A Sheaf on a Lattice

SHAO-DAN LEE

Abstract A sheaf is constructed on a topological space. But a topological space is a bounded distributive lattice. Hence we may construct a sheaf of lattices on a bounded distributive lattice. Then we define a stalk of the sheaf at a chain in a bounded distributive lattice. And we define a morphism of the sheaves, that the morphism is induced by a homomorphism of the bounded distributive lattices. Then the kernel and image of the morphism are the subsheaves. A sheaf is obtained by gluing sheaves together.

Contents

1. Introduction	1
2. Preliminaries	2
2.1. Bounded Distributive Lattice	2
2.2. Poset	3
2.3. Lattice of the Sublattices	4
2.4. Homomorphism of the Lattices	6
2.5. Generated by Lattices	9
2.6. Lattice forms Category	10
2.7. Morphism of Functors	10
2.8. Chain	11
3. Sheaf	11
3.1. A Sheaf of Lattices on a Distributive Bounded Lattice	12
3.2. Stalk of \mathscr{L}	12
3.3. Morphism of the Sheaves	13
3.4. Subsheaf	13
3.5. Gluing Sheaves	14
References	14

1. Introduction

Recall the definition of sheaves(see [1, 7, 9]). Suppose that \mathscr{F} is a sheaf on a topological space X. Let U be an open set of X. Then $\mathscr{F}(U)$ is a mathematical object(e.g., set, group, ring). And the sheaf \mathscr{F} satisfies several properties.

A stalk[1,9] at $p \in X$ of the sheaf \mathscr{F} is a colimit(cf. [1,6,7,9]). But we define a stalk of \mathscr{L} at a chain[definition 2.9]. The stalk of \mathscr{L} is defined in definition 3.1.

Key words and phrases. Sheaf, Bounded Distributive Lattice, Category, Functor.

Since a topological space is a bounded distributive lattice(cf. [4,8]), we may construct a sheaf \mathscr{L} of lattices on a bounded distributive lattice **L**, see theorems 3.1 and 3.2 in subsection 3.1.

Date: August 29, 2022.

²⁰²⁰ Mathematics Subject Classification. 06D99, 18B35, 18A99.

A morphism[1, 9] of sheaves is a natural transformation(cf. [1, 6, 7, 9]). Suppose that $\psi: \mathbf{L} \to \mathbf{L}'$ is a homomorphism[4, 8] of the bounded distributive lattices. Then ψ induces a morphism $\hat{\psi}: \mathcal{L} \to \mathcal{L}'$, see theorem 3.3. That $\hat{\psi}$ is a monomorphism(epimorphism) if ψ is a monomorphism(epimorphism), see definition 3.2.

A subsheaf[1,9] of the \mathscr{L} is a sheaf on a bounded distributive lattice which is a sublattice of the \boldsymbol{L} , see definition 3.3. And the kernel(cf. [1,9]) of $\hat{\psi}$ is a subsheaf, see definition 3.4.

In subsection 3.5, we obtain a sheaf by gluing(cf. [1,9]) sheaves together.

2. Preliminaries

2.1. Bounded Distributive Lattice. Recall the definitions in [8].

Definition (Lattice[8]). A nonempty set *L* together with two binary operations \vee and \wedge is called a **lattice** if it satisfies the following identities:

(commutative laws)	$x \lor y = y \lor x$ $x \land y = y \land x$
(associative laws)	$(x \lor y) \lor z = x \lor (y \lor z)$ $(x \land y) \land z = x \land (y \land z)$
(idempotent laws)	$x \lor x = x$ $x \land x = x$
(absorption laws)	$(x \lor y) \land x = x$ $(x \land y) \lor x = x$

The lattice is denoted by **L**.

Definition 2.1 (Bounded Lattice[8]). An algebra $(L, \lor, \land, 0, 1)$ with two binary and two nullary operations is a **bounded lattice** if it satisfies:

• $\langle L, \vee, \wedge \rangle$ is a lattice.

• $x \land 0 = 0; x \lor 1 = 1.$

Definition 2.2 (Distributive Lattice[8]). A **distributive lattice** is a lattice which satisfies the distributive laws:

$$(a \lor b) \land c = (a \land c) \lor (b \land c)$$
$$(a \land b) \lor c = (a \lor c) \land (b \lor c)$$

Then we have the following proposition.

Proposition 2.1 (cf. [8]). Suppose that X is a topological space. Then the open subsets of X form a bounded distributive lattice. The bounded distributive lattice is denoted by $\mathfrak{L}(X)$.

Proof. For open sets $U, V \subseteq X$, let $U \leq V$ if $U \subseteq V$. Then open subsets form a poset[8]. And every subset of the poset has the infimum and supremum. Hence the poset is a lattice by [8, definition 1.4]. Then let U, V, W be open subsets of X. Define

$$U \lor V := \sup\{U, V\}$$
$$U \land V := \inf\{U, V\}$$
$$0 := \emptyset$$
$$1 := X$$

And sup {U, V} = U \cup V. Then we have that

$$(U \lor V) \land W = \inf\{\sup\{U, V\}, W\}$$

$$= \inf\{U \cup V, W\}$$

$$= \inf\{U, W\} \cup \inf\{V, W\}$$

$$= \sup\{\inf\{U, W\}, \inf\{V, W\}$$

$$= (U \land W) \lor (V \land W)$$

$$(U \land V) \lor W = \sup\{\inf\{U, V\}, W\}$$

$$= \inf\{U \cup W, V \cup W\}$$

$$= \inf\{U \cup W, V \cup W\}$$

$$= \inf\{\sup\{U, W\}, \sup\{V, W\}\}$$

$$= (U \lor W) \land (V \lor W)$$

And,

$$U \land \emptyset = \emptyset$$
$$U \lor X = X$$

We are done, by the definitions 2.1 and 2.2.

2.2. **Poset.** A partial order set(briefly a poset) is a nonempty set together with a binary relation which is reflexive, transitive and antisymmetric, see [8,10].

