
A Sheaf on a Lattice
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Abstract A sheaf is constructed on a topological space. But a topological space is a
bounded distributive lattice. Hence we may construct a sheaf of lattices on a bounded dis-
tributive lattice. Then we define a stalk of the sheaf at a chain in a bounded distributive
lattice. And we define a morphism of the sheaves, that the morphism is induced by a homo-
morphism of the bounded distributive lattices. Then the kernel and image of the morphism
are the subsheaves. A sheaf is obtained by gluing sheaves together.
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1. Introduction

Recall the definition of sheaves(see [1, 7, 9]). Suppose that F is a sheaf on a
topological space X. Let U be an open set of X. Then F (U) is a mathematical ob-
ject(e.g., set, group, ring). And the sheaf F satisfies several properties.

Since a topological space is a bounded distributive lattice(cf. [4,8]), we may con-
struct a sheaf L of lattices on a bounded distributive lattice L, see theorems 3.1
and 3.2 in subsection 3.1.

A stalk[1, 9] at p ∈ X of the sheaf F is a colimit(cf. [1, 6, 7, 9]). But we define a
stalk of L at a chain[definition 2.9]. The stalk of L is defined in definition 3.1.
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A morphism[1, 9] of sheaves is a natural transformation(cf. [1, 6, 7, 9]). Sup-
pose that ψ : L → L′ is a homomorphism[4, 8] of the bounded distributive lattices.
Then ψ induces a morphism ψ̂ : L → L ′, see theorem 3.3. That ψ̂ is a monomor-
phism(epimorphism) if ψ is a monomorphism(epimorphism), see definition 3.2.
A subsheaf[1, 9] of the L is a sheaf on a bounded distributive lattice which is a

sublattice of the L, see definition 3.3. And the kernel(cf. [1, 9]) of ψ̂ is a subsheaf,
see definition 3.4.

In subsection 3.5, we obtain a sheaf by gluing(cf. [1,9]) sheaves together.

2. Preliminaries

2.1. Bounded Distributive Lattice. Recall the definitions in [8].

Definition (Lattice[8]). A nonempty set L together with two binary operations ∨
and ∧ is called a lattice if it satisfies the following identities:

∨ y = y∨ 
∧ y = y∧ (commutative laws)

(∨ y)∨ z = ∨ (y∨ z)

(∧ y)∧ z = ∧ (y∧ z)
(associative laws)

∨  = 
∧  = (idempotent laws)

(∨ y)∧  = 

(∧ y)∨  = 
(absorption laws)

The lattice is denoted by L.

Definition 2.1 (Bounded Lattice[8]). An algebra 〈L,∨,∧,0,1〉 with two binary and
two nullary operations is a bounded lattice if it satisfies:

• 〈L,∨,∧〉 is a lattice.
• ∧ 0 = 0; ∨ 1 = 1.

Definition 2.2 (Distributive Lattice[8]). A distributive lattice is a lattice which
satisfies the distributive laws:

(∨ b)∧ c = (∧ c)∨ (b∧ c)

(∧ b)∨ c = (∨ c)∧ (b∨ c)

Then we have the following proposition.

Proposition 2.1 (cf. [8]). Suppose that X is a topological space. Then the open
subsets of X form a bounded distributive lattice. The bounded distributive lattice is
denoted by L(X).

Proof. For open sets U, V ⊆ X, let U ≤ V if U ⊆ V. Then open subsets form a poset[8].
And every subset of the poset has the infimum and supremum. Hence the poset is
a lattice by [8, definition 1.4]. Then let U, V, W be open subsets of X. Define

U∨ V := sp{U,V}

U∧ V := inf{U,V}

0 := ∅

1 := X
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And sp{U,V} = U ∪ V. Then we have that

(U∨ V)∧W = inf{sp{U,V},W}

= inf{U ∪ V,W}

= inf{U,W} ∪ inf{V,W}

= sp{inf{U,W}, inf{V,W}

= (U∧W)∨ (V ∧W)

(U∧ V)∨W = sp{inf{U,V},W}

= inf{U,V} ∪W
= inf{U ∪W,V ∪W}

= inf{sp{U,W}, sp{V,W}}

= (U∨W)∧ (V ∨W)

And,

U∧∅ = ∅

U∨ X = X

We are done, by the definitions 2.1 and 2.2. □

2.2. Poset. A partial order set(briefly a poset) is a nonempty set together with a
binary relation which is reflexive, transitive and antisymmetric, see [8,10].

Definition 2.3 ([8]). Let L be a lattice. For , b ∈ L, define  ≤ b if ∧ b = .

Theorem 2.1 ([8]). A lattice L is a poset.

