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Abstract

In this paper, a Shannon-based second order TGV (Shannon TGV) is proposed. Shannon first and second order
operators are defined and their corresponding adjoints are investigated leading to design a variational model as an
optimization problem. We obtain the dual form of the proposed model and utilize it to formulate imaging problems,
i.e., denoising and deconvolution. Moreover, we examine numerically the effectiveness of the proposed scheme
in imaging problems and compare the results to the classic total variation (TV), the second order total generalized
variation (TGV) and Shannon total variation. The outcomes confirm that the proposed model retains the advantages
of both TGV and Shannon TV in elimination of artifacts simultaneously and admit the greater capability of the new
model to remove artifacts.

Keywords: Total variation, total generalized variation, Shannon TV, Shannon TGV, image denoising, image
deconvolution, primal-dual algorithm, staircase effects.

1. Introduction

The variational approach to image processing constitutes the computation of a reconstructed image u based on the
observed image (or more generally data) x as a minimizer of a functional. Assume x € L*(Q), where Q c R?is a
rectangular image domain and A : L*(Q) — L*(Q) is a bounded linear operator. A generic minimization problem for
recovering u from x reads

min AR(u) + 1 f |Au(t) — x(7)]*dt. (D

uel2(Q) 2 Jo

Here, the so-called regularizer R corresponds to the a-priori information that we have on the reconstructed image u
and A > 0 is the so-called regularizing parameter and acts like a balance between data model and the regularizer. One
of the most popular variational approaches for image reconstruction is the total variation (TV) model, which takes
R(u) = TV(u). Total variation model for image processing tasks introduced for image denoising and reconstruction
in a celebrated paper of 1992 by Rudin, Osher and Fatemi [1]]. Inspired by this approach, various kinds of first and
high order variational models have been proposed. For first order contributions, we can refer to Condat’s discrete
TV [2], a model which uses oblique directions to define derivative [3] and an adaptive weighted TV model [4].
For high order models, we can point to total Laplace (TL) [3], bounded Hessian (BH) [6]-[9], TV and Laplacian
model (TVL) [L1], a model, which combines TV and BH (TVBH) [12], infimal-convolution (INFCON) [13]] and
a nonconvex, nonsmooth variational model [14]. In the another pioneer contribution, Bredies, Kunisch, and Pock,
proposed the total generalized variation (TGV) functional [15]. The k—th order TGV with regularization vector
@ = (g, ,ar-1) € (RMF is denoted by TGV’;. TGV is a generalization of TV, i.e., the first order TGV with the
corresponding regularization parameter @ = 1 coincides with TV. Meanwhile, to apply variational models for the real
world image restoration, suitable discretization strategies are required. The simplest discretization scheme is defining
discrete difference operators for continuous derivatives (this can be described in different ways). The discretization
formulas for TV, second order TGV and all above mentioned high order approaches are discussed in the literature as
well. In the computational aspects, the second order TGV is the most popular TGV model because of its simplicity and
its distinguishing performance to diminish noises and artifacts. Practically, for image reconstruction problems, (e.g.,
denoising and deblurring), the higher order TGV models (k > 1) outperform TV in the sense of attenuating artifacts,

Preprint submitted to Elsevier September 13, 2022



specially staircase effects. Total variation (as well as other first order models), however, also has some shortcomings,
most notably the staircasing phenomenon. To briefly explain this effect, we assume that A=I, so that (T)) describes the
image denoising problem. If the true image contains not only flat, but also slanted regions, then mathematically, it is
piecewise affine like function, then the image reconstructed by total variation model tends to be piecewise constant
(staircasing). This phenomenon is because of nature of TV, whereas only first order derivatives is used in its structure
and TV can restore only constant functions exactly, that is, if x is constant signal, then 7V(x) = 0. For instance, the
second order TGV is exact for piecewise affine functions, that is, if x is an affine (linear) function then TGVi(x) =0,
therefore flat and stanted regions can be restored almost exactly using the second order TGV and in contrast to the
usual total variation denoising model it does not exhibit the staircasing effect. Staircasing effect for TGV model is
studied in [[15]. It is worth mentioning, because of TGV’s essence, the capability of the second (or third) order
TGYV, for removing unwanted effects is more visible in the plain (smooth) parts of the restored image versus the parts
containing the details.

Recently, some efforts have been made to reduce disadvantages of TV directly through modification in discretization
strategies, without attempting to increase the order of the derivatives. One of these schemes is using grid domain
converter operators and reformulating the discrete dual definition of the discrete TV, along with involving the operators
in the corresponding optimization problem’s constraints (see [2] and [3] for instance). Another scheme is interpolation
(refer to [16] and the references therein), where, instead of employing discrete TV formulation for a discrete image u,
a suitable continuous interpolation of u (let denote this image by u™) is obtained and the continuous definition of TV
is applied for u™ to find TV(«™). Generally computing TV (™) is impossible, so we are inevitable to discretize it,
using mesh grids with number of grids preferably more than size of the initial discrete image u (commonly, numbers
of mesh grids in each row and column is twice (or third) as row and column sizes of u). In the present work, we get
idea from interpolation approaches to give a new discretization for the second order TGV. Specifically, we consider
Abergel and Moisan interpolation scheme (called Shannon TV) [16], which is a reconciliation of total variation with
Shannon interpolation and is estimated by Fourier transforms. Shannon TV, behaves much better in terms of grid
invariance, isotropy and artifact removal compared to the classic discrete TV model. However, Shannon TV is not
able to defeat discrete second order TGV [13]], in removing artifacts, specially staircase effects. On the other hand,
Shannon TV, affect on all parts of the image, almost equally by diminishing the deep artifacts (where, still narrow
artifacts remain), whereas, the performance of the second order TGV is case dependent (but generally, even narrow
artifacts can be attenuated as well).