Definition 2.3 ([8]). Let *L* be a lattice. For $a, b \in L$, define $a \leq b$ if $a \wedge b = a$.

Theorem 2.1 ([8]). A lattice L is a poset.

Proof. Immediate from the definition 2.3.

Theorem 2.2 ([8]). Suppose that $(\mathbf{L}, \lor, \land, 0, 1)$ is a bounded distributive lattice. Then an interval $[0, \alpha] := \{x \in \mathbf{L} \mid x \land \alpha = x\}$ is a sublattice of $(\mathbf{L}, \lor, \land)$ for all $\alpha \in \mathbf{L}$.

Proof. For $x, y \in [0, a]$, we have

$$x \wedge 0 = 0$$

$$x \vee 0 = x \vee (x \wedge 0)$$

$$= x$$

$$(x \wedge y) \wedge a = x \wedge (y \wedge a)$$

$$= x \wedge y$$

$$(x \vee y) \wedge a = (x \wedge a) \vee (y \wedge a)$$

$$= x \vee y$$

Hence $x \lor y, x \land y \in [0, a]$.

Corollary 2.1.1 ([8]). The interval $[0, \alpha]$ is a bounded distributive lattice.

Proof. It is obvious that the lattice $([0, \alpha], \lor, \land, 0, \alpha)$ is a bounded distributive lattice.

Theorem 2.3 (cf. [8]). Suppose that $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice. Then $[0, 1] \cong L$.

Lemma 2.1. For every $a \in L$, $a \land 1 = a$.

 \square

 \Box

Proof. We have $a \land 1 = a \land (a \lor 1) = a$

Proof of theorem 2.3. Immediate from theorem 2.2 and lemma 2.1.

2.3. Lattice of the Sublattices. The intervals of a bounded distributive lattice may form a lattice.

Proposition 2.2 (cf. [8]). Suppose that $(\mathbf{L}, \lor, \land, 0, 1)$ is a bounded distributive lattice. Let $a, b \in \mathbf{L}$. Then the intersection $[0, a] \cap [0, b]$ is a sublattice of $(\mathbf{L}, \lor, \land)$.

Proof. The intersection is not empty, since $0 \in [0, a] \cap [0, b]$. We have $x \land y, x \lor y \in [0, a] \cap [0, b]$ for all $x, y \in [0, a] \cap [0, b]$. Therefore, the statement is true.

It is obvious that $c \le a$ implies that [0, c] is a sublattice of [0, a].

Corollary 2.2.1 (cf. [8]). If $c \le a$ and $c \le b$, then the subset [0, c] is a sublattice of $[0, a] \cap [0, b]$.

Proof. If $x \le c$, then $x \le b$ and $x \le a$. It follows $x \in [0, a] \cap [0, b]$. And we have $[0, c] \cap [0, a] \cap [0, b] = [0, c]$. By theorem 2.2, the subset [0, c] is a sublattice of $[0, a] \cap [0, b]$.

Proposition 2.3 (cf. [8]). Suppose that **L** is a bounded distributive lattice. Let $a, b \in \mathbf{L}$. Then $[0, a] \cap [0, b]$ is the set $\{x \land y \mid x \in [0, a], y \in [0, b]\}$.

Proof. We have $x \land y \land a = x \land y$ and $x \land y \land b = x \land y$. It follows

 $\{x \land y \mid x \in [0, a], y \in [0, b]\} \subseteq [0, a] \cap [0, b]$

On the other hand, for every $z \in [0, a] \cap [0, b]$, we have $z = z \land a$ and $z = z \land b$. Hence $z = z \land z = (z \land a) \land (z \land b)$. So $[0, a] \cap [0, b] \subseteq \{x \land y \mid x \in [0, a], y \in [0, b]\}$. Therefore, $[0, a] \cap [0, b] = \{x \land y \mid x \in [0, a], y \in [0, b]\}$.

Corollary 2.3.1 (cf. [8]).

$$[0, a] \cap [0, b] = [0, a \land b]$$

Proof. We have that $x \in [0, a] \cap [0, b]$ implies $x \le a \land b \le a, b$. Then immediate from propositions 2.2 and 2.3 and corollary 2.2.1.

Proposition 2.4 (cf. [8]). Suppose that **L** is a bounded distributive lattice. Let U be the set $\{x \lor y \mid x \in [0, a], y \in [0, b]\}$ for $a, b \in L$. Then the set U is a sublattice of (L, \lor, \land) .

Proof. For all $x \in [0, a]$, $y \in [0, b]$, we have $x \land y \in ([0, a] \cap [0, b] = [0, a \land b])$ by proposition 2.3 and corollary 2.3.1. And let $x, x' \in [0, a]$ and $y, y' \in [0, b]$.

$$x \lor y \lor x' \lor y' = x \lor x' \lor y \lor y'$$

(x \u03c8 y) \u03c8 (x' \u03c8 y') = ((x \u03c8 y) \u03c8 x') \u03c9 ((x \u03c8 y) \u03c8 y')
= (x \u03c8 x') \u03c8 (y \u03c8 x') \u03c8 (x \u03c8 y') \u03c8 (y \u03c8 y')
= ((x \u03c8 x') \u03c8 (y \u03c8 x')) \u03c8 ((x \u03c8 y') \u03c8 (y \u03c8 y'))
= ((x \u03c8 x') \u03c8 (y \u03c8 x')) \u03c8 ((x \u03c8 y') \u03c8 (y \u03c8 y'))

Since $x \land x', x \lor x' \in [0, a]$, $y \land y', y \lor y' \in [0, b]$ and $y \land x', x \land y' \in [0, a] \cap [0, b]$. Therefore, the set *U* is a sublattice.

Definition 2.4 (cf. [8]). The sublattice *U* in proposition 2.4 is said to be **generated** by the set $[0, a] \cup [0, b]$. We denote the sublattice *U* by $G([0, a] \cup [0, b])$.

