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Abstract

The main purpose of this paper is to study a number of results concerning

the generalized (σ, τ)-derivation D associated with the derivation d of the

semiprime ring and prime ring R such that D and d are zero power valued on

R, where the mappings σ and τ act as automorphism mappings.

Precisely, this article divided into two sections, in the first section, we empha-

size on generalized (σ, τ)-derivation D associated with the derivation d of the

semiprime ring and prime ring R while in the second section, we study the

effect of the compositions of generalized (σ, τ)-derivations of the semiprime

ring and prime ring R such that D is period (n − 1) on R, for some positive

integer n.
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1 Introduction

One of the natural questions of Ring Theory is to determine conditions implying

commutativity of the ring. During the last two decades, the commutativity of

associative rings with derivations have become one of the focus point of several

authors and a significant work has been done in this direction. The concept of

derivations and automorphisms of affiliated rings are a particular milestone in the

advancement of classical Galois Theory and Theory of Invariants. Commutative

ring theory is fundamental role role in analysis, algebraic geometry and algebra.

The study of generalized derivations of partially ordered sets has its roots in the
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study of the Krull dimension of rings and modules, where the concept of Krull

dimension of commutative rings was originally developed by E. Noether and W.

Krull in the 1920s. In fact, there are some applications of (σ, τ)-derivations which
can help to develop an approach to deformation of Lie algebras, and which have

various applications in modelling quantum phenomena and in the analysis of complex

systems. The map has been extensively investigated in pure algebra. Recently, it

has been treated for Banach algebra theory [1].

There are several results in the existing literature that deal with centralizing and

commuting mappings on rings. Basically, the study of derivation was initiated during

the 1950s and 1960s. The study of centralizing mappings was first undertaken by E.

C. Posner [2], who stated that the existence of a non-zero centralizing derivation

on a prime ring forces the ring to be commutative (referred to as Posner’s Second

Theorem). In an attempt to generalize the above result, J. Vukman [3] confirmed

that if R is a 2-torsion free prime ring and d∶R → R is a non-zero derivation such

that the map x→ [d(x), x] is commuting on R, then R is commutative.

Atteya [4], proved that if R is a 2-torsion free semiprime ring and U is a non-zero

ideal of R admits a derivation d satisfying the condition [d(x2), d(y2)]−[x, y] ∈ Z(R)
for all x, y ∈ U then R contains a non-zero central ideal. M. Ashraf, A. Khan and

C. Haetinger [5] showed that under certain conditions on a prime ring R, every

Jordan (σ, τ)-higher derivation of R is a (σ, τ)-higher derivation of R. B. Dhara

and A. Pattanayak [6] proved that if R is a semiprime ring, U a non-zero ideal of

R, and σ and τ are two epimorphisms of R, then an additive mapping D∶R → R

is a generalized (σ, τ)-derivation of R if there exists a (σ, τ)-derivation d∶R → R

such that D(xy) = D(x)σ(y) + τ(x)d(y) for all x, y ∈ R. If τ(U)d(U) ≠ 0, then R

contains a non-zero central ideal of R if the condition D[x, y] = ±(xoy)σ,τ holds.

Additionally, the results determined by Ajda Fošner in [7] concentrated on the

assumption that U was a separated set of an M -bimodule contained in the alge-

bra generated by all idempotents in A, and let α,β be endomorphisms of A such

that α(U) = U , β(U) = U . Then, every local generalized (α,β)-derivation (local

(α,β)-derivation, resp.) from an algebra A into an A-bimodule M is a generalized

(α,β)-derivation ((α,β)-derivation, resp.). Conversely, Marubayashi et al [8] stated
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numerous results connecting derivations,

(σ, τ)-derivations and generalized derivations to the generalized (σ, τ)-derivation
of R. More precisely, the authors studied the commutativity of a prime ring R

admitting a generalized (σ, τ)-derivation F , satisfying certain conditions such as

[F (x), x]σ,τ = 0 for all x in an appropriate subset of R, where σ, τ are automorphisms

of R. Basically, H. E.Bell and W. S. Matindale III [9] assert that R is a prime ring

and U is a nontrivial left ideal of R. If R admits a nonidentity endomorphism d

which is one-to-one on U and centralizing on U , then R is commutative.

Throughout the this paper, R will denote an associative ring with center Z(R). Let
x, y, z ∈ R. We write the notation [y, x] for the commutator yx − xy and x ○ y for

anticommutator xy + yx also make use of the identities [xy, z] = [x, z]y +x[y, z] and
[x, yz] = [x, y]z + y[x, z]. Recall that R is semiprime if aRa = 0 implies a = 0 and

R is prime if aRb = 0 implies a = 0 or b = 0. Every prime ring is semiprime ring,

but the converse is not true always. R is said to be commutative if xy = yx for all

x, y ∈ R. An analogous notion is that of anticommutativity of rings. A ring R is said

to be anticommutative if xy = −yx for all x, y ∈ R. A ring R is said to be n-torsion

free if for x ∈ R, nx = 0 implies x = 0. A map d∶R → R is said to be n-commuting on

R if [d(x), xn] = 0 holds for all x ∈ R.

An additive map d∶R → R is called a derivation if the Leibniz’s rule d(xy) =
d(x)y + xd(y) holds for all x, y ∈ R. Also, an additive mapping D∶R → R is called

a generalized derivation if there exists an additive mapping d on R such that

D(xy) =D(x)y + xd(y) for all x, y ∈ R.

