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Abstract We propose a system of self-consistent equations for electron fluid in metal, which 
describes vortex flows and frozen-in internal electromagnetic field. It is shown that in case of ideal 
fluid the proposed model describes the electrodynamics of superconductor, and in vortex-less case it 
leads to the well known London equations. However, the speed of fluctuations propagation is equal 
to the speed of electron sound, and not the speed of light, which is more adequate from a physical 
point of view. The normal metal is described by similar equations, but taking into account damping 
processes. The main peculiarities of the proposed equations are illustrated with the analysis of 
electron sound waves. 

1. Introduction 

In recent decades, much attention has been paid to the description of fluid dynamics by vector fields 
including vectors of speed and vorticity, which satisfy symmetric Maxwell-type equations [1–9]. In 
particular, a similar approach is used to describe the plasma motion within the framework of a 
hydrodynamic two-fluid model [10–13]. However, in all mentioned works an additional equation 
for the vortex motion is obtained by taking the “curl” operator from the Euler equation and, 
therefore, the resulting equation is not independent. Recently, we have developed an alternative 
approach based on the droplet model of fluid introduced by Helmholtz [14] and obtained a closed 
system of Maxwell-type equations for the vortex fluid taking into account the rotation and twisting 
of vortex tubes [15,16]. Here, we apply these equations to develop the hydrodynamic description of 
vortex flows of electron fluid in metal. 

2. System of equations for electron fluid in a superconductor 

From the hydrodynamic point of view a superconductor is an electron-ion system in which the ions 
are stationary while the electronic component is a charged ideal liquid without dissipation. The 
system of hydrodynamic equations describing the electron fluid in a superconductor can be 
represented [16] in the following form 
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Here index s means that values correspond to superconducting electrons. Parameter ss  is the speed 

of sound in the superconducting electron fluid, sv  is the local flow velocity, su  is a quantity 

proportional to the enthalpy per unit mass, sw  is a quantity characterizing the rotation of the vortex 
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tubes, and s  is a quantity that characterizes the twisting of the vortex tubes. The parameter s  is 
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where e  is the charge and 0m  is the mass of electron. The variable su  is 
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where sh  is the enthalpy per unit mass, sn   is the electron concentration ( 0sn  is equilibrium electron 

concentration). The variable sw  is  
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where s  is the angular vector of rotation of the vortex tube, s  is the angular velocity of the 

vortex tube rotation. The value s  characterizes the twisting of the vortex tube 

| | ,s s ss   

where s  is the twisting angle of the vortex tube.  

The internal electric and magnetic fields are generated only due to deviations of electron fluid 
parameters from equilibrium values [16]. They described by the following system of equations: 
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The equations (1) and (2) form the self-consistent system describing the vortex electron fluid. 

3. System of linearized equations 

Neglecting the convective derivatives and linearizing the terms 
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in field equations we obtain the following system of linearized equations  
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and 
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For linearized equations, the following relations hold:  
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The value 

  2 2 2 21

2 s s s su   v w       (8) 

represents the density of mechanical energy per unit mass. The value 
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is the mechanical energy flux density. The value  
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is the volume density of the electromagnetic energy of the internal field, and the value 
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is the flux density of the electromagnetic energy of the internal field. 

4. Sound waves in a superconducting condensate 

Let us consider small fluctuations of electron fluid parameters near the equilibrium state 
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Then we get 
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From the systems (13) and (14) we have the following wave equations for the parameters of 
electron fluid 
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and for the internal fields 
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The parameter sp  is the plasma frequency of electron fluid 



 

The schematic draw of dispersion relation 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The schematic draw of dispersion curve for sound waves

 

5. Relation to the Londons equations

Let us consider the flow of a superconducting condensate without taking into account the vortex 
motion. Then 

and linearized equations (4) are transformed into

Rewriting these equations in t
account the sign of the electron charge), we have

5 

2
2 0

0

4
.s

sp

n e

m

     

The schematic draw of dispersion relation for equations (15) and (16) is represented in F

The schematic draw of dispersion curve for sound waves in ideal electron fluid

equations 

of a superconducting condensate without taking into account the vortex 

0,

0,
s

s

g



=

w
    

inearized equations (4) are transformed into 

0 0

1
,s

s s s
s s s

s e
n

s t n m s


  


v E    

0

= ,s s
s

e

m s
v B      

0

1
0,s s

s

n
n t


  


v      

Rewriting these equations in the usual terms of the density of charge and current (taking into 
account the sign of the electron charge), we have 
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Corresponding wave equations are 
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Thus, equations (22)-(24), (26) and (27) have the form of the London equations [17,18]. However, 
the speed of propagation of perturbations in the electron fluid is equal to the speed of electronic 
sound, and not the speed of light, which seems to be more adequate from a physical point of view. 