A Sheaf on a Lattice

Corollary 2.4.1 (cf. [8]).

$$G([0, a] \cup [0, b]) = [0, a \lor b]$$

Proof. Let $x \in [0, \alpha]$, $y \in [0, b]$. Then we have

$$(x \lor y) \land (a \lor b) = (x \land (a \lor b)) \lor (y \land (a \lor b))$$
$$= ((x \land a) \lor (x \land b)) \lor ((y \land a) \lor (y \land b))$$
$$= (x \lor (x \land b)) \lor ((y \land a) \lor y)$$
$$= x \lor y$$

Hence $U \subseteq [0, a \lor b]$. On the other hand, for every $z \in [0, a \lor b]$, we have

$$z = z \land (a \lor b) = (z \land a) \lor (z \land b)$$

It follows $[0, a \lor b] \subseteq U$. And $x \land y \in [0, a] \cap [0, b]$. Therefore, $U = [0, a \lor b]$.

Now we may define a bounded distributive lattice by the intervals.

Theorem 2.4 (cf. [8]). Suppose that **L** is a bounded distributive lattice. Let $\Im(L)$ be the set $\{[0, x] | x \in L\}$. Then $\Im(L)$ is a bounded distributive lattice.

Proof. For every $a, b \in L$, define

$$[0, a] \land [0, b] := [0, a] \cap [0, b]$$

$$[0, a] \lor [0, b] := G([0, a] \cup [0, b])$$

$$0 := [0, 0]$$

$$1 := L$$

Then it is a bounded lattice by propositions 2.2 to 2.4, corollarys 2.2.1 to 2.4.1, definition 2.4, and theorem 2.3.

Let $I_a = [0, a], I_b = [0, b], I_c = [0, c]$ for $a, b, c \in L$. By corollarys 2.3.1 and 2.4.1, we have

$$(I_a \land I_b) \lor I_c = I_{a \land b} \lor I_c$$

= $I_{(a \land b) \lor c}$
= $I_{(a \lor c) \land (b \lor c)}$
= $I_{a \lor c} \land I_{b \lor c}$
= $(I_a \lor I_c) \land (I_b \lor I_c)$

and

$$(I_a \lor I_b) \land I_c = I_{a \lor b} \land I_c$$

= $I_{(a \lor b) \land c}$
= $I_{(a \land c) \lor (b \land c)}$
= $I_{a \land c} \lor I_{b \land c}$
= $(I_a \land I_c) \lor (I_b \land I_c)$

Therefore, the algebra $(\Im(L), \lor, \land, \{0\}, L)$ is a bounded distributive lattice.

Hence we have

$$[0, a] \land [0, b] = [0, a] \cap [0, b]$$

= [0, a \lapha b]
$$G([0, a] \cup [0, b]) = [0, a] \lor [0, b]$$

= [0, a \lapha b]

2.4. **Homomorphism of the Lattices.** Let L, L' be two bounded distributive lattices. A homomorphism $\varphi: L \to L'$ is a function compatible with the n-ary operations of the lattices for $n \ge 0$ (cf. [2–4, 8]).

Theorem 2.5. Suppose that \mathbf{L}, \mathbf{L}' are two bounded distributive lattices. Let $\psi : \mathbf{L} \to \mathbf{L}'$ be a homomorphism. If $a \in \mathbf{L}$, then ψ induces a homomorphism $\hat{\psi}_a : [0, a] \to [0, \psi(a)]$ given by $x \mapsto \psi(x)$.

Proof. If $x \in [0, a]$, then $x \land a = x$. Hence

$$\psi(x) = \psi(x \land a) = \psi(x) \land \psi(a)$$

It follows $\psi(x) \in [0, \psi(\alpha)]$. And the subset $[0, \alpha]$ is a sublattice of $\langle L, \vee, \wedge \rangle$ by theorem 2.2. Hence $\hat{\psi}_{\alpha} := \psi \upharpoonright [0, \alpha]$ is a homomorphism.

Corollary 2.5.1 (cf. [2–4, 6–8]). If ψ is a monomorphism(epimorphism, isomorphism), then $\hat{\psi}_a$ is a monomorphism(epimorphism, isomorphism) for $a \in \mathbf{L}$.

Proof. Suppose that ψ is a monomorphism. Let $x, y \in [0, \alpha]$ with $x \neq y$. Then $\psi(x) \neq \psi(y)$. It follows $\hat{\psi}(x) \neq \hat{\psi}(y)$. Hence $\hat{\psi}$ is a monomorphism.

Suppose that ψ is an epimorphism. For every $v \in [0, \psi(a)]$, there exists $u \in L$ such that $\psi(u) = v$. And

$$\psi = v \land \psi(a) = \psi(u) \land \psi(a) = \psi(u \land a)$$

Since $u \wedge a$ is in [0, a], that $\hat{\psi}$ is an epimorphism.

Suppose that ψ is an isomorphism. It follows that $\hat{\psi}$ is an isomorphism.

Let $\psi: \mathbf{L} \to \mathbf{L}'$ be a homomorphism. Then the subset $\psi^{-1}(0)$ is special, since it has some interesting properties.

Proposition 2.5. The subset $\psi^{-1}(0)$ is an interval. Hence it is a bounded distributive lattice.

To prove proposition 2.5, we need the following lemma.

Lemma 2.2. The subset $\psi^{-1}(0)$ has one maximal member.

Proof. We have

$$\psi(\bigvee_{a \in \psi^{-1}(0)} a) = \bigvee_{a \in \psi^{-1}(0)} \psi(a)$$
$$= \bigvee_{a \in \psi^{-1}(0)} 0$$
$$= 0$$

It follows $\bigvee_{a \in \psi^{-1}(0)} a \in \psi^{-1}(0)$. And it is obvious that $\bigvee_{a \in \psi^{-1}(0)} a$ is the unique maximal member.