Further this as a motivation we define an additive mapping d∶R → R is called

a (σ, τ)-derivation if there exists automorphisms σ, τ ∶R → R such that d(xy) =
d(x)σ(y) + τ(x)d(y) for all x, y ∈ R. Also, D∶R → R is called a generalized (σ, τ)-
derivation if there exists automorphisms σ, τ ∶R → R and d is a (σ, τ)-derivation such

that D(xy) =D(x)σ(y) + τ(x)d(y) for all x, y ∈ R.

If S ⊆ R, then a mapping d∶R → R preserves S if d(S) ⊆ S. A mapping d∶R → R

is zero-power valued on S if d preserves S and if for each x ∈ S, there exists a

positive integer n(x) > 1 such that dn(x)(x) = 0. A mapping d∶R → R is strong

commutativity-preserving (SCP ) on S if [x, y] = [d(x), d(y)] for all x, y ∈ S.
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Furthermore, a mapping d∶R → R is called period 2 on R if d2(x) = x for all x ∈ R.

We shall use, without explicitly mentioning, the following basic identities:

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy,

[x, yz]σ,τ = σ(y)[x, z]σ,τ + [x, y]σ,τσ(z),

(xo(yz))σ,τ = (xoy)σ,τσ(z) − τ(y)(xoz)σ,τ = τ(y)(xoz)σ,τ + (xoy)σ,τσ(z).
where [x, y](σ,τ) for the commutator xσ(y)−τ(y)x and (x○y)(σ,τ) for anti-commutator

xσ(y) + τ(y)x.

In the present paper, we establish a number of results concerning the general-

ized (σ, τ) -derivation D associated with the derivation d of the semiprime ring and

prime ring R, in addition to presenting the general formula for the composition of a

generalized (σ, τ) -derivation D, and some example applications of such.

We assume the composition σ ○D =D ○ σ, τ ○D =D ○ τ, σ ○ d = d ○ σ and τ ○ d = d ○ τ
of R. Also, we used the well-known fact about the center of semiprime rings:

The center of semiprime ring contains no non-zero nilpotent elements.

We begin with the following known results, on which our derivation subsequently

depends:

Lemma 1.1. ([10, Proposition 8.5.3, Page 330]) Let R be a ring. Then every

intersection of prime ideals is semiprime. Conversely every semiprime ideal is an

intersection of prime ideals.

Lemma 1.2. ([11, Lemma 2.1]) Let R be a semiprime ring, U a non-zero two-sided

ideal of R and a ∈ R such that axa = 0 for all x ∈ U , then a = 0.

Lemma 1.3. ([12, Lemma 2.4]) Let R be a semiprime ring and a ∈ R. Then

[a, [a, x]] = 0 holds for all x ∈ R if and only if a2,2a ∈ Z(R).

Lemma 1.4. ([13, Lemma 2]) Let R be a prime ring. If a, b, c ∈ R such that

axb = cxa for all x ∈ R, then either a = 0 or c = b.
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Lemma 1.5 (14, Lemma 1.1). Let R be a semiprime ring. If a, b ∈ R such that

axb = 0 for all x ∈ R then ab = ba = 0.

2 On Generalized (σ, τ)-Derivation of Semiprime

Rings

In this section, we emphasize on a number of results concerning the generalized

(σ, τ) -derivation D associated with the derivation d of the semiprime ring and

prime ring R has the property of torsion free restricted, where the mappings σ and

τ act as automorphisms mappings.

Theorem 2.1. Let R be a 2 and 3-torsion free semiprime ring and σ, τ be automor-

phism mappings of R. If D is a generalized (σ, τ)-derivation which is zero power

valued index 2 on R then d = 0, where R satisfies the relation aRb ⊂ Z(R), a, b ∈ R
and σ2 = σ.

Proof. From our hypothesis, we have D is zero power valued on R. Then there

exists an integer n(r) > 1 such that Dn(r)(r) = 0 for all r ∈ R. Since D is zero power

valued index 2 on R, we deduce that D2(r) = 0 for all r ∈ R. Replacing r with rs

for all r, s ∈ R, we find that

D(D(rs)) =D(D(r)σ(s) + τ(r)d(s)) = 0. We rewrite the above relation as

D(D(rs)) =D(D(r)σ(s)) +D(τ(r)d(s)) = 0. Simple calculation, we see that

D2(r)σ2(s) + τ(D(r))d(σ(s)) +D(τ(r))σ(d(s)) + τ 2(r)d2(s) = 0.
Since σ ○ d = d ○ σ and τ ○D =D ○ τ of R, we obtain

D2(r)σ(s) +D(τ(r))d(σ(s)) +D(τ(r))d(σ(s)) + τ(r)d2(s) = 0. (1)

Due to the fact that D is zero power valued on R, we conclude that

D(τ(r))d(σ(s)) +D(τ(r))d(σ(s)) + τ(r)d2(s) = 0.
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Since σ and τ are automorphisms of R. In this case σ, τ ∶R → R are 1-1 and

onto. (σ(R) = R; τ(R) = R): In particular, since σ, τ are automorphisms of R, we

use σ(s) = q, τ(r) = p in the above relation, we find that

2D(p)d(q) + pd2(q) = 0. (2)

In (2), we substitute q by tq, t ∈ R, we obtain

2D(p)(d(t)σ(q) + τ(t)d(q)) + pd(d(t)σ(q) + τ(t)d(q)) = 0.

Moreover, the left side of this relation imply

2D(p)d(t)σ(q) + 2D(p)τ(t)d(q)) + pd2(t)σ2(q) (3)

+ pτ(d(t))d(σ(q)) + pd(τ(t))σ(d(q)) + pτ 2(t)d2(q) = 0.