Proof. Immediate from the definition 2.3. □

Theorem 2.2 ([8]). Suppose that 〈L,∨,∧,0,1〉 is a bounded distributive lattice.
Then an interval [0, ] := { ∈ L | ∧  = } is a sublattice of 〈L,∨,∧〉 for all  ∈ L.
Proof. For , y ∈ [0, ], we have

∧ 0 = 0

∨ 0 = ∨ (∧ 0)
= 

(∧ y)∧  = ∧ (y∧ )
= ∧ y

(∨ y)∧  = (∧ )∨ (y∧ )
= ∨ y

Hence ∨ y, ∧ y ∈ [0, ]. □

Corollary 2.1.1 ([8]). The interval [0, ] is a bounded distributive lattice.

Proof. It is obvious that the lattice 〈[0, ],∨,∧,0, 〉 is a bounded distributive lattice.
□

Theorem 2.3 (cf. [8]). Suppose that 〈L,∨,∧,0,1〉 is a bounded distributive lattice.
Then [0,1] ∼= L.

Lemma 2.1. For every  ∈ L, ∧ 1 = .
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Proof. We have ∧ 1 = ∧ (∨ 1) =  □

Proof of theorem 2.3. Immediate from theorem 2.2 and lemma 2.1. □

2.3. Lattice of the Sublattices. The intervals of a bounded distributive lattice may
form a lattice.

Proposition 2.2 (cf. [8]). Suppose that 〈L,∨,∧,0,1〉 is a bounded distributive lat-
tice. Let , b ∈ L. Then the intersection [0, ] ∩ [0, b] is a sublattice of 〈L,∨,∧〉.
Proof. The intersection is not empty, since 0 ∈ [0, ] ∩ [0, b]. We have ∧ y, ∨ y ∈
[0, ] ∩ [0, b] for all , y ∈ [0, ] ∩ [0, b]. Therefore, the statement is true. □

It is obvious that c ≤  implies that [0, c] is a sublattice of [0, ].

Corollary 2.2.1 (cf. [8]). If c ≤  and c ≤ b, then the subset [0, c] is a sublattice of
[0, ] ∩ [0, b].
Proof. If  ≤ c, then  ≤ b and  ≤ . It follows  ∈ [0, ] ∩ [0, b]. And we have
[0, c] ∩ [0, ] ∩ [0, b] = [0, c]. By theorem 2.2, the subset [0, c] is a sublattice of
[0, ] ∩ [0, b]. □

Proposition 2.3 (cf. [8]). Suppose that L is a bounded distributive lattice. Let
, b ∈ L. Then [0, ] ∩ [0, b] is the set {∧ y |  ∈ [0, ], y ∈ [0, b]}.
Proof. We have ∧ y∧  = ∧ y and ∧ y∧ b = ∧ y. It follows

{∧ y |  ∈ [0, ], y ∈ [0, b]} ⊆ [0, ] ∩ [0, b]
On the other hand, for every z ∈ [0, ] ∩ [0, b], we have z = z ∧  and z = z ∧ b.
Hence z = z∧ z = (z∧ )∧ (z∧ b). So [0, ] ∩ [0, b] ⊆ {∧ y |  ∈ [0, ], y ∈ [0, b]}.
Therefore, [0, ] ∩ [0, b] = {∧ y |  ∈ [0, ], y ∈ [0, b]}. □

Corollary 2.3.1 (cf. [8]).

[0, ] ∩ [0, b] = [0, ∧ b]

Proof. We have that  ∈ [0, ] ∩ [0, b] implies  ≤ ∧b ≤ , b. Then immediate from
propositions 2.2 and 2.3 and corollary 2.2.1. □

Proposition 2.4 (cf. [8]). Suppose that L is a bounded distributive lattice. Let U be
the set {∨ y |  ∈ [0, ], y ∈ [0, b]} for , b ∈ L. Then the set U is a sublattice of
〈L,∨,∧〉.
Proof. For all  ∈ [0, ], y ∈ [0, b], we have ∧ y ∈ ([0, ] ∩ [0, b] = [0, ∧ b]) by
proposition 2.3 and corollary 2.3.1. And let , ′ ∈ [0, ] and y, y′ ∈ [0, b].

∨ y∨ ′ ∨ y′ = ∨ ′ ∨ y∨ y′
(∨ y)∧ (′ ∨ y′) = ((∨ y)∧ ′)∨ ((∨ y)∧ y′)

= (∧ ′)∨ (y∧ ′)∨ (∧ y′)∨ (y∧ y′)
= ((∧ ′)∨ (y∧ ′))∨ ((∧ y′)∨ (y∧ y′))

Since ∧ ′, ∨ ′ ∈ [0, ], y∧ y′, y∨ y′ ∈ [0, b] and y∧ ′, ∧ y′ ∈ [0, ] ∩ [0, b].
Therefore, the set U is a sublattice. □

Definition 2.4 (cf. [8]). The sublattice U in proposition 2.4 is said to be generated
by the set [0, ] ∪ [0, b]. We denote the sublattice U by G([0, ] ∪ [0, b]).
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Corollary 2.4.1 (cf. [8]).