Proof of proposition 2.5. Let *K* be the subset $\psi^{-1}(0)$, *m* the maximal member of *K* by lemma 2.2. We have $0 \in K$. For $a, b \in K$, $\psi(a \lor b) = 0$, $\psi(a \land b) = 0$. It follows $a \lor b, a \land b \in K$. Hence *K* is a lattice. And for every $x \le m$, $\psi(x) = \psi(x \land m) = 0$. Hence $[0,m] \subseteq K$. On the other hand, for every $x \in K$, we have $x \le m$. Hence $K \subseteq [0,m]$. Therefore, K = [0,m]. By corollary 2.1.1, *K* is a bounded distributive lattice.

The kernel of ψ , ker ψ , is a congruence relation(cf. [4,8]), that is, $\langle a, b \rangle \in \ker \psi$ iff $\psi(a) = \psi(b)$. But we need an other definition of kernel in the case of $\hat{\psi}_{\Box}$.

Definition 2.5 (cf. [2, 3]). Suppose that $\hat{\psi}_{\alpha}$ is a homomorphism defined in theorem 2.5. Then the **kernel** of $\hat{\psi}_{\alpha}$ is the intersection $\psi^{-1}(0) \cap [0, \alpha]$.

Proposition 2.6. Suppose that $\hat{\psi}_{\alpha}$ is a homomorphism defined in theorem 2.5. Then the kernel ker $\hat{\psi}_{\alpha}$ is a sublattice of the lattice $[0, \alpha]$. And the kernel is an interval.

Proof. Immediate from propositions 2.2 and 2.5, theorem 2.2, and corollary 2.3.1

There exists a special homomorphism which is a mapping from an interval to its subinterval.

Theorem 2.6 ([8]). Suppose that **L** is a bounded distributive lattice. Let $a, b \in \mathbf{L}$ with $a \leq b$. Then there exist a homomorphism $\varphi_{b,a}: [0,b] \rightarrow [0,a]$ given by $x \rightarrow x \land a$. That $\varphi_{b,a}$ is a homomorphism of the bounded distributive lattices. If a = b, then the homomorphism $\varphi_{b,a}$ is an indentity isomorphism[3,4,8].

Proof. By corollary 2.1.1, we have that the subsets [0, a], [0, b] are bounded distributive lattices. For every $x \in [0, b]$, $x \wedge a = x \wedge (a \wedge a) = (x \wedge a) \wedge a$. It follows $x \wedge a \leq a, x \wedge a \in [0, a]$. And that $a \leq b$ implies $b \wedge a = a$. For $x, y, z \in [0, b]$,

$$(x \lor y) \land a = (x \land a) \lor (y \land a)$$

$$(x \land y) \land a = x \land y \land a \land a$$

$$= (x \land a) \land (y \land a)$$

$$((x \lor y) \land z) \land a = ((x \land z) \lor (y \land z)) \land a$$

$$= (x \land z \land a) \lor (y \land z \land a)$$

$$= (x \land a \land z \land a) \lor (y \land a \land z \land a)$$

$$((x \land y) \lor z) \land a = ((x \lor z) \land (y \lor z)) \land a$$

$$= ((x \lor z) \land a) \land ((y \lor z) \land a)$$

$$= ((x \land a) \lor (z \land a)) \land ((y \land a) \lor (z \land a))$$

Hence

$$\varphi(x \lor y) = \varphi(x) \lor \varphi(y)$$

$$\varphi(x \land y) = \varphi(x) \land \varphi(y)$$

$$\varphi((x \lor y) \land z) = (\varphi(x) \land \varphi(z)) \lor (\varphi(y) \land \varphi(z))$$

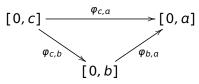
$$\varphi((x \land y) \lor z) = (\varphi(x) \lor \varphi(z)) \land (\varphi(y) \lor \varphi(z))$$

$$\varphi(0) = 0$$

$$\varphi(b) = a$$

It is obvious that a = b implies that φ is an identity isomorphism.

Proposition 2.7. Suppose that **L** is a bounded distributive lattice. Let $a, b, c \in \mathbf{L}$ with $a \leq b \leq c$. Let $\varphi_{b,a}: [0, b] \rightarrow [0, a], \varphi_{c,b}: [0, c] \rightarrow [0, b], \varphi_{c,a}: [0, c] \rightarrow [0, a]$ be the homomorphisms which are defined in theorem 2.6. Then the following diagram is commutative.



Proof. For every $x \in [0, c]$,

$$(x \land b) \land a = x \land (b \land a) = x \land a$$

It follows $\varphi_{b,a}(\varphi_{c,b}(x)) = \varphi_{c,a}(x)$.

Theorem 2.7. Suppose that **L** is a bounded distributive lattice. Let $a, a_1, a_2 \in \mathbf{L}$ with $a = a_1 \lor a_2$. If $x, y \in [0, a]$, then $(x \land a_i = y \land a_i)_{i=1,2}$ implies x = y. Proof.

$$x = x \wedge a$$

= x \lapha (a_1 \neq a_2)
= (x \lapha a_1) \neq (x \lapha a_2)
= (y \lapha a_1) \neq (y \lapha a_2)
= y \lapha (a_1 \neq a_2)
= y \qquad \lapha (a_1 \neq a_2)

Corollary 2.7.1. Let $\{a_i\}_{i \in I} \subseteq L$, $a \in L$ with $\bigvee_{i \in I} a_i = a$. If $x \land a_i = y \land a_i$ for all i, then

x = y.

Proof. It is obvious.

Corollary 2.7.2. Suppose that φ_{a,a_i} is a homomorphism defined in theorem 2.6 for all *i*. If $\varphi_{a,a_i}(x) = \varphi_{a,a_i}(y)$ for all *i*, then x = y.

Proof. It is obvious.

Theorem 2.8. Suppose that **L** is a bounded distributive lattice. Let $a, a_1, a_2 \in \mathbf{L}$ with $a = a_1 \lor a_2$. If $x_1 \in [0, a_1], x_2 \in [0, a_2]$ with $x_1 \land a_1 \land a_2 = x_2 \land a_1 \land a_2$, then there exists $x \in [0, a]$ such that $x \land a_1 = x_1$ and $x \land a_2 = x_2$.