In agreement with (2), the first term of (3) becomes −pd2(t)σ(q), which cancel with

the item pd2(t)σ2(q) after applying the condition σ2(q) = σ(q).
Due to σ and τ are automorphisms of R, then (3) becomes

2D(p)τ(t)d(q) + pτ(d(t))d(q) + pd(τ(t))σ(d(q)) + pτ 2(t)d2(q) = 0. (4)

Applying that σ ○d = d ○σ and τ ○D =D ○ τ of R and σ and τ are automorphisms of

R. In this case σ, τ ∶R → R are 1-1 and onto. (σ(R) = R; τ(R) = R): In particular,

since σ and τ are automorphisms of R, we use σ(t) = y, σ(q) = e, τ(t) = x, τ(x) = w
in (4), we find that

2D(p)xd(q) + pd(x)d(q) + pd(x)d(e) + pwd2(q) = 0. Replacing x by t, we obtain

2D(p)td(q) + pd(t)d(q) + pd(t)d(e) + pwd2(q) = 0. Now, replacing p by x, q by y, w

by t and e by y, we deduce

2D(x)td(y) + 2xd(t)d(y) + xtd2(y) = 0. (5)
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Using (2) in relation (5), we find that

2D(x)td(y) + 2xd(t)d(y) − 2xD(t)d(y) = 0. (6)

Replacing x by D(x) and applying D2(R) = 0, we see that

2D(x)d(t)d(y) − 2D(x)D(t)d(y) = 0. (7)

According to (2), we rewrite (7) as follows

−xd2(t)d(y) +D(x)td2(y) = 0.
Replacing x with D(x) and using the fact D2(R) = 0, we conclude that

D(x)d2(t)d(y) = 0. (8)

In (8) replacing y with ys, s ∈ R and applying the result imply D(x)d2(t)yd(s) = 0.
Replacing y with yD(x) and s with d(t) and using the semiprimeness of R, we

obtain

D(x)d2(t) = 0. (9)

In (2) we set y = d(y), we show that 2D(x)d2(y) + xd3(y) = 0.
Applying (9) and using the semiprimeness of R, we find that d3(y) = 0.
In this result replacing y by xy, we obtain 3d2(x)d(y)+3d(x)d2(y) = 0, for all x, y ∈ R.

Substitution x by d(x) and employingR is 3-torsion free, we conclude that d3(x)d(y)+
d2(x)d2(y) = 0, for all x, y ∈ R.

Due to the result d3(y) = 0 for all x ∈ R. The first term becomes zero, that means

the above relation reduces to

d2(x)d2(y) = 0.
Right-multiplying by rd2(x), r ∈ R and left-multiplying by d2(y)r, r ∈ R, with
applying the center of semiprime ring contains no non-zero nilpotent elements and

the fact that aRb ⊂ Z(R), a, b ∈ R, we obtain

d2(y)Rd2(x) = 0. Based on the semiprimeness of R, we conclude that d2(x) = 0, for
all x ∈ R. Replacing x by xy and using the result d2(x) = 0, we arrive to
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2d(x)d(y) = 0, for all x, y ∈ R.

Using the fact R is 2-torsion free and left-multiplying by d(y)R and right-multiplying

by Rd(x) with applying the center of semiprime ring contains no non-zero nilpotent

elements and aRb ∈ Z(R). It follows that d(y)Rd(x) = 0 yields d = 0.
Using the same argument as in the last part of the proof, we obtain the required

result.

The following example shows the condition aRb ⊂ Z(R) for the results necessary

i.e., we can not exclude it from the hypothesis.

Example 1. Let R = {
⎛
⎜
⎝
0 0

x y

⎞
⎟
⎠
∖x, y ∈ F} be a ring over a field F such that x and y are

nilpotent index 2 also y is an annihilator element. Define the mappings g, h∶R → R

as follows:

g(t) = g(
⎛
⎜
⎝
0 0

n m

⎞
⎟
⎠
) =
⎛
⎜
⎝
0 0

0 n

⎞
⎟
⎠
and h(s) = h(

⎛
⎜
⎝
0 0

p q

⎞
⎟
⎠
) =
⎛
⎜
⎝
0 0

q 0

⎞
⎟
⎠

for all t, s ∈ R,n,m, p, q ∈ F.

Obviously, guh =
⎛
⎜
⎝
0 0

0 n

⎞
⎟
⎠

⎛
⎜
⎝
0 0

x y

⎞
⎟
⎠

⎛
⎜
⎝
0 0

q 0

⎞
⎟
⎠
=
⎛
⎜
⎝

0 0

nyq 0

⎞
⎟
⎠
, where u ∈ R.

Thus, we find that

[u, guh] = [
⎛
⎜
⎝
0 0

x y

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0

nyq 0

⎞
⎟
⎠
] =
⎛
⎜
⎝

0 0

y2nq 0

⎞
⎟
⎠
.

Due to y2 = 0 for all y ∈ F this matrix reduces to
⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠
.

Also, with applying the relation x2 = 0, we conclude that

[g(t), guh] = [
⎛
⎜
⎝
0 0

0 n

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0

nyq 0

⎞
⎟
⎠
] = 0 and [h(s), guh] = [

⎛
⎜
⎝
0 0

q 0

⎞
⎟
⎠
,
⎛
⎜
⎝

0 0

nyq 0

⎞
⎟
⎠
]

= 0. Hence, we obtain guh ⊂ Z(R). Let us keeping the definition of g and h with

u ∈ R. We now suppose
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R∗ = {
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
, u ∈ R}, where R∗ is a ring has no divisors of zero.