G([0, ] ∪ [0, b]) = [0, ∨ b]

Proof. Let  ∈ [0, ], y ∈ [0, b]. Then we have

(∨ y)∧ (∨ b) = (∧ (∨ b))∨ (y∧ (∨ b))

= ((∧ )∨ (∧ b))∨ ((y∧ )∨ (y∧ b))

= (∨ (∧ b))∨ ((y∧ )∨ y)
= ∨ y

Hence U ⊆ [0, ∨ b]. On the other hand, for every z ∈ [0, ∨ b], we have

z = z∧ (∨ b) = (z∧ )∨ (z∧ b)

It follows [0, ∨ b] ⊆ U. And ∧ y ∈ [0, ] ∩ [0, b]. Therefore, U = [0, ∨ b]. □

Now we may define a bounded distributive lattice by the intervals.

Theorem 2.4 (cf. [8]). Suppose that L is a bounded distributive lattice. Let I(L) be
the set {[0, ] |  ∈ L}. Then I(L) is a bounded distributive lattice.

Proof. For every , b ∈ L, define
[0, ] ∧ [0, b] := [0, ] ∩ [0, b]
[0, ] ∨ [0, b] := G([0, ] ∪ [0, b])

0 := [0,0]
1 := L

Then it is a bounded lattice by propositions 2.2 to 2.4, corollarys 2.2.1 to 2.4.1,
definition 2.4, and theorem 2.3.

Let  = [0, ], b = [0, b], c = [0, c] for , b, c ∈ L. By corollarys 2.3.1 and 2.4.1,
we have

( ∧ b)∨ c = ∧b ∨ c
= (∧b)∨c
= (∨c)∧(b∨c)
= ∨c ∧ b∨c
= ( ∨ c)∧ (b ∨ c)

and

( ∨ b)∧ c = ∨b ∧ c
= (∨b)∧c
= (∧c)∨(b∧c)
= ∧c ∨ b∧c
= ( ∧ c)∨ (b ∧ c)

Therefore, the algebra 〈I(L),∨,∧,{0},L〉 is a bounded distributive lattice. □
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Hence we have

[0, ] ∧ [0, b] = [0, ] ∩ [0, b]
= [0, ∧ b]

G([0, ] ∪ [0, b]) = [0, ] ∨ [0, b]
= [0, ∨ b]

2.4. Homomorphism of the Lattices. Let L,L′ be two bounded distributive lat-
tices. A homomorphism ϕ : L→ L′ is a function compatible with the n-ary operations
of the lattices for n ≥ 0(cf. [2–4,8]).
Theorem 2.5. Suppose that L,L′ are two bounded distributive lattices. Let ψ : L→
L′ be a homomorphism. If  ∈ L, then ψ induces a homomorphism ψ̂ : [0, ] →
[0, ψ()] given by  7→ ψ().

Proof. If  ∈ [0, ], then ∧  = . Hence

ψ() = ψ(∧ ) = ψ()∧ ψ()

It follows ψ() ∈ [0, ψ()]. And the subset [0, ] is a sublattice of 〈L,∨,∧〉 by theo-
rem 2.2. Hence ψ̂ := ψ↾[0, ] is a homomorphism. □

Corollary 2.5.1 (cf. [2–4, 6–8]). If ψ is a monomorphism(epimorphism, isomor-
phism), then ψ̂ is a monomorphism(epimorphism, isomorphism) for  ∈ L.
Proof. Suppose that ψ is a monomorphism. Let , y ∈ [0, ] with  6= y. Then ψ() 6=
ψ(y). It follows ψ̂() 6= ψ̂(y). Hence ψ̂ is a monomorphism.
Suppose that ψ is an epimorphism. For every  ∈ [0, ψ()], there exists  ∈ L

such that ψ() = . And

 = ∧ ψ() = ψ()∧ ψ() = ψ(∧ )

Since ∧  is in [0, ], that ψ̂ is an epimorphism.
Suppose that ψ is an isomorphism. It follows that ψ̂ is an isomorphism. □

Let ψ : L→ L′ be a homomorphism. Then the subset ψ−1(0) is special, since it has
some interesting properties.

Proposition 2.5. The subset ψ−1(0) is an interval. Hence it is a bounded distribu-
tive lattice.

To prove proposition 2.5, we need the following lemma.

Lemma 2.2. The subset ψ−1(0) has one maximal member.