Proof. The equation $x_1 \wedge a_1 \wedge a_2 = x_2 \wedge a_1 \wedge a_2$ implies $x_1 \wedge a_2 = x_2 \wedge a_1$. Then we have $(x_1 \wedge a_2) \vee x_1 = (x_2 \wedge a_1) \vee x_1$. It follows

(2.1) $x_1 = (x_2 \vee x_1) \land (a_1 \vee x_1)$

Similarly, we have $(x_1 \land a_2) \lor x_2 = (x_2 \land a_1) \lor x_2$. It implies

(2.2)
$$(x_1 \vee x_2) \wedge (a_2 \vee x_2) = x_2$$

Since $x_2 \lor x_1 \in [0, a]$, $a_1 \lor x_1 = a_1$, $a_2 \lor x_2 = a_2$, equations (2.1) and (2.2), hence the statement is true, and $x = x_1 \lor x_2$ as desired.

Corollary 2.8.1. Let $\{a_i\}_{i \in I} \subseteq L$, $a \in L$ with $\bigvee_{i \in I} a_i = a$, $x_i \in [0, a_i]$. If $x_i \land a_i \land a_j = x_j \land a_i \land a_j$ for all i, j then there exists $x \in [0, a]$ such that $x_i = x \land a_i$.

 \square

Proof. It is obvious.

Corollary 2.8.2. Suppose that the following mappings $\varphi_{\Box,\Box}$ are the homomorphisms defined in theorem 2.6. If $\varphi_{a_i,a_i \wedge a_j}(x_i) = \varphi_{a_j,a_i \wedge a_j}(x_j)$ for all *i*, *j* then there exists $x \in [0, \alpha]$ such that $x_i = \varphi_{a,a_i}(x)$.

Proof. It is obvious.

The composition of $\varphi_{\Box,\Box}$ and $\hat{\psi}_{\Box}$ is commutative.

Proposition 2.8. Suppose that \mathbf{L}, \mathbf{L}' are bounded distributive lattices. Let $\psi : \mathbf{L} \rightarrow \mathbf{L}'$ be a homomorphism and $a, b \in \mathbf{L}$ with $b \leq a$. Then the following diagram is commutative where $\hat{\psi}_{\Box}$ and $\varphi_{\Box,\Box}$ are defined in theorems 2.5 and 2.6, respectively.

$$\begin{bmatrix} 0, a \end{bmatrix} \xrightarrow{\hat{\psi}_a} \begin{bmatrix} 0, \psi(a) \end{bmatrix} \\ \downarrow^{\varphi_{a,b}} & \downarrow^{\varphi_{\psi(a),\psi(b)}} \\ \begin{bmatrix} 0, b \end{bmatrix} \xrightarrow{\hat{\psi}_b} \begin{bmatrix} 0, \psi(b) \end{bmatrix}$$

Proof. For every $x \in [0, a]$,

$$\psi(x) \land \psi(b) = \psi(x \land b)$$

Therefore, the statement is true.

2.5. **Generated by Lattices.** By propositions 2.2 and 2.3 and corollary 2.3.1, we have $x \land y \in [0, a \land b]$ for all $x \in [0, a]$, $y \in [0, b]$. If $a \land b = 0$, then $[0, a] \cap [0, b] = \{0\}$. Hence $x \land y = 0$ for all $x \in [0, a]$, $y \in [0, b]$. If $a \land b \neq 0$, then there exists $x \in [0, a]$, $y \in [0, b]$ such that $x \land y \neq 0$, since $x \land a \land b$ and $y \land a \land b$ need not be 0. And we have

$$([0, a] \cap [0, b] = [0, a \land b]) \subseteq [0, a], [0, b]$$
$$\subseteq (G([0, a] \cup [0, b]) = [0, a \lor b])$$

Hence we have

(2.3)
$$x \wedge y = x \wedge y \wedge (a \wedge b)$$
$$= (x \wedge a \wedge b) \wedge (y \wedge a \wedge b)$$
$$= \varphi_{a,a \wedge b}(x) \wedge \varphi_{b,a \wedge b}(y)$$

where $\varphi_{\Box,\Box}$ is defined in theorem 2.6.

Since an interval is a bounded distributive lattice(cf. corollary 2.1.1), and a bounded distributive lattice is regarded as the 'join' of the intervals, hence we may obtain a bounded distributive lattice by other bounded distributive lattices.

Suppose that **L**, **L'** are bounded distributive lattices. Let $a \in \mathbf{L}$, $a' \in \mathbf{L'}$ with $[0, a] \cong [0, a']$. Then there exists an isomorphism $\eta : [0, a] \rightarrow [0, a']$ of bounded distributive lattices. We may define an equivalence relation[10] by η and η^{-1} .

Definition 2.6 (cf. [2,3,8,10]). Let '~' be an equivalence relation in $L \cup L'$ provided that

 $x \sim y \quad \text{if } \begin{cases} x = y & \text{for } x, y \in \boldsymbol{L} \cup \boldsymbol{L}' \\ \eta(x) = y & \text{for } x \in [0, a] \\ x = \eta^{-1}(y) & \text{for } y \in [0, a'] \end{cases}$

9

A quotient(cf. [2, 3, 8]) of the set is an equivalence classes determined by an equivalence relation. Then we have a quotient $(L \cup L') / \sim$.

Definition 2.7. Suppose that L, L' are bounded distributive lattices. Let $a \in L$, $a' \in L'$ with $[0, a] \cong [0, a']$, $\eta : [0, a] \rightarrow [0, a']$ an isomorphism of bounded distributive lattices. Then let $G(L \cup L')$ be the bounded distributive lattice generated by $(L \cup L') / \sim$ where $(L \cup L') / \sim$ is a quotient determined by an equivalence relation ' \sim ' defined by η (see definition 2.6). And let

$$(2.4) 1_{\boldsymbol{L}} \wedge 1_{\boldsymbol{L}'} := a(\text{or } a')$$

Then we say that $G(L \cup L')$ is **generated by** $L \cup L'$ **via** the isomorphism η .