Let d∶R∗ → R∗ be an additive mapping define as

d(s) =
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠

⎛
⎜
⎝
1 0

0 0

⎞
⎟
⎠
−
⎛
⎜
⎝
1 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝
0 −g
u 0

⎞
⎟
⎠
for all s ∈ R∗. Clearly, d is a

derivation of R∗.

Suppose σ, τ ∶R∗ → R∗ be a mappings defined by

σ(r1) = σ
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
and τ(r2) = τ

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

for all r1, r2 ∈ R∗.

Moreover, we check whether d is (σ, τ)-derivation on R∗. Hence, we assume

d(r1r2) = d(r1)σ(r2) + τ(r1)d(r2), for all r1, r2 ∈ R∗.

We consider r1 =
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
and r2 =

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
. The right-side

= d
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
σ
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
+ τ
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
d
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠

=
⎛
⎜
⎝
0 −g
u 0

⎞
⎟
⎠

⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠

=
⎛
⎜
⎝
−gzuw 0

uw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 −hz
0 0

⎞
⎟
⎠
=
⎛
⎜
⎝
−gzuw −gz)
uw 0

⎞
⎟
⎠
,

since zuw ⊂ Z(R), then

=
⎛
⎜
⎝
−zuwg −hz
uw 0

⎞
⎟
⎠
, where z =

⎛
⎜
⎝
0 0

a b

⎞
⎟
⎠
=
⎛
⎜
⎝
0 0

0 a

⎞
⎟
⎠
and w =

⎛
⎜
⎝
0 0

e c

⎞
⎟
⎠
=
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⎛
⎜
⎝
0 0

e 0

⎞
⎟
⎠
for all a, b, e, c ∈ Z, z,w ∈ R⋆ yields zuwg =

⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠
and hz =

⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠
.

Then, this matrix reduces to
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
.

While the left-side

d(r1r2) = d(
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) = d(

⎛
⎜
⎝
hw + ug hz

uw uz

⎞
⎟
⎠
) =
⎛
⎜
⎝
0 −hz
uw 0

⎞
⎟
⎠
=
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
.

Thus, d is (σ, τ)-derivation of R∗.

We now investigate on generalized (σ, τ)-derivation of R∗. Let D be additive mapping

on R∗ defined

D(t) =D(
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
) =
⎛
⎜
⎝
g 0

u 0

⎞
⎟
⎠
.Then, we check

D(r1r1) =D(r1)σ(r2) + τ(r1)d(r2), for all r1, r1 ∈ R∗.

Take r1 =
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
and r2 =

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
,

where τ(r1) = τ
⎛
⎜
⎝
h 0

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠
and σ(r2) = σ

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
for all r1, r2 ∈

R∗.

The left-side give us

D(r1r2) =D(
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) =D

⎛
⎜
⎝
hw + gu hz

uw uz

⎞
⎟
⎠
=
⎛
⎜
⎝
hz 0

uw 0

⎞
⎟
⎠
=
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
.

Furthermore, the right-side provide

D(r1)σ(r2) + τ(r1)d(r2) =D
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
σ
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
+ τ
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
d
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
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Applying the definitions of the mappings, we find that

=
⎛
⎜
⎝
g 0

u 0

⎞
⎟
⎠

⎛
⎜
⎝

w o

zuw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠

=
⎛
⎜
⎝
gw 0

uw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 hz

0 0

⎞
⎟
⎠
=
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
.

Thus, D is generalized (σ, τ)-derivation of R∗. We have enough information to

determine whether D2 = 0. Then

D2(r1r1) =D2(r1)σ2(r2)+τ(D(r1))d(σ(r2))+D(τ(r1))σ(d(r2))+τ 2(r1)d2(r2).....(∗).

=D(D
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)σ(σ

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) + τ(D

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)d(σ

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) +D(τ

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)

σ(d
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) + τ(τ

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)d(d

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
).

=D
⎛
⎜
⎝
g 0

u 0

⎞
⎟
⎠
σ
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
+ τ
⎛
⎜
⎝
g 0

u 0

⎞
⎟
⎠
d
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
+D
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

σ
⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠
+ τ
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠
d
⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠
.

Thus, we conclude that

=
⎛
⎜
⎝
0 0

u 0

⎞
⎟
⎠

⎛
⎜
⎝

w 0

0(zuw) 0

⎞
⎟
⎠
+
⎛
⎜
⎝
g 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0

zuw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠

+
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 z

u 0

⎞
⎟
⎠
=
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 hz

0 0

⎞
⎟
⎠
.

Due to the action of the entries of u and w, then uw = 0. This result modifies

this matrix to become zero i.e. D2 = 0.
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Let us move to show that d2 = 0 too.

d2(r1r1) = d2(r1)σ2(r2) + τ(d(r1))d(σ(r2)) + d(τ(r1))σ(d(r2)) + τ 2(r1)d2(r2)

= d(d
⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)σ(σ

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) + τ(d

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)d(σ

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) + d(τ

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)

σ(d
⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
) + τ(τ

⎛
⎜
⎝
h g

u 0

⎞
⎟
⎠
)d(d

⎛
⎜
⎝
w z

u 0

⎞
⎟
⎠
).

= d
⎛
⎜
⎝
0 −g
u 0

⎞
⎟
⎠
σ
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
+ τ
⎛
⎜
⎝
0 −g
u 0

⎞
⎟
⎠
d
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
+ d
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠
σ
⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠

+τ
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠
d
⎛
⎜
⎝
0 −z
u 0

⎞
⎟
⎠

=
⎛
⎜
⎝
0 g

u 0

⎞
⎟
⎠

⎛
⎜
⎝

w 0

0(zuw) 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝

0 0

zuw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠
+
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 z

u 0

⎞
⎟
⎠

=
⎛
⎜
⎝
0 g

u 0

⎞
⎟
⎠

⎛
⎜
⎝
w 0

0 0

⎞
⎟
⎠
+
⎛
⎜
⎝
h 0

0 0

⎞
⎟
⎠

⎛
⎜
⎝
0 z

u 0

⎞
⎟
⎠
.