Proof. We have

ψ(
∨

∈ψ−1(0)
) =
∨

∈ψ−1(0)
ψ()

=
∨

0

= 0

It follows
∨

∈ψ−1(0)
 ∈ ψ−1(0). And it is obvious that

∨
∈ψ−1(0)

 is the unique maximal

member. □
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Proof of proposition 2.5. Let K be the subset ψ−1(0), m the maximal member of K
by lemma 2.2. We have 0 ∈ K. For , b ∈ K, ψ( ∨ b) = 0, ψ( ∧ b) = 0. It follows
 ∨ b,  ∧ b ∈ K. Hence K is a lattice. And for every  ≤ m, ψ() = ψ( ∧m) = 0.
Hence [0,m] ⊆ K. On the other hand, for every  ∈ K, we have  ≤ m. Hence
K ⊆ [0,m]. Therefore, K = [0,m]. By corollary 2.1.1, K is a bounded distributive
lattice. □
The kernel of ψ, kerψ, is a congruence relation(cf. [4,8]), that is, 〈, b〉 ∈ kerψ iff

ψ() = ψ(b). But we need an other definition of kernel in the case of ψ̂□.

Definition 2.5 (cf. [2, 3]). Suppose that ψ̂ is a homomorphism defined in theo-
rem 2.5. Then the kernel of ψ̂ is the intersection ψ−1(0) ∩ [0, ].
Proposition 2.6. Suppose that ψ̂ is a homomorphism defined in theorem 2.5.
Then the kernel ker ψ̂ is a sublattice of the lattice [0, ]. And the kernel is an
interval.

Proof. Immediate from propositions 2.2 and 2.5, theorem 2.2, and corollary 2.3.1 □
There exists a special homomorphism which is a mapping from an interval to its

subinterval.

Theorem 2.6 ([8]). Suppose that L is a bounded distributive lattice. Let , b ∈ L
with  ≤ b. Then there exist a homomorphism ϕb, : [0, b] → [0, ] given by  7→
 ∧ . That ϕb, is a homomorphism of the bounded distributive lattices. If  = b,
then the homomorphism ϕb, is an indentity isomorphism[3,4,8].

Proof. By corollary 2.1.1, we have that the subsets [0, ], [0, b] are bounded dis-
tributive lattices. For every  ∈ [0, b],  ∧  =  ∧ ( ∧ ) = ( ∧ ) ∧ . It follows
∧  ≤ , ∧  ∈ [0, ]. And that  ≤ b implies b∧  = . For , y, z ∈ [0, b],

(∨ y)∧  = (∧ )∨ (y∧ )

(∧ y)∧  = ∧ y∧ ∧ 

= (∧ )∧ (y∧ )

((∨ y)∧ z)∧  = ((∧ z)∨ (y∧ z))∧ 

= (∧ z∧ )∨ (y∧ z∧ )

= (∧ ∧ z∧ )∨ (y∧ ∧ z∧ )

((∧ y)∨ z)∧  = ((∨ z)∧ (y∨ z))∧ 

= ((∨ z)∧ )∧ ((y∨ z)∧ )

= ((∧ )∨ (z∧ ))∧ ((y∧ )∨ (z∧ ))

Hence

ϕ(∨ y) = ϕ()∨ ϕ(y)

ϕ(∧ y) = ϕ()∧ ϕ(y)

ϕ((∨ y)∧ z) = (ϕ()∧ ϕ(z))∨ (ϕ(y)∧ ϕ(z))

ϕ((∧ y)∨ z) = (ϕ()∨ ϕ(z))∧ (ϕ(y)∨ ϕ(z))

ϕ(0) = 0

ϕ(b) = 

It is obvious that  = b implies that ϕ is an identity isomorphism. □
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Proposition 2.7. Suppose that L is a bounded distributive lattice. Let , b, c ∈ L
with  ≤ b ≤ c. Let ϕb, : [0, b] → [0, ], ϕc,b : [0, c] → [0, b], ϕc, : [0, c] → [0, ] be
the homomorphisms which are defined in theorem 2.6. Then the following diagram
is commutative.

[0, c]
ϕc, //

ϕc,b $$

[0, ]

[0, b]
ϕb,

::

Proof. For every  ∈ [0, c],
(∧ b)∧  = ∧ (b∧ ) = ∧ 

It follows ϕb,(ϕc,b()) = ϕc,(). □
Theorem 2.7. Suppose that L is a bounded distributive lattice. Let , 1, 2 ∈ L
with  = 1 ∨ 2. If , y ∈ [0, ], then (∧  = y∧ )=1,2 implies  = y.

Proof.

