̄

2j

)
(−1)jun̄−2j(1− u2)j


The factor in the denominator is

1

sinhx
=

1

sinh arccosh(2/u− u)
=

1

sinh arccosh t
=

1

sinh ln[t+
√
t2 − 1]

=
1√
t2 − 1

at t ≡ 2/u− u ≥ 1, therefore

(13) In̄ =

∫ 1

0

du

u
√

1− u2

1√
(2/u− u)2 − 1

1−
n̄/2∑
j=0

(
n̄

2j

)
(−1)jun̄−2j(1− u2)j


=

∫ 1

0

du

(1− u)(1 + u)
√

(2− u)(2 + u)

1−
n̄/2∑
j=0

(
n̄

2j

)
(−1)jun̄−2j(1− u2)j


=

∫ 1

0

du

(1− u)(1 + u)
√

(2− u)(2 + u)
Cn̄(u).

The polynomials Cn̄ are essentially the Chebyshev Polynomials and illustrated
in Table 1:

Definition 4. (complementary Chebyshev Polynomials)

(14) Cn̄(u) ≡ 1− cos(n̄y) = C−n̄(u) = 1− Tn̄(u)

are polynomials of order n̄.
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n̄ Cn̄
0 0
1 1− u = 1− u
2 2− 2u2 = 4(1− u)− 2(1− u)2

3 1 + 3u− 4u3 = 9(1− u)− 12(1− u)2 + 4(1− u)3

4 8u2 − 8u4 = 16(1− u)− 40(1− u)2 + 32(1− u)3 − 8(1− u)4

5 1− 5u+ 20u3 − 16u5 = 25(1− u)− 100(1− u)2 + 140(u− 1)3 − 80(u− 1)4 + 16(u− 1)5

6 2− 18u2 + 48u4 − 32u6

Table 1. The polynomials Cn̄ for small n̄—see e.g. [1, Ta-
ble 22.3][6, 18.5.14]—and associated expansion coefficients cn̄,i for
their expansions around u = 1.

The standard recurrence for the Chebyshev polynomials [1, 22.7.4] leads imme-
diately to the recurrence

(15) Cn̄(u) = 2(1− u) + 2Cn̄−1(u)− Cn̄−2(u)− 2(1− u)Cn̄−1(u).

Noticing that C−1 = C1, all values of Cn̄≥2 can be bootstrapped from the smaller
expansions. In terms of the expansion coefficients

(16) Cn̄(u) ≡
n̄∑
j=1

cn̄,j(1− u)j

this implies cn̄,j = c−n̄,j , c0,j = 0, c1,j = δ1,|j| and

(17) cn̄,j = 2δj,1 + 2cn̄−1,j − 2cn̄−1,j−1 − cn̄−2,j .

Remark 1. The unsigned coefficients (−)j+1cn̄,j are coefficients of Morgan-Voyce
polynomials [4, A211957][9, 8]. The bivariate generating function is

(18)
∑

n̄≥0,j≥0

cn̄,jt
n̄zj =

tz(1 + t)

[(1− t)2 + 2tz](1− t)
.

A sum rule is

(19)
∑
j≥0

cn̄,j = 1− Tn̄(0) =

 1, n̄ odd;
0, 4 | n̄;
2, 4 - n̄, n̄ even.

A special value is—with C1(u) = 1− u—reduced via [5, 2.281,2.261]

(20) I1 =

∫ 1

0

du
1

(1 + u)
√

(2 + u)(2− u)
=

∫ 1

1/2

dt
1√

−1 + 2t+ 3t2
=∫ 1

1/2

dt
1√

(t+ 1)(3t− 1)
=

1√
3

ln[1 +
√

3/2] ≈ 0.3601572 . . .
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For n̄ > 1 the Taylor expansion (16) is inserted into (13):