=
⎛
⎜
⎝
0 0

uw 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 hz

0 0

⎞
⎟
⎠
.

Since uw = 0 and hz = 0, this matrix becomes zero i.e d2 = 0.
Substituting the values of D2 and d2 in Relation ∗, we find that

τ(D(r1))d(σ(r2)) +D(τ(r1))σ(d(r2)) = 0.
Due to σ commute with d this relation modify to (τ(D(r1))+D(τ(r1)))d(σ(r2)) = 0
for all r1, r2 ∈ R∗. Then

(τ
⎛
⎜
⎝
g 0

u 0

⎞
⎟
⎠
+D
⎛
⎜
⎝
−h 0

0 0

⎞
⎟
⎠
)d
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
= 0. Moreover,
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(
⎛
⎜
⎝
g 0

0 0

⎞
⎟
⎠
+
⎛
⎜
⎝
0 0

0 0

⎞
⎟
⎠
)d
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
=
⎛
⎜
⎝
g 0

0 0

⎞
⎟
⎠
d
⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
= 0.

Basically, R∗ has no divisors of zero. Hence, we arrive to either

⎛
⎜
⎝
g 0

0 0

⎞
⎟
⎠
= 0 yields contradiction or d

⎛
⎜
⎝

w 0

zuw 0

⎞
⎟
⎠
= 0. Thus d = 0.

Theorem 2.2. Let R be a 2-torsion free semiprime ring, σ and τ be two automor-

phisms of R. Suppose that there exists a generalized (σ, τ)-derivation D such that

[D(x), x]σ,τ = 0 for all x ∈ R. If d is central period 2 on R then D is zero power

valued on R.

Proof. Let us introduce a mapping γ∶R ×R → R by the relation

γ(r1, r2) = [D(r1), r2]σ,τ + [D(r2), r1]σ,τ for all r1, r2 ∈ R.

It is symmetric and additive in both arguments. Notice that for all r1, r2, z ∈ R,
γ(r1r2, z) = [D(r1r2), z]σ,τ + [D(z), r1r2]σ,τ .
Using the definition of (σ, τ)-generalized derivation, we expand the right-hand side

as

γ(r1r2, z) =D(r1)[σ(r2), z]σ,τ + [D(r1), z]σ,τσ(r2) + τ(r1)[d(r2), z]σ,τ

+ [τ(r1), z]σ,τd(r2) + r1[D(z), r2]σ,τ + [D(z), r1]σ,τr2. (10)

Applying that σ ○d = d ○σ and τ ○D =D ○ τ of R and σ and τ are automorphisms of

R. In this case σ, τ ∶R → R are 1-1 and onto. (σ(R) = R; τ(R) = R): In particular,

since σ, τ are automorphisms of R, we use σ(r2) = y, τ(r1) = x in the above relation,

we find that

γ(xy, z) =D(x)[y, z]σ,τ + [D(x), z]σ,τy + x[d(y), z]σ,τ + [x, z]σ,τd(y)

+ x[D(z), y]σ,τ + [D(z), x]σ,τy.

Replacing y with xy in the main relation, we find that γ(x,xy) = [D(x), xy]σ,τ +
[D(xy), x]σ,τ = 0.
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Further, we conclude that [D(x), xy]σ,τ + [D(x)σ(y) + τ(x)d(y), x]σ,τ = 0.
Expanding the left-hand side, we obtain

x[D(x), y]σ,τ + [D(x), x]σ,τy +D(x)[σ(y), x]σ,τ

+ [D(x), x]σ,τσ(y) + τ(x)[d(y), x]σ,τ + [τ(x), x]σ,τd(y) = 0. (11)

Applying that σ ○d = d ○σ and τ ○D =D ○ τ of R and σ and τ are automorphisms of

R. In this case σ, τ ∶R → R are 1-1 and onto. (σ(R) = R; τ(R) = R): In particular,

since σ, τ are automorphisms of R, we use σ(y) = t, τ(x) = s in the (11) becomes

x[D(x), y]σ,τ+[D(x), x]σ,τy+D(x)[t, x]σ,τ+[D(x), x]σ,τ t+s[d(y), x]σ,τ+[s, x]σ,τd(y) =
0 for all t, s ∈ R.

Replacing y by d(t), s by d(s) and t by d(t) with employing d acts as central

mapping, we find that

[D(x), x]σ,τd(t) + [D(x), x]σ,τd(t) = 0 for all t, s ∈ R. Since R is 2-torsion free, we

deduce

[D(x), x]σ,τd(t) = 0. (12)

Writing this relation as ([D(x)σ(x) − τ(x)D(x))d(t) = 0. According to σ, τ are

automorphisms of R, we use σ(x) = y and τ(x) = t in this relation, we conclude that

(D(x)y − tD(x))d(t) = 0.
Now replacing y by −y and combine with this relation, we find that

2tD(x)d(t) = 0. Applying the fact that R is 2-torsion free, we conclude that

tD(x)d(t) = 0. Substituting this result in the relation (D(x)y − tD(x))d(t) = 0. It
modifies to D(x)yd(t) = 0. Replacing t by d(t) and using d is a period 2, we see

that

D(x)yt = 0. In this relation, replacing x by D(x) and t by D2(x) with using the

semiprimeness of R, we arrive to

D2(x) = 0 for all x ∈ R. This completes the proof.