 = ∧ 

= ∧ (1 ∨ 2)

= (∧ 1)∨ (∧ 2)

= (y∧ 1)∨ (y∧ 2)

= y∧ (1 ∨ 2)
= y □

Corollary 2.7.1. Let {}∈ ⊆ L,  ∈ L with
∨
∈
 = . If ∧  = y∧  for all , then

 = y.

Proof. It is obvious. □
Corollary 2.7.2. Suppose that ϕ, is a homomorphism defined in theorem 2.6 for
all . If ϕ,() = ϕ,(y) for all , then  = y.

Proof. It is obvious. □
Theorem 2.8. Suppose that L is a bounded distributive lattice. Let , 1, 2 ∈ L
with  = 1 ∨ 2. If 1 ∈ [0, 1], 2 ∈ [0, 2] with 1 ∧ 1 ∧ 2 = 2 ∧ 1 ∧ 2, then
there exists  ∈ [0, ] such that ∧ 1 = 1 and ∧ 2 = 2.

Proof. The equation 1 ∧ 1 ∧ 2 = 2 ∧ 1 ∧ 2 implies 1 ∧ 2 = 2 ∧ 1. Then we
have (1 ∧ 2)∨ 1 = (2 ∧ 1)∨ 1. It follows

(2.1) 1 = (2 ∨ 1)∧ (1 ∨ 1)

Similarly, we have (1 ∧ 2)∨ 2 = (2 ∧ 1)∨ 2. It implies

(2.2) (1 ∨ 2)∧ (2 ∨ 2) = 2
Since 2 ∨ 1 ∈ [0, ], 1 ∨ 1 = 1, 2 ∨ 2 = 2, equations (2.1) and (2.2), hence
the statement is true, and  = 1 ∨ 2 as desired. □

Corollary 2.8.1. Let {}∈ ⊆ L,  ∈ L with
∨
∈
 = ,  ∈ [0, ]. If  ∧  ∧ j =

j ∧  ∧ j for all , j then there exists  ∈ [0, ] such that  = ∧ .
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Proof. It is obvious. □

Corollary 2.8.2. Suppose that the following mappings ϕ□,□ are the homomor-
phisms defined in theorem 2.6. If ϕ,∧j() = ϕj,∧j(j) for all , j then there
exists  ∈ [0, ] such that  = ϕ,().

Proof. It is obvious. □

The composition of ϕ□,□ and ψ̂□ is commutative.

Proposition 2.8. Suppose that L,L′ are bounded distributive lattices. Let ψ : L →
L′ be a homomorphism and , b ∈ L with b ≤ . Then the following diagram is
commutative where ψ̂□ and ϕ□,□ are defined in theorems 2.5 and 2.6, respectively.

[0, ]
ψ̂ //

ϕ,b
��

[0, ψ()]

ϕψ(),ψ(b)
��

[0, b]
ψ̂b // [0, ψ(b)]

Proof. For every  ∈ [0, ],
ψ()∧ ψ(b) = ψ(∧ b)

Therefore, the statement is true. □

2.5. Generated by Lattices. By propositions 2.2 and 2.3 and corollary 2.3.1, we
have ∧ y ∈ [0, ∧ b] for all  ∈ [0, ], y ∈ [0, b]. If ∧ b = 0, then [0, ] ∩ [0, b] =
{0}. Hence  ∧ y = 0 for all  ∈ [0, ], y ∈ [0, b]. If  ∧ b 6= 0, then there exists
 ∈ [0, ], y ∈ [0, b] such that ∧ y 6= 0, since ∧ ∧ b and y∧ ∧ b need not be
0. And we have

([0, ] ∩ [0, b] = [0, ∧ b]) ⊆ [0, ], [0, b]
⊆ (G([0, ] ∪ [0, b]) = [0, ∨ b])

Hence we have
∧ y = ∧ y∧ (∧ b)

= (∧ ∧ b)∧ (y∧ ∧ b)

= ϕ,∧b()∧ ϕb,∧b(y)
(2.3)

where ϕ□,□ is defined in theorem 2.6.
Since an interval is a bounded distributive lattice(cf. corollary 2.1.1), and a bounded

distributive lattice is regarded as the ‘join’ of the intervals, hence we may obtain a
bounded distributive lattice by other bounded distributive lattices.