Then similar to proposition 2.4, we have

Proposition 2.9. The lattices L, L' are the intervals of $G(L \cup L')$. Hence the lattice $G(L \cup L')$ is the set $\{x \lor x' = x' \lor x \mid x \in L, x' \in L'\}$

Proof. We have $\mathbf{L} \cong [0, 1_{\mathbf{L}}]$ by theorem 2.3. For $x \in \mathbf{L}$, $x' \in \mathbf{L}'$, we have $x \land x' \in [0, a(a')]$ by proposition 2.3, corollary 2.3.1, and equations (2.3) and (2.4). Then similar to the proof of proposition 2.4.

Corollary 2.9.1.

$$G(\mathbf{L} \cup \mathbf{L}') = \langle (\mathbf{L} \cup \mathbf{L}') / \sim, \lor, \land, 0, 1_{\mathbf{L}} \lor 1_{\mathbf{L}'} \rangle$$

Proof. It is obvious.

2.6. Lattice forms Category. We seen that a partial order forms a category, see [6]. Hence a lattice forms a category, by theorem 2.1.

Definition 2.8 (cf. [6]). Suppose that L is a bounded distributive lattice. Let \mathcal{L} be a category provided that

Objects: The members of the lattice L. **Morphisms:** There is at most one morphism $a \rightarrow b$ for $a, b \in L$ with $a \leq b$.

It is obvious that \mathcal{L} satisfies the definition of category.

Proposition 2.10. A sublattice of **L** forms the subcategory[6] of \mathcal{L} .

Proof. It is obvious.

Proposition 2.11. Suppose that \mathbf{L}, \mathbf{L}' are bounded distributive lattices. Let $\psi : \mathbf{L} \rightarrow \mathbf{L}'$ be a homomorphism. If \mathcal{L} and \mathcal{L}' are categories define in definition 2.8, then ψ forms a functor from \mathcal{L} to \mathcal{L}' .

Proof. A homomorphism is compatible with the operations and the compositions of the operations. Hence the statement is true. $\hfill \Box$

2.7. **Morphism of Functors.** Recall some facts in [6]. Suppose that C, C' are categories. Let $F, H: C \to C'$ be functors. Then a morphism from F to H is a natural transformation[6] $\tau: F \xrightarrow{\bullet} H$, and for every $(f: C \to C') \in C$, the following diagram is commutative(cf. [6]).

(2.5)
$$F(C) \xrightarrow{\tau_C} H(C)$$
$$F(f) \downarrow \qquad \qquad \downarrow H(f)$$
$$F(C') \xrightarrow{\tau_{C'}} H(C')$$

Then the diagram (2.5) is regarded as the diagram (2.6) where *I* is an indentity functor.

Hence we may replace *I* by other functor.

Suppose that \mathcal{D} is a category. Let $T: \mathcal{C} \to \mathcal{D}$, $S: \mathcal{D} \to \mathcal{C}'$ be functors. If η is a morphism from F to $S \circ T$, then for every $(f: C \to C') \in \mathcal{C}$, the morphism η makes the diagram(2.7) commutate.

2.8. Chain.

Definition 2.9 (cf. [5]). A **chain** $\{a_n\}$ in a bounded distributive lattice L is a nonempty subset which has the infimum, and if $a, b \in \{a_n\}$, then either a < b or b < a.

Proposition 2.12. A chain $\{a_n\}$ of a bounded distributive lattice $(\mathbf{L}, \lor, \land, 0, 1)$ is a lattice $(\{a_n\}, \lor, \land)$.

To prove proposition 2.12, we need the following lemma:

Lemma 2.3 (cf. [8]). Suppose that **L** is a lattice. Let $a, b \in \mathbf{L}$ with $a \leq b$. Then $a \lor b = b$.

Proof. $a \lor b = (a \land b) \lor b = b$

Proof of proposition 2.12. Let $a, b \in \{a_n\}$. Then $a \le b$ or $b \le a$. By lemma 2.3, we have either $a \lor b = b$, $a \land b = a$ or $a \lor b = a$, $a \land b = b$. Therefore, the chain $\{a_n\}$ is a lattice.

A sublattice forms a subcategory, hence we have that

Corollary 2.12.1. A chain $\{a_n\}$ in **L** forms a category.

Proof. Immediate from propositions 2.10 and 2.12.

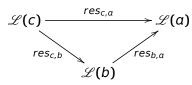
3. Sheaf

A sheaf is a contravariant functor[6] from a category $\mathfrak{Top}(X)$ [1] to a category C where $\mathfrak{Top}(x)$ is the category of open sets in a topological space X, see [1,9]. The open subsets in a topological space X form a distributive bounded lattice(cf. [4,8], definition 2.1). A lattice is a poset(cf. subsection 2.2) and a poset forms a category(cf. [6]), hence a lattice forms a category(cf. definition 2.8). So we may construct a sheaf of lattices on a bounded distributive lattice.

3.1. A Sheaf of Lattices on a Distributive Bounded Lattice. In theorem 2.2, we have known that if L is a bounded distributive lattice and $a \in L$, then [0, a] is a sublattice of (L, \lor, \land) . Let \mathcal{LAT} be the category of lattices, and the morphisms in \mathcal{LAT} is the homomorphisms of lattices. Then we have the following theorem.

Theorem 3.1 (cf. [1, 7, 9]). Suppose that $(L, \lor, \land, 0, 1)$ is a bounded distributive lattice. Then let \mathscr{L} be a contravariant functor from the category $\mathcal{L}(definition 2.8)$ to the category \mathcal{LAT} together with

- For every $a \in L$, $\mathcal{L}(a) = [0, a]$ (see theorem 2.2);
- For every $a, b \in L$ with $a \leq b$, the restriction map[9] $res_{b,a}$: $[0, b] \rightarrow [0, a]$ is the homomorphism $\varphi_{b,a}$ (see theorem 2.6);
- If a = b, then the restriction map is the identity isomorphism(see theorem 2.6);
- If $a \le b \le c$, then the following diagram is commutative(see proposition 2.7);



Then the functor \mathcal{L} is a **presheaf**[1,7,9] of lattices on a bounded distributive lattice **L**.