By the same manner of prime ring, we can obtain the same result without the

condition period 2 of d when d is non-zero.
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Proposition 2.3. Let R be a 2-torsion free prime ring, σ and τ be two automor-

phisms of R. Suppose that there exists a generalized (σ, τ)-derivation D such that

[D(x), x]σ,τ = 0 for all x ∈ R. If d is non-zero central on R then D is zero power

valued index 2 on R.

Proposition 2.4. Let σ and τ be two ring automorphisms of R. Suppose and there

exists a generalized (σ, τ)-derivation D such that D(x)[x, y]σ,τ = 0. Then

(i) if R is semiprime and U is a maximal ideal of R then either D(R) is commuting

on R or [t, r]σ,τ = 0 for all t, r ∈ R,

(ii) if R is a 2-torsion free prime ring then either D has zero power valued index

2 on R or D(R) = 0,

(iii) if D is a period 2 on prime ring R then [D(x), x]σ,τ = 0..

Proof. (i) In the main relation D(x)[x, y]σ,τ = 0 for all x, y ∈ R, replacing y by yt,

t ∈ R. That gives

D(x)σ(y)[x, t]σ,τ +D(x)[x, t]σ,τσ(t) = 0. (13)

Obviously, the second term vanishes in view of the main relation. This leads to

D(x)y[x, t]σ,τ = 0 for all x, y, t ∈ R. By reason of R is a semiprime ring, so in this

relation we replace y with xR and t by D(x), we arrive to

D(x)R[x, t]σ,τ = 0. (14)

Due to R is semiprime, we consider the set {Pα} of prime ideals of R such that

∩Pα = {0}.
In agreement with Lemma 2, we show the intersection {Pα} of prime ideals of R is

a semiprime ideal. Based on U is a maximal ideal of R there are no other ideals

contained between U and R. Hence, we find that ∩Pα ⊆ U .

If P is a typical member of ∩Pα and x ∈ U , it follows that [w,x] ∈ P or D(x) ∈ P .

Construct two additive subgroup T1 = {x ∈ U ∣ [x, t]σ,τ ∈ P} and T2 = {x ∈ U ∣D(x) ∈
P}, where any ideal of a ring R is subgroup of the additive group of R. Then

15



T1 ∪ T2 = U .

Since a group can not be a union of two its proper subgroups, either T1 = U or

T2 = U , that is, either [x, t]σ,τ ∈ P or D(x) ∈ P . Thus, both cases yield

[x, t]σ,τ ∈ ∩Pα or D(x) ∈ ∩Pα. In other words,[x, t]σ,τ ∈ ∩Pα ⊆ U or D(x) ∈ ∩Pα ⊆ U .

In what follows, we obtain either [x, t]σ,τ ∈ U for all x ∈ U,w ∈ R or D(x) ∈ U for all

x ∈ U .

We divide the proof into two cases.

Case 1: If [x, t]σ,τ ∈ U for all x ∈ U,w ∈ R then [x, t]σ,τ = 0 for all x ∈ U, t ∈ R.

Replacing x with xr, r ∈ R, we find that

x[t, r]σ,τ + [t, x]σ,τr = 0 for all x ∈ U, t, r ∈ R. Applying the relation [t, x]σ,τ = 0 to

this result, we conclude that

x[t, r]σ,τ = 0 for all x ∈ U,w, r ∈ R. We write this relation as follows

U[t, r]σ,τ = (0). According to Lemma 3, we obtain [t, r]σ,τ = 0 for all t, r ∈ R.

Case 2: If D(x) ∈ U for all x ∈ R then D(x) = 0 for all x ∈ R, we arrive to

D is commuting on R.

(ii) Suppose R is prime, we have the relation

D(x)y[x, t]σ,τ = 0, x, y, t ∈ R.

Substituting of y by R, we see that D(x)R[x, t]σ,τ = 0. Replacing x by D(x), we
find that D2(x)R[D(x), t]σ,τ = 0. Since R is prime, we come to the following results:

either D2(x) = 0 that is mean has zero power valued index 2 on R or [D(x), t]σ,τ = 0.
Given that σ and τ are automorphisms of R. In this case σ, τ ∶R → R are 1-1 and

onto. (σ(R) = R; τ(R) = R): In particular, since σ, τ are automorphisms of R, we

use σ(t) = w, τ(t) = y, we conclude that D(x)w = yD(x) for all w, y ∈ R. Putting

y = −y and combine with the previous result, we deduce 2D(x)w = 0 for all w,x ∈ R.

Applying R is a 2-torsion free yields D(R) = 0.
(iii) Using the same technique of Branch(ii), we arrive to D2(x)R[D(x), t]σ,τ = 0. In
ducat to D is period 2 on R this relation modifies to xR[D(x), x]σ,τ = 0. Since R is

prime ring then [D(x), x]σ,τ = 0. Hence we get the required result.

Theorem 2.5. Let R be a 2-torsion free semiprime ring and σ and τ be two

automorphisms of R. Suppose that there exists a generalized (σ, τ)-derivation D
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such that d has zero power valued index 2 on R and D(xy) =D(yx) for all x, y ∈ R.

Then d([x, y]σ,τ) = 0 for all x, y ∈ R.

Proof. Suppose c ∈ R is a constant, i.e., an element such that D(c) = 0, and let c be

an arbitrary element of R. According to our hypothesis, we have D(rw) =D(wr)
for all r,w ∈ R. Replacing r with c and w with z, we arrive to D(cz) =D(zc) for all
z ∈ R.