6. Hydrodynamic model of electron gas in a normal metal 

In a normal metal electrons collide with a crystal lattice, which is accompanied by energy 
dissipation processes. Let us denote the frequency of collisions by  . Then the linearized equations 
describing the motion of the electron fluid in a normal metal are written as follows: 
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Here index n means that values correspond to electrons in normal metal. From equations (28) and 
(29) we have the following relations for energy and momentum: 
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The expressions (30) and (31) are the analogs of Poynting theorem (known in electrodynamics) for 
electron fluid in normal metal. 

7. Sound waves in normal metal  

Let us consider small fluctuations of electron fluid parameters in normal metal near the equilibrium 
state 
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The linearized equations are 
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and fields satisfy the equations (29). Then from (29) and (33) we obtain the following wave 
equations: 
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8. Two-fluid model of mixed state in superconductor 

The system of equations describing the waves in mixture of normal and superconducting electrons 
is written as follows: 
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Wave equations for sound waves can be represented in the following form 



 

2

s s
t t

    
                      

where generalized parameter P

The dispersion relation is 

 2 2 2 2 2 2 2 2 2 2 22 0.i s k s k              

The schematic draw of dispersion relation

 

 

 

 

 

 

 

 

 

 

Fig. 3. The schematic plots

9. Conclusion 

Thus, we have proposed the 
vortex flow of electron fluid and 
fields satisfy modified Maxwell's equations
fluid and propagate at the speed of sound.
condensate as the ideal electron fluid. In the case of vortex
very close to London equations, but the speed of fluctuations propagation is equal to the sped of 
electron sound, not the speed of light. 
described by additional parameter, which means the collision frequency.
electron fluid in normal metal and propose two
advantages of self-consistent equations are illustrated by derivation and analysis of wave equations 
for electron sound waves in metals.
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2
2 2 2 2 2 2

2
0n np s sp np sps s

t t
    

                          
P , 

P  takes the meanings  

 , , , , , , , , , , , .s s s s s s n n n n n nn g n g          P v w E B v w E B

 2 2 2 2 2 2 2 2 2 2 22 0.n np s sp np spi s k s k              

The schematic draw of dispersion relation (45) is represented in Fig. 3. 

plots of dispersion curves for electron sound waves
superconductor. 

 self-consistent hydrodynamic model consisting
vortex flow of electron fluid and the equations for frozen-in electromagnetic field. 

modified Maxwell's equations, which show that the fields are incorporated in 
and propagate at the speed of sound. This approach enables the description of 

ideal electron fluid. In the case of vortex-less flow it leads us to the equations 
very close to London equations, but the speed of fluctuations propagation is equal to the sped of 

not the speed of light. We believe that in simple model the damping processes are 
described by additional parameter, which means the collision frequency. It allows us to describe the 
electron fluid in normal metal and propose two-fluid model of mixed state in superconductor. The 

equations are illustrated by derivation and analysis of wave equations 
for electron sound waves in metals. 

The author is grateful to Galina Mironova for moral support and to Dr. Sergey

0            (43) 

, , , , , , , , , , , .s s s s s s n n n n n n
    P v w E B v w E B    (44) 

2 2 2 2 2 2 2 2 2 2 22 0.n np s sp np sp                 (45) 

sound waves in mixed state of 

hydrodynamic model consisting of the equations for 
in electromagnetic field. The frozen-in 

, which show that the fields are incorporated in electron 
This approach enables the description of superconducting 

less flow it leads us to the equations 
very close to London equations, but the speed of fluctuations propagation is equal to the sped of 

model the damping processes are 
It allows us to describe the 

fluid model of mixed state in superconductor. The 
equations are illustrated by derivation and analysis of wave equations 

ral support and to Dr. Sergey Mironov for helpful 
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