Proof. Immediate from definition 2.8, theorems 2.2 and 2.6, and proposition 2.7. \Box

Theorem 3.2. The presheaf \mathcal{L} is a sheaf.

Proof. The presheaf \mathscr{L} satisfies identity axiom[9, subsection 2.2.6] by theorem 2.7 and corollarys 2.7.1 and 2.7.2. And the presheaf satisfies gluability axiom[9, subsection 2.2.6] by theorem 2.8 and corollarys 2.8.1 and 2.8.2. Therefore, it is a sheaf. \Box

We have seen that the intervals of a bounded distributive lattice form a lattice in subsection 2.3. And for all $a \in L$, $\mathcal{L}(a)$ is an interval.

Proposition 3.1. For $a, b \in L$,

$$\mathcal{L}(a \lor b) = \mathcal{L}(a) \lor \mathcal{L}(b)$$
$$\mathcal{L}(a \land b) = \mathcal{L}(a) \land \mathcal{L}(b)$$

Proof. We have

$$\mathcal{L}(a \lor b) = [0, a \lor b] = [0, a] \lor [0, b]$$
$$\mathcal{L}(a \land b) = [0, a \land b] = [0, a] \land [0, b]$$

by corollarys 2.1.1 to 2.4.1 and theorem 2.4.

3.2. **Stalk of** \mathscr{L} . Suppose that \mathscr{F} is a sheaf of sets on a topological space X. Let $p \in X$. Then the stalk at p is a colimit[6] of $\mathscr{F}(U)$ over all open sets U containing p: $\mathscr{F}_p = \lim_{\to \infty} \mathscr{F}(U)$, see [1,9].

But we may define a stalk of \mathscr{L} at a chain[definition 2.9]. Suppose that **L** is a bounded distributive lattice. Let $\{a_n\}$ be a chain in **L**. It is obvious that the chain $\{a_n\}$ is a subcategory of $\mathcal{L}(\text{definition 2.8})$ by propositions 2.10 and 2.12. Let \mathcal{H} be the subcategory. Hence there exists a contravariant functor F from \mathcal{H} to the category \mathcal{LAT} of lattices such that $F = \mathscr{L} \upharpoonright \{a_n\}$. Then we have

Definition 3.1. The **stalk** of \mathscr{L} at the chain[definition 2.9] $\{a_n\}$ is the colimit of *F*. If $m \in L$ is the infimum of $\{a_n\}$, then $\lim F = [0, m]$. Let $\mathscr{L}_{\{a_n\}}$ denote the stalk.

Remark 3.1. We have $\mathscr{L}_{\{a_n\}} = \mathscr{L}(m)$.

And the sheaf \mathscr{L} may be formed by the stalks. Let $a = \bigvee_{i \in I} a_i$ and a_i the infimum of a chain $\{s_n\}_i$ for every *i*. By corollary 2.4.1, theorem 2.4, and proposition 3.1, we have

$$\mathcal{L}(\alpha) = \bigvee_{i \in I} \mathcal{L}_{\{s_n\}_i}$$

3.3. **Morphism of the Sheaves.** Suppose that $\mathscr{F}, \mathscr{F}'$ are the sheaves. Then a morphim $\pi: \mathscr{F} \to \mathscr{F}'$ is a natural transformation(cf. [1,6,7,9]).

Now, we construct a morphism of sheaves $\mathcal{L}, \mathcal{L}'$.

Theorem 3.3. Suppose that $\mathscr{L}, \mathscr{L}'$ are two sheaves defined in theorem 3.1 on bounded distributive lattices \mathbf{L}, \mathbf{L}' , respectively. Let $\psi : \mathbf{L} \to \mathbf{L}'$ be a homomorphism. Hence ψ forms a functor(cf. proposition 2.11). Then ψ induces a morphism $\hat{\psi} : \mathscr{L} \to \mathscr{L}'$ and the morphism $\hat{\psi}$ is the natural transformation $\mathscr{L} \xrightarrow{\bullet} \mathscr{L}' \circ \psi$. And $\hat{\psi}_a : \mathscr{L}(a) \to \mathscr{L}'(\psi(a))$ is the homomorphism defined in theorem 2.5 for all $a \in \mathbf{L}$.

Proof. Immediate from definition 2.8, theorems 2.5, 3.1 and 3.2, propositions 2.8 and 2.11, and section 2.7. \Box

Suppose that L, L' are two bounded distributive lattices. Let $\psi: L \to L'$ be a homomorphism. The image of ψ is a sublattice of L'. Hence the image is a bounded distributive lattice. And the image forms a subcategory.

Proposition 3.2. Let $\hat{\psi}$ be the morphism which is defined in theorem 3.3. Then the image of $\hat{\psi}$ is a sheaf on the bounded distributive lattice $\psi(\mathbf{L})$.

Proof. By definition 2.8, proposition 2.10, and theorems 3.1 to 3.3, the image of $\hat{\psi}$ is the functor \mathscr{L}' restricted to the subcategory $\psi(\mathcal{L})$ of \mathcal{L}' . Let $\mathscr{L}'|\psi(\mathcal{L})$ denote the restricted functor. It is obvious that $\mathscr{L}'|\psi(\mathcal{L})$ satisfies the definition of a sheaf.

Definition 3.2 (cf. [1, 3, 4, 6–9]). Suppose that $\hat{\psi}$ is the morphism defined in theorem 3.3. Then the morphism $\hat{\psi}$ is a **monomorphism(epimorphism, isomorphism)**, if ψ is a monomorphism(epimorphism, isomorphism).