Then

D(c)σ(z) + τ(c)d(z) =D(z)σ(c) + τ(z)d(c). (15)

Applying the fact that D(c) = 0 to (15), we find that

τ(c)d(z) = τ(z)d(c). (16)

For all p, q ∈ R, the commutator [p, q]σ,τ is a constant. Hence from (16), we obtain

τ([p, q]σ,τ)d(z) = τ(z)d([p, q]σ,τ), for all p, q, z ∈ R.

Since τ is automorphism of R. In this case τ ∶R → R is 1-1 and onto. τ(R) = R):
In particular, since τ is automorphism of R, we use τ([p, q]) = [x, y], τ(z) = t, this
equation becomes

[x, y]σ,τd(t) = td([x, y]σ,τ). (17)

Replacing t by d(t) and using d has zero power valued index 2 on R, we see that

d(t)d([x, y]σ,τ) = 0. Wring [x, y]σ,τ for t, we find that

d([x, y]2σ,τ) = 0.
In agreement with Lemma 4, we obtain

2[d([x, y]σ,τ), r]σ,τ = 0 for all x, y, r ∈ R.

Since R is 2-torsion free, this relation modifies to [d([x, y]σ,τ), r]σ,τ = 0 for all

x, y, r ∈ R. Furthermore,

d([x, y]σ,τ) ∈ Z(R) for all x, y ∈ R.

Indicate to the center of semiprime ring contains no non-zero nilpotent element, the
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relation d([x, y]2σ,τ) = 0 yields d([x, y]σ,τ) = 0.

Theorem 2.6. Let R be a prime ring, σ and τ be two automorphisms of R. Suppose

that there exists a generalized (σ, τ)-derivation D such that d is period 2 of R commute

with D and [D(r1),D(r2)]σ,τ = 0 for all r1, r2 ∈ R. Then either [D(r1), r1]σ,τ = 0 or

d(R) = 0.

Proof. Replacing r2 with r1r2 in the main relation [D(r1),D(r2)]σ,τ = 0, we obtain

[D(r1),D(r1)σ(r2) + τ(r1)d(r2)]σ,τ = 0 for all r1, r2 ∈ R. Moreover, we find that

D(r1)[D(r1), σ(r2)]σ,τ + τ(r1)[D(r1), d(r2)]σ,τ + [D(r1), τ(r1)]σ,τd(r2) = 0. (18)

In (18), we substitute r2 with D(z), z ∈ R. Due to σ and τ are automorphisms of R.

Applying the same previous technique which used in the proof of Theorem 1 and

thanks to [D(x),D(z)]σ,τ = 0, we find that

x[D(x), d(D(z))]σ,τ = −[D(x), x]d(D(z)), for all x, z ∈ R. Putting b = [D(x), d(D(z))]σ,τ
and a = −[D(x), x]d(D(z)) yields xb = −a. Left-multiplying by a and right-

multiplying by xa, we have ax(bxa) = −a2xa. According to Lemma 5, we conclude

that either a = [D(x), x]σ,τd(D(z)) is equal to zero for all x, z ∈ R or (bxa) = −a2.
Now we focus on the term [D(x), x]σ,τd(D(z)) = 0. Due to d and D commute with

each other, we have [D(x), x]σ,τD(d(z)) = 0 for all x, z ∈ R. Replacing z by d(z)
and using d is period 2 of R, we find that

[D(x), x]σ,τD(z) = 0 for all x, z ∈ R. Replacing z by yz, we deduce

[D(x), x]σ,τyd(z) = 0. Applying the primeness of R,we complete the proof.

3 The Compositions of Generalized (σ, τ)-Derivations

with Their Applications

In [15], Ajda and Mehsin derived a Leibniz’s formula for the compositions of

generalized (σ, τ)-derivations and some results based on it.

Definition 3.1. Let D be a generalized (σ, τ)-derivation of a ring R, σ and τ be

automorphisms of R such that σ and τ commute with D and d. Then we define the
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compositions of D as

Dn(xy) = ∑n
r=0 (nr)Dn−r(σn−r(x))dr(τ r(y)) for all x, y ∈ R, where n and r are a

positive integers (we adopt the convention D0 = d0 = id).

Theorem 3.1. Let R be a 2-torsion free prime ring, σ and τ be two automorphisms

of R. For some positive integer n, suppose that D is a non zero generalized (σ, τ)-
derivation satisfying Dn(x) ∈ Z(R) for all x ∈ R and has period n − 1 of R. Then

[x, y]σ,τ ∈ Z(R) for all x, y ∈ R.

Proof. From the hypothesis, we have [Dn(x), r] = 0 for all x, r ∈ R. Basically we

have the relation [Dn(x), xn]σ,τ = 0 for all x ∈ R. Replacing x with yx, we obtain

[Dn(xy), (xy)n]σ,τ = 0 for all x, y ∈ R. Now applying the previous definition to this

relation, we find that

[
n

∑
r=0

(n
r
)Dn−r(σn−r(x))dr(τ r(y)), (xy)n]

σ,τ

= 0,

for all x, y ∈ R. Then

[(n
0
)Dn(σn(x))d0(τ 0(y)) + (n

1
)Dn−1(σn−1(x))d(τ(y))

+(n
2
)Dn−2(σn−2(x))d2(τ 2(y)) +⋯ + (n

n
)Dn−n(σn−n(x))

dn(τn(y)), (xy)n]σ,τ = 0.

From the this relation, we obtain

[Dn(σn(x))y + nDn−1(σn−1(x))d(τ(y)) + n(n − 1)!
2

Dn−2(σn−2(x))d2(τ 2(y))

+⋯ + xdn(τn(x)), (xy)n]σ,τ = 0.