(21) In̄ =

n̄∑
j=1

cn̄,j

∫ 1

0

du

(1− u)(1 + u)
√

(2 + u)(2− u)
(1− u)j

=

n̄−1∑
j=0

cn̄,j+1

∫ 1

0

du

(1 + u)
√

(2 + u)(2− u)
(1− u)j

= cn̄,1I1 +

n̄−1∑
j=1

cn̄,j+1(−)j
∫ 1

0

du

(1 + u)
√

(2 + u)(2− u)
(u− 1)j

= cn̄,1I1 +

n̄−1∑
j=1

(−)jcn̄,j+1

∫ 1

0

du

(1 + u)
√

(2 + u)(2− u)
(u+ 1− 2)j

= cn̄,1I1 +

n̄−1∑
j=1

(−)jcn̄,j+1

j∑
k=0

(
j

k

)
(−2)j−k

∫ 1

0

du

(1 + u)
√

(2 + u)(2− u)
(1 + u)k

= cn̄,1I1+

n̄−1∑
j=1

(−)jcn̄,j+1

[
(−2)jI1 +

j∑
k=1

(
j

k

)
(−2)j−k

∫ 1

0

du√
(2 + u)(2− u)

(1 + u)k−1

]

= εn̄I1 +

n̄−1∑
j=1

2jcn̄,j+1

[
j−1∑
k=0

(
j

k + 1

)
(−2)−k−1

∫ 1

0

du√
(2 + u)(2− u)

(1 + u)k

]
where εn ≡ n (mod 2) is 1 if n is odd, and 0 if n is even.

Definition 5.

(22) Jk ≡
∫ 1

0

du√
2− u

√
2 + u

(1 + u)k, k ≥ 0,

such that [5, 2.261]

(23) J0 = π/6 ≈ 0.523599; J1 = π/6 + 2−
√

3 ≈ 0.791548.

2.2. Partial Integration. By repeated partial integration the values for larger k
can be derived via

(24) kJk = −2k−1√3 + 2 + (2k − 1)Jk−1 + 3(k − 1)Jk−2.

Remark 2. By telescoping the recurrence (24) can be written
√

3-free:

(25) kJk + (−4k + 3)Jk−1 + (k − 3)Jk−2 + 6(k − 2)Jk−3 + 2 = 0.

Remark 3. To keep the irrational terms separated in a computer algebra system,
one may split Jk = αk

√
3 + σk + τkπ into three sequences αk, σk and τk of rational

numbers:

(26) kσk + (1− 2k)σk−1 + 3(1− k)σk−2 − 2 = 0.; σ0 = 0, σ1 = 2;σ2 = 4

(27)
kαk+(−4k+3)αk−1+(k−3)αk−2+6(k−2)αk−3 = 0; α0 = 0, α1 = −1, α2 = −5/2.

with generating function

(28)
∑
k≥0

αkz
k =

1√
(1− 3z)(1 + z

[
1√
3

arctan
1− 5z

√
3
√

(1− 3z)(1 + z)
− π

6
√

3

]
.
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n̄\k 0 1 2 3 4 5 6
0
1
2 1
3 2 1
4 4 4 1
5 6 11 6 1
6 9 24 22 8 1
7 12 46 62 37 10 1
8 16 80 148 128 56 12 1
9 20 130 314 367 230 79 14 1

Table 2. Table of ĉn̄,k for small indices.

(29) kτk + (−2k + 1)τk−1 + 3(1− k)τk−2 = 0. τ0 = τ1 = 1/6; τ2 = 1/2

Interchanging the two summations in (21):

(30) In̄ = εn̄I1 +

n̄−2∑
k=0

Jk
(−2)k+1

n̄−1∑
j=k+1

2jcn̄,j+1

(
j

k + 1

)

= εn̄I1 +

n̄−2∑
k=0

Jk
(−2)k+1

n̄−k−2∑
j=0

2j+k+1cn̄,j+k+2

(
j + k + 1

k + 1

)

= εn̄I1 +

n̄−2∑
k=0

(−)k+1Jk

n̄−k−2∑
j=0

2jcn̄,j+k+2

(
j + k + 1

j

)
.

The relevant coefficients are therefore

(31) ĉn̄,k ≡
1

2k+1
(−1)n̄+1

n̄−k−2∑
j=0

2jcn̄,j+k+2

(
j + k + 1

j

)

= (−1)n̄+1
n̄−1∑
v=0

(−)v
(
k + 1 + v

2k + 2

)

of Table 2, which is essentially one of Barry’s Riordan arrays [4, A158454][3].

(32) In̄ = εn̄I1 + (−)n̄+1
n̄−2∑
k=0

(−2)k+1Jk ĉn̄,k.

2.3. Algorithm for n = p. To compute Rn,n one needs In̄ for even n̄, which are
computed as follows: For n̄ = 0 and n̄ = 1 insert (10) and (20). For n̄ > 1 compute
(32) where J0,1 are the constants (23), other Jk recursively derived with (24), and
the integer coefficients cn̄,j recursively addressed with (17) or computed via (31).
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Example 1.