Suppose that L,L′ are bounded distributive lattices. Let  ∈ L, ′ ∈ L′ with [0, ] ∼=
[0, ′]. Then there exists an isomorphism η : [0, ] → [0, ′] of bounded distributive
lattices. We may define an equivalence relation[10] by η and η−1.
Definition 2.6 (cf. [2,3,8,10]). Let ‘∼’ be an equivalence relation in L∪L′ provided
that

 ∼ y if


 = y for , y ∈ L ∪ L′
η() = y for  ∈ [0, ]
 = η−1(y) for y ∈ [0, ′]
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A quotient(cf. [2, 3, 8]) of the set is an equivalence classes determined by an
equivalence relation. Then we have a quotient (L ∪ L′) / ∼.
Definition 2.7. Suppose that L,L′ are bounded distributive lattices. Let  ∈ L, ′ ∈
L′ with [0, ] ∼= [0, ′], η : [0, ] → [0, ′] an isomorphism of bounded distributive
lattices. Then let G(L ∪ L′) be the bounded distributive lattice generated by (L ∪
L′) / ∼ where (L ∪ L′) / ∼ is a quotient determined by an equivalence relation ‘∼’
defined by η (see definition 2.6). And let

(2.4) 1L ∧ 1L′ := (or ′)
Then we say that G(L ∪ L′) is generated by L ∪ L′ via the isomorphism η.

Then similar to proposition 2.4, we have

Proposition 2.9. The lattices L,L′ are the intervals of G(L ∪ L′). Hence the lattice
G(L ∪ L′) is the set {∨ ′ = ′ ∨  |  ∈ L, ′ ∈ L′}
Proof. We have L ∼= [0,1L] by theorem 2.3. For  ∈ L, ′ ∈ L′, we have  ∧ ′ ∈
[0, (′)] by proposition 2.3, corollary 2.3.1, and equations (2.3) and (2.4). Then
similar to the proof of proposition 2.4. □
Corollary 2.9.1.

G(L ∪ L′) = 〈(L ∪ L′) / ∼,∨,∧,0,1L ∨ 1L′ 〉
Proof. It is obvious. □
2.6. Lattice forms Category. We seen that a partial order forms a category, see
[6]. Hence a lattice forms a category, by theorem 2.1.

Definition 2.8 (cf. [6]). Suppose that L is a bounded distributive lattice. Let L be a
category provided that

Objects: The members of the lattice L.
Morphisms: There is at most one morphism  → b

for , b ∈ L with  ≤ b.
It is obvious that L satisfies the definition of category.

Proposition 2.10. A sublattice of L forms the subcategory[6] of L.

Proof. It is obvious. □
Proposition 2.11. Suppose that L,L′ are bounded distributive lattices. Let ψ : L→
L′ be a homomorphism. If L and L′ are categories define in definition 2.8, then ψ
forms a functor from L to L′.
Proof. A homomorphism is compatible with the operations and the compositions of
the operations. Hence the statement is true. □
2.7. Morphism of Functors. Recall some facts in [6]. Suppose that C, C′ are cat-
egories. Let F,H : C → C′ be functors. Then a morphism from F to H is a natural
transformation[6] τ : F

•→ H, and for every (ƒ : C → C′) ∈ C, the following diagram is
commutative(cf. [6]).

F(C)

F(ƒ )
��

τC // H(C)

H(ƒ )
��

F(C′) τC′
// H(C′)

(2.5)
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Then the diagram(2.5) is regarded as the diagram(2.6) where  is an indentity func-
tor.

F(C)

F(ƒ )
��

τC // H((C))

H(ƒ )
��

F(C′) τC′
// H((C′))

(2.6)

Hence we may replace  by other functor.
Suppose that D is a category. Let T : C → D, S : D → C′ be functors. If η is a

morphism from F to S ◦ T, then for every (ƒ : C→ C′) ∈ C, the morphism η makes the
diagram(2.7) commutate.

F(C)
ηC //

F(ƒ )
��

S ◦ T(C)
S◦T(ƒ )
��

F(C′) ηC′
// S ◦ T(C′)

(2.7)

2.8. Chain.

Definition 2.9 (cf. [5]). A chain {n} in a bounded distributive lattice L is a nonempty
subset which has the infimum, and if , b ∈ {n}, then either  < b or b < .

Proposition 2.12. A chain {n} of a bounded distributive lattice 〈L,∨,∧,0,1〉 is a
lattice 〈{n},∨,∧〉.
To prove proposition 2.12, we need the following lemma:

Lemma 2.3 (cf. [8]). Suppose that L is a lattice. Let , b ∈ L with  ≤ b. Then
∨ b = b.

Proof. ∨ b = (∧ b)∨ b = b □

Proof of proposition 2.12. Let , b ∈ {n}. Then  ≤ b or b ≤ . By lemma 2.3, we
have either ∨ b = b, ∧ b =  or ∨ b = , ∧ b = b. Therefore, the chain {n} is
a lattice. □

A sublattice forms a subcategory, hence we have that

Corollary 2.12.1. A chain {n} in L forms a category.