We rewrite this relation as a sum of two commutators

[nDn−1(σn−1(x))d(τ(y)) + n(n − 1)!
2

Dn−2(σn−2(x))d2(τ 2(y))

+⋯ + xdn(τn(x)), (xy)n]σ,τ + [Dn(σn(x))y, (xy)n]
σ,τ

= 0.
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Furthermore,

n

∑
r=1

(n
r
)[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ + [Dn(σn(x))y, (xy)n]σ,τ = 0. (19)

Multiplying (19) by t ∈ R on the left and right, we see that

n

∑
r=1

(n
r
)t[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ t + t[Dn(σn(x))y, (xy)n]σ,τ t = 0.

This relation has the form

at + tb = 0, (20)

where we set a = ∑n
r=1 (nr)t[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ and

b = [Dn(σn(x))y, (xy)n]σ,τ t.
Multiplying (20) by s ∈ R on the left, we arrive to

sat + stb = 0. (21)

Replacing t by st yields in (20) gives ast + stb = 0 for all s, t ∈ R. Subtracting this

result from (21), we obtain

[s, a]σ,τ t = 0. (22)

We replace t by st in the definition of a, we find that

a =
n

∑
r=1

(n
r
)st[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ ,

Hence, (22) give us

n

∑
r=1

(n
r
)[s, st[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ , (xy)n]σ,τ ]σ,τ t = 0.

Replacing s with t and setting

h = ∑n
r=1 (nr)[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ , this relation becomes t2[t, h]σ,τ t = 0.

Multiplying by t[t, h]σ,τ on the left, we obtain (t[t, h]σ,τ t)2 = 0.
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Applying Lemma 4, we obtain 2(t[t, h]σ,τ t) ∈ Z(R) which implies 2[(t[t, h]σ,τ t), r] = 0
for all r ∈ R. Using the fact R is 2-torsion free. Obviously, (t[t, h]σ,τ t) ∈ Z(R).
According to the fact that the center of semiprime ring contains no non-zero nilpotent

elements, we arrive to

t[t, h]σ,τ t = 0. Right-multiplying by [t, h]σ,τ , we see that (t[t, h]σ,τ)2 = 0.
Repeating the same technique as before to this result, we find that

t[t, h]σ,τ = 0. (23)

Multiplying (23) by [s, r]σ,τ on the left, we conclude that [s, r]σ,τ t[t, h]σ,τ
= 0 for all s, r ∈ R. Using Lemma 6 with replacing s by t and r by h, we find that

[t, h]2σ,τ = 0 for all t ∈ R.

Based on Lemma 4 and the fact that the center of semiprime ring contains no

non-zero nilpotent elements with R is 2-torsion free, we obtain [t, h]σ,τ = 0 for all

t ∈ R.

Clearly, we find that h ∈ Z(R) yields

n

∑
r=1

(n
r
)[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ ∈ Z(R). (24)

From (24), we obtain

n

∑
r=1

(n
r
)[Dn−r(σn−r(x))dr(τ r(y)), r]σ,τ ∈ Z(R).

Again, in the same manner we find from (19) that

[Dn(σn(x))y, r]σ,τ ∈ Z(R).

Moreover, applyingDn(σn(x)) ∈ Z(R) to this commutator, we find thatDn(σn(x))[y, r]σ,τ ∈
Z(R).
Then [Dn(σn(x))[y, r]σ,τ , s]σ,τ = 0 for all x, y, r, s ∈ R. Since Dn(σn(x)) ∈ Z(R),
this relation becomes Dn−1(D(σn(x)))[[y, r]σ,τ , s]σ,τ = 0 for all x, y, r, s ∈ R. Due to

D is period n − 1 of R, we conclude that

D(σn(x)))[[y, r]σ,τ , s]σ,τ = 0. According toD is a nonzero generalized (σ, τ)-derivation
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and using the primeness of R, we find that

[[y, r]σ,τ , s]σ,τ = 0. Clearly, this option imply that [y, r]σ,τ ∈ Z(R).

We close our paper with the following theorem.

Theorem 3.2. Let R be a semiprime ring, σ and τ be two automorphisms of R.

Suppose D is zero power valued index 2 on R. Then ∏n+1
i=0 di = 0, for some positive

integer n.

Proof. From the hypothesis, we have D2(R) = 0. For all x, y ∈ R, we obtain

D(D(x)σ(y) + τ(x)d(y)) = 0. Moreover,

D(x)2σ2(y) + τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ 2(x)d2(y) = 0.

Due to the assumption D is zero power valued index 2 on R, this relation reduces to

τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ 2(x)d2(y) = 0. (25)

Since σ and τ commute withD and d then(25)becomesD(τ(x))d(σ(y))+D(τ(x))d(σ(y))+
τ 2(x)d2(y) = 0. Obviously, we find that

2D(τ(x))d(σ(y)) + τ 2(x)d2(y) = 0. (26)

Replacing x by D(x) and using the facts D2 = 0 and σ and τ are automorphisms

of R. From (26), we find that D(x)d2(y) = 0. Replacing x by xr, r ∈ R in this

relation and using the fact σ and τ are automorphisms of R, we conclude that

D(x)rd2(y) + xd(r)d2(y) = 0. Replacing r by d2(y) and using D(x)d2(y) = 0, we
deduce xd(d2(y))d2(y) = 0.
Left-multiplying by d(d2(y))d2(y) and using the semiprimeness of R, we arrive to

d(d2(y))d2(y) = 0.
Right-multiplying by d(y)y and left-multiplying by (dn+1(y)dn(y)dn−1(y)⋯), we
conclude that ∏n+1

i=0 di(R) = 0. By reason of R is a semiprime. This is the required

result.
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