Theorem 3.4. Suppose that $\hat{\psi}$ is the morphism defined in theorem 3.3. If $\hat{\psi}$ is a monomorphism(epimorphism, isomorphism), then $\hat{\psi}_{\alpha} \colon \mathscr{L}(\alpha) \to \mathscr{L}'(\psi(\alpha))$ is a monomorphism(epimorphism, isomorphism).

Proof. Immediate from corollary 2.5.1.

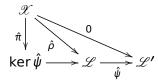
3.4. **Subsheaf.** Suppose that $\mathscr{L}', \mathscr{L}$ are sheaves defined in theorem 3.1 on bounded distributive lattices L', L, respectively. Let $\hat{\psi} \colon \mathscr{L}' \to \mathscr{L}$ be a monomorphism defined in definition 3.2. Then the image of $\hat{\psi}$ is isomorphic to \mathscr{L}' by proposition 3.2 and definition 3.2.

Definition 3.3 (cf. [1,9]). Suppose that \mathscr{L} is a sheaf defined in theorem 3.1 on a bounded distributive lattice L. Then the sheaf \mathscr{L}' is a **subsheaf** of \mathscr{L} if there exists a monomorphism $\hat{\psi} : \mathscr{L}'' \to \mathscr{L}$ such that \mathscr{L}' is the image of $\hat{\psi}$. If the subsheaf \mathscr{L}' is on a bounded distributive lattice L', then let $\mathscr{L} \upharpoonright \mathscr{L}'$ denote the subsheaf where \mathscr{L}' is the category which is formed by L' (see definition 2.8).

A morphism $\hat{\psi}: \mathcal{L} \to \mathcal{L}'$ is a natural transformation(see theorem 3.3). Hence for every $\alpha \in \mathcal{L}$, $\hat{\psi}_{\alpha}$ is a homomorphism of the intervals. In definition 2.5, we defined the kernel of $\hat{\psi}_{\alpha}$. And we have the fact that the subset $\psi^{-1}(0)$ is a bounded distributive lattice(cf. proposition 2.5). Hence $\psi^{-1}(0)$ is a category by definition 2.8. Now, we may define the kernel of $\hat{\psi}$.

Definition 3.4 (cf. [1,9]). Suppose that $\hat{\psi}$ is the morphism defined in theorem 3.3. Let a **kernel** of $\hat{\psi}$ be the subsheaf $\mathscr{L} \downarrow \psi^{-1}(0)$.

Remark 3.2. The kernel ker $\hat{\psi}$ is a subsheaf of \mathscr{L} such that $\hat{\psi}_k((\ker \hat{\psi})(k)) = \{0\}$ for all $k \in \psi^{-1}(0)$. In corollary 2.1.1, we have that [0, a] is a bounded distributive lattice for $a \in \mathbf{L}$. Specially, let a = 0. Then $\{0\}$ is a bounded distributive lattice. Let $\tilde{0}$ denote the sheaf on $\{0\}$. Then the image of the morphism $\hat{\psi} \upharpoonright \ker \hat{\psi}$ is $\tilde{0}$. Suppose that S is the category of the sheaves on bounded distributive lattices. Then $\tilde{0}$ is a null object[6] of S. And for all morphism $\hat{\rho} \colon \mathscr{X} \to \mathscr{L}$ in S, if $\hat{\psi} \circ \hat{\rho} = 0$, then there exist unique morphism $\hat{\pi} \colon \mathscr{X} \to \ker \hat{\psi}$ such that the following diagram is commutative(cf. [6]).



3.5. **Gluing Sheaves.** Suppose that $\mathcal{L}, \mathcal{L}'$ are the sheaves which are defined in theorem 3.1. In proposition 3.1, for all $a, b \in L$, we have seen

$$\mathcal{L}(a \lor b) = \mathcal{L}(a) \lor \mathcal{L}(b) = [0, a] \lor [0, b] = [0, a \lor b]$$

And an interval $[0, \alpha]$ is a bounded distributive lattice by corollary 2.1.1.

Definition 3.5 (cf. [1,9]). Suppose that $\mathcal{L}, \mathcal{L}'$ are defined on bounded distributive lattices L, L', respectively. Let $a \in L$, $a' \in L'$ with $[0, a] \cong [0, a']$, $\eta: [0, a] \rightarrow [0, a']$ an isomorphism of the bounded distributive lattices. By definition 3.2, that η induces an isomorphism of sheaves:

$$\hat{\eta} \colon \mathcal{L} \upharpoonright [0, a] \to \mathcal{L}' \upharpoonright [0, a']$$

where $\mathscr{L} \upharpoonright [0, \alpha]$ and $\mathscr{L}' \upharpoonright [0, \alpha']$ are subsheaves defined in definition 3.3. Then let \mathscr{M} be a sheaf on the bounded distributive lattice $G(\mathbf{L} \cup \mathbf{L'})$ which is defined in definition 2.7. We say that the sheaf \mathscr{M} is obtained by **gluing** \mathscr{L} and \mathscr{L}' **via** an isomorphism $\hat{\eta}$. Then the sheaves $\mathscr{L}, \mathscr{L}'$ may be regarded as the subsheaves of \mathscr{M} .

References

- [1] Robin Hartshorne, Algebraic geometry, Springer, 1977.
- [2] Thomas W. Hungerford, Algebra, Springer, 1974.
- [3] Nathan Jacobson, Basic algebra ii, 2nd ed., Dover Publications, 2009.
- [4] Jaroslav Ježek, Universal algebra, 1st ed., 2008.
- [5] John L. Kelley, General topology, Springer, 1955.
- [6] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Springer, 1971.
- [7] Joseph J. Rotman, An introduction to homological algebra, 2nd ed., Springer, 2009.
- [8] S.Burris and H.P.Sankappanavar, A course in universal algebra, 2012.
- [9] Ravi Vakil, The rising sea foundations of algebraic geometry, 2017.
- [10] Robert L. Vaught, Set theory an introduction, 2nd ed., Birkhäuser Boston, 2001. Email address: leeshuheng@icloud.com