Proof. Immediate from propositions 2.10 and 2.12. □

3. Sheaf

A sheaf is a contravariant functor[6] from a category Top(X)[1] to a category C
where Top() is the category of open sets in a topological space X, see [1,9]. The
open subsets in a topological space X form a distributive bounded lattice(cf. [4,8],
definition 2.1). A lattice is a poset(cf. subsection 2.2) and a poset forms a cate-
gory(cf. [6]), hence a lattice forms a category(cf. definition 2.8). So we may con-
struct a sheaf of lattices on a bounded distributive lattice.
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3.1. A Sheaf of Lattices on a Distributive Bounded Lattice. In theorem 2.2,
we have known that if L is a bounded distributive lattice and  ∈ L, then [0, ] is a
sublattice of 〈L,∨,∧〉. Let LAT be the category of lattices, and the morphisms in
LAT is the homomorphisms of lattices. Then we have the following theorem.

Theorem 3.1 (cf. [1, 7, 9]). Suppose that 〈L,∨,∧,0,1〉 is a bounded distributive
lattice. Then let L be a contravariant functor from the category L(definition 2.8) to
the category LAT together with

• For every  ∈ L, L () = [0, ](see theorem 2.2);
• For every , b ∈ L with  ≤ b, the restriction map[9] resb, : [0, b] → [0, ] is
the homomorphism ϕb,(see theorem 2.6);
• If  = b, then the restriction map is the identity isomorphism(see theo-
rem 2.6);
• If  ≤ b ≤ c, then the following diagram is commutative(see proposition 2.7);

L (c)
resc, //

resc,b $$

L ()

L (b)
resb,

::

Then the functor L is a presheaf[1,7,9] of lattices on a bounded distributive lattice
L.

Proof. Immediate from definition 2.8, theorems 2.2 and 2.6, and proposition 2.7. □

Theorem 3.2. The presheaf L is a sheaf.

Proof. The presheaf L satisfies identity axiom[9, subsection 2.2.6] by theorem 2.7
and corollarys 2.7.1 and 2.7.2. And the presheaf satisfies gluability axiom[9, subsec-
tion 2.2.6] by theorem 2.8 and corollarys 2.8.1 and 2.8.2. Therefore, it is a sheaf. □

We have seen that the intervals of a bounded distributive lattice form a lattice in
subsection 2.3. And for all  ∈ L, L () is an interval.

Proposition 3.1. For , b ∈ L,
L (∨ b) =L ()∨L (b)

L (∧ b) =L ()∧L (b)

Proof. We have
L (∨ b) = [0, ∨ b] = [0, ] ∨ [0, b]

L (∧ b) = [0, ∧ b] = [0, ] ∧ [0, b]

by corollarys 2.1.1 to 2.4.1 and theorem 2.4. □

3.2. Stalk of L . Suppose that F is a sheaf of sets on a topological space X. Let
p ∈ X. Then the stalk at p is a colimit[6] of F (U) over all open sets U containing p:
Fp = lim−→ F (U), see [1,9].
But we may define a stalk of L at a chain[definition 2.9]. Suppose that L is a

bounded distributive lattice. Let {n} be a chain in L. It is obvious that the chain
{n} is a subcategory of L(definition 2.8) by propositions 2.10 and 2.12. Let H be the
subcategory. Hence there exists a contravariant functor F from H to the category
LAT of lattices such that F =L ↾{n}. Then we have
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Definition 3.1. The stalk of L at the chain[definition 2.9] {n} is the colimit of F.
If m ∈ L is the infimum of {n}, then lim−→ F = [0,m]. Let L{n} denote the stalk.

Remark 3.1. We have L{n} =L (m).
And the sheaf L may be formed by the stalks. Let  =

∨
∈
 and  the infimum

of a chain {sn} for every . By corollary 2.4.1, theorem 2.4, and proposition 3.1, we
have

L () =
∨
∈

L{sn}

3.3. Morphism of the Sheaves. Suppose that F ,F ′ are the sheaves. Then a
morphim π : F →F ′ is a natural transformation(cf. [1,6,7,9]).

Now, we construct a morphism of sheaves L ,L ′.
Theorem 3.3. Suppose that L ,L ′ are two sheaves defined in theorem 3.1 on
bounded distributive lattices L,L′, respectively. Let ψ : L→ L′ be a homomorphism.
Hence ψ forms a functor(cf. proposition 2.11). Then ψ induces a morphism ψ̂ : L →
L ′ and the morphism ψ̂ is the natural transformation L

•→ L ′ ◦ ψ. And ψ̂ : L ()→
L ′(ψ()) is the homomorphism defined in theorem 2.5 for all  ∈ L.
Proof. Immediate from definition 2.8, theorems 2.5, 3.1 and 3.2, propositions 2.8
and 2.11, and section 2.7. □
Suppose that L,L′ are two bounded distributive lattices. Let ψ : L → L′ be a ho-

momorphism. The image of ψ is a sublattice of L′. Hence the image is a bounded
distributive lattice. And the image forms a subcategory.