I0 = 0;(33)

I2 =
1

3
π;(34)

I4 =
8

3
π − 4

√
3;(35)

I6 = 27π − 48
√

3;(36)

I8 =
928

3
π − 560

√
3;(37)

I10 =
11249

3
π − 6800

√
3;(38)

I12 = 46872π − 425076

5

√
3.(39)

Conjecture 1.

(40) I2n = βnπ/3− γn
√

3

where the sequences βn and γn can be recursively computed by P-finite recurrences

(41) (n− 1)βn − (15n− 22)βn−1 + (15n− 23)βn−2 − (n− 2)βn−3 = 0

and

(42) (n− 1)γn − (15n− 22)γn−1 + (15n− 23)γn−2 − (n− 2)γn−3 − 4 = 0

starting at β0 = 0, β1 = 1, β2 = 8, γ0 = γ1 = 0, γ2 = 4.

Remark 4. The first order homogeneous separable differential equation of the gen-
erating function derived from (41) can be solved as

(43) β(z) ≡
∑
n≥0

βnz
n =

z

(1− z)
√

1− 14z + z2
.

The first differences βn − βn−1 = 1, 7, 73, 847, . . . are Legendre Polynomials Pn(7),
[4, A084768]. Likewise the first order inhomogeneous linear differential equation
derived for the generating function of (42) can be solved:

(44) γ(z) ≡
∑
n≥0

γnz
n =

2√
3

z

(1− z)
√

1− 14z + z2

[
arctan

(1 + z)
√

3√
1− 14z + z2

− π

3

]
.

The merger of these two generating functions is

(45) I(z) ≡
∑
n≥0

I2nz
n =

z

(1− z)
√

1− 14z + z2

[
π − 2 arctan

(1 + z)
√

3√
1− 14z + z2

]
.

Conjecture 2.

(46) I2n+1 = I1 + φn − ηn
√

3

with P-finite recurrences

(47) (−2n+1)φn+2(14n−13)φn−1−28φn−2+2(−14n+29)φn−3+(2n−5)φn−4 = 0,

starting φ0 = 0, φ1 = 8, φ2 = 232/3, φ3 = 12784/15, and
(48)
(−2n+1)ηn+32(n−1)ηn−1 +30(−2n+3)ηn−2 +32(n−2)ηn−3 +(−2n+5)ηn−4 = 0

starting η0 = 0, η1 = 4, η2 = 44, η3 = 2456/5.
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3. The Recurrence for n 6= p

The cases for n 6= p are reduced to the values for n = p by the symmetry
properties of the grid. R is invariant applying elements of the cyclic group of order
6 of rotations by multiples of 60◦:

(49) Rn,p = Rn−p,n = R−p,n−p = R−n,−p = R−n+p,−n = Rp,−n+p.

Any pair of indices is reduced by one of these to the region n ≥ 0 and p ≥ 0. The
additional invariance

(50) Rn,p = Rp,n

with respect to the sign of the difference of the two coordinates represents a mirror
line in the lattice. These symmetries combined represent a dihedral group of order
12, see p6m in [7]. A combination of (50) and the first relation of (49) yields

(51) Rn,p = Rn,n−p

which may be used to fold the cases p > n/2 to the 30◦ wedge of the ‘irreducible’
Brioullin zone for p6mm [10].

For a general point in that wedge of the lattice the unnumbered equation prior
to [2, (13)] decreases the indices recursively until one or both become zero or both
become equal, where Rn,0 = Rn,n = I2n/π derived in Section 2.3 take over:
(52)
Rn,p = 6Rn−1,p−1−Rn−1,p−Rn,p−1−Rn−2,p−1−Rn−1,p−2−Rn−2,p−2, n > 0, p ≥ 2.

For p = 1 this equation includes terms with negative second indices on the right
hand side; the second relation in (49) plus that swap (50) yield Rn,−1 = Rn+1,1 to
lift these, so for p = 1 (52) is effectively

(53) Rn,1 = 3Rn−1,0 −Rn−1,1 −
1

2
(Rn,0 +Rn−2,0).

4. Summary

We have shown how the resistor values Rn,p of the infinite triangular lattice can
be computed recursively with standard techniques of integration.
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