A Fractal Belief KL Divergence

Jie Zeng^a, Fuyuan Xiao^{a,*}

^aSchool of Big Data and Software Engineering, Chongqing University, No.55 South University Town Road, Shapingba District, Chongqing 401331, China

Abstract

In this paper, a novel symmetric fractal-based belief KL divergence is proposed to more appropriately measure the conflict between BPAs.

Keywords: Dempster–Shafer evidence theory; Fractal Belief KL divergence; Conflict management; Multi-source data fusion; Classification;

1. The proposed method

Definition. (Symmetric fractal-based belief KL divergence measure)

Let m_1 and m_2 be two belief functions in the frame of discernment Θ . The symmetric fractal-based belief KL divergence $FBD_{SKL}(m_1, m_2)$ is defined as:

$$FBD_{SKL}(m_1, m_2) = \frac{1}{2} \sum_{i=1}^{2^n - 1} \begin{bmatrix} m_{F_1}(H_i) \log \frac{m_{F_1}(H_i)}{\sqrt{m_{F_1}(H_i) \times m_{F_2}(H_i)}} \\ + m_{F_2}(H_i) \log \frac{m_{F_2}(H_i)}{\sqrt{m_{F_2}(H_i) \times m_{F_1}(H_i)}} \end{bmatrix},$$

where $m_{F_k}(H_i)$ is based on fractal process and is defined as:

$$m_{F_k}(H_i) = \sum_{H_i \subseteq G_i} \frac{m_k(G_i)}{2^{|G_i|} - 1},$$

where $H_i, G_i \subseteq \Theta$.

^{*}Corresponding author: Fuyuan Xiao, School of Big Data and Software Engineering, Chongqing University, No.55 South University Town Road, Shapingba District, Chongqing 401331, China.

Email address: doctorxiaofy@hotmail.com; xiaofuyuan@cqu.edu.cn (Fuyuan Xiao)