Proposition 3.2. Let ψ̂ be the morphism which is defined in theorem 3.3. Then the
image of ψ̂ is a sheaf on the bounded distributive lattice ψ(L).

Proof. By definition 2.8, proposition 2.10, and theorems 3.1 to 3.3, the image of ψ̂
is the functor L ′ restricted to the subcategory ψ(L) of L′. Let L ′↾ψ(L) denote the
restricted functor. It is obvious that L ′↾ψ(L) satisfies the definition of a sheaf. □

Definition 3.2 (cf. [1, 3, 4, 6–9]). Suppose that ψ̂ is the morphism defined in the-
orem 3.3. Then the morphism ψ̂ is a monomorphism(epimorphism, isomor-
phism), if ψ is a monomorphism(epimorphism, isomorphism).

Theorem 3.4. Suppose that ψ̂ is the morphism defined in theorem 3.3. If ψ̂ is a
monomorphism(epimorphism, isomorphism), then ψ̂ : L ()→L ′(ψ()) is a monomor-
phism(epimorphism, isomorphism).

Proof. Immediate from corollary 2.5.1. □
3.4. Subsheaf. Suppose that L ′,L are sheaves defined in theorem 3.1 on bounded
distributive lattices L′,L, respectively. Let ψ̂ : L ′ → L be a monomorphism defined
in definition 3.2. Then the image of ψ̂ is isomorphic to L ′ by proposition 3.2 and def-
inition 3.2.

Definition 3.3 (cf. [1, 9]). Suppose that L is a sheaf defined in theorem 3.1 on a
bounded distributive lattice L. Then the sheaf L ′ is a subsheaf of L if there exists
a monomorphism ψ̂ : L ′′ → L such that L ′ is the image of ψ̂. If the subsheaf L ′ is
on a bounded distributive lattice L′, then let L ↾L′ denote the subsheaf where L′ is
the category which is formed by L′(see definition 2.8).
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A morphism ψ̂ : L → L ′ is a natural transformation(see theorem 3.3). Hence for
every  ∈ L, ψ̂ is a homomorphism of the intervals. In definition 2.5, we defined the
kernel of ψ̂. And we have the fact that the subset ψ−1(0) is a bounded distributive
lattice(cf. proposition 2.5). Hence ψ−1(0) is a category by definition 2.8. Now, we
may define the kernel of ψ̂.

Definition 3.4 (cf. [1,9]). Suppose that ψ̂ is the morphism defined in theorem 3.3.
Let a kernel of ψ̂ be the subsheaf L ↾ψ−1(0).
Remark 3.2. The kernel ker ψ̂ is a subsheaf of L such that ψ̂k((ker ψ̂)(k)) = {0}
for all k ∈ ψ−1(0). In corollary 2.1.1, we have that [0, a] is a bounded distributive
lattice for  ∈ L. Specially, let  = 0. Then {0} is a bounded distributive lattice.
Let 0̃ denote the sheaf on {0}. Then the image of the morphism ψ̂↾ker ψ̂ is 0̃.
Suppose that S is the category of the sheaves on bounded distributive lattices.
Then 0̃ is a null object[6] of S. And for all morphism ρ̂ : X → L in S, if ψ̂ ◦ ρ̂ = 0,
then there exist unique morphism π̂ : X → ker ψ̂ such that the following diagram is
commutative(cf. [6]).

X

π̂
�� ρ̂ ""

0

((
ker ψ̂ // L

ψ̂
// L ′

3.5. Gluing Sheaves. Suppose that L ,L ′ are the sheaves which are defined in
theorem 3.1. In proposition 3.1, for all , b ∈ L, we have seen

L (∨ b) =L ()∨L (b) = [0, ] ∨ [0, b] = [0, ∨ b]

And an interval [0, ] is a bounded distributive lattice by corollary 2.1.1.

Definition 3.5 (cf. [1,9]). Suppose that L ,L ′ are defined on bounded distributive
lattices L,L′, respectively. Let  ∈ L, ′ ∈ L′ with [0, ] ∼= [0, ′], η : [0, ] → [0, ′]
an isomorphism of the bounded distributive lattices. By definition 3.2, that η induces
an isomorphism of sheaves:

η̂ : L ↾[0, ] →L ′↾[0, ′]
where L ↾[0, ] and L ′↾[0, ′] are subsheaves defined in definition 3.3. Then let M
be a sheaf on the bounded distributive lattice G(L ∪ L′) which is defined in defini-
tion 2.7. We say that the sheaf M is obtained by gluing L and L ′ via an isomor-
phism η̂. Then the sheaves L ,L ′ may be regarded as the subsheaves of M .
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