In this paper, a Shannon-based second order TGV (Shannon TGV) is proposed. In other words, similar to Shannon
TV, which is a modification of discrete classic TV by means of Shannon interpolation, we design a model which is
obtained from the discrete second order TGV, using Shannon interpolation approach. We compare the new model
numerically with the classic discrete TV [1], Shannon TV [16] and the discrete second order TGV [15] for denoising
and deconvolution problems. It is illustrated that the new model preserves the benefits of both Shannon TV and the
second order discrete TGV simultaneously in removing artifacts and noises, with the higher quality.

The rest of the paper is organized as follows: Section 2 is a short review on some popular variational models, i.e.,
classic TV, Shannon TV and the second order TGV. In Section 3, the new first and second order Shannon operators
are defined, and their adjoint operators are demonstrated. In Section 4, based on the introduced Shannon operators,
the second order Shannon TGV is defined as an optimization problem and its dual formulation is given. In Section
5, we mathematically formulate denoising and deconvolution problems through the proposed model and investigate
their dual formulation and propose two algorithms for denoising and deconvolution problems. In addition, we study
the computational complexity of the model and compare it with the other models. In Section 6, numerical results of
the proposed model is presented and compared with the other variational approaches. Finally, we give a conclusion in
Section 7.

2. Some variational models and their discretization

In this section, some preliminaries about some popular variational models are expressed. First, we give the defini-
tion of the basic variational model, i.e., TV. Then, Shannon TV, as an interpolation-based model is defined and finally
we give a brief explanation of the second order TGV.

In the sequel of the paper, let I, = {0,1,---, M — 1}, 71\; = [—%, %) N Z, where M is a nonnegative integer.



Moreover, we denote the set of operators u : Ip X Ip — R¥ by (RP*?)F and the set of operators u : Ip X Ip —
{( Z IC’ ) ca,b,ce ]R} by S (RFP*2)2<2,

2.1. Total variation

Assume u: Q » Réandu e L! (Q), Q c RY, then

loc

TV(w) = sup {— f u-dive dX : ¢ € CL(QRY), |p(X)| < 1 VX € Q} . ?)
Q
If u € C1(Q) (or W1(Q)), then it can be proved that

TV(u) = f \Vu| dX. (€)]
Q

Moreover, discrete TV (called isotropic TV), for a discrete image u : Iy, X Iy — R is defined by

TVi(w) = 0 20 N(Du)1 (1, m))> + (Du)y(my, m))?,  where
(Du)i(ny,na) = u(ny + 1,n2) — u(ny, na), ny € Iy,ny €Iy
(Du)y(ny,ny) = u(ny,ny + 1) —u(ny, ny), u(M,ny) = u(M - 1,n3),u(n;, N) = u(n;, N - 1).
“
The discrete TV is a simple model for implementation. However, for imaging problems, this model is unable to clear
artifacts and clean up noises as well. One of the modified TV models which overcomes these shortcomings is Shannon
TV approach which is explained in the following.

2.2. Shannon total variation

The Shannon TV is a modification of the discrete TV, which uses Shannon interpolation for discrete signal u
and then applies the direct definition of the continuous TV (3)) over it. Finally, for the implementations, the model
is discretized through the standard Riemann sum. To define the Shannon total variation, we need the following
definitions:

Definition 2.1. [16] Assume u : Iy, X Iy — R, Shannon interpolation of u is defined as the following:

1 o
U = 3 MZ N en(@en(B).ia, B i+ 5), 5)
*TSQST,*fﬁﬁﬁj
where
@={7 =% ©)
em\®) = 1, otherwise.
From definition 2.1 we get
V.U(x,y) . .
VU()QY) = ( VyU(.x,i) )7 VxU(X,Y) = ZRZMU(X’}’)s V}‘U(-x9y) = 27‘”%U(x’y)’ (7)
Definition 2.2. [16] Assume n > 1, the n - Shannon gradient operator V,, : RM*N — (R"™M>nN)2 'ig defined by
[ (Vuk, D) MXN
Vaulk, ) = ( (V)aut, ) )” <R
(8)
(Vouk, 1) = VxU(S, ﬁ), (Va)ou(k, D) = VyU(lﬁ, ﬁ), k1€, =1Ly XIn.
That is
1 (k4 B . A i
Vu(k, 1) = N e (“M+“N)ga(a,,3), gila,p) = 27T18M((1)8N(,3)M(a,ﬁ)( %I ) 9)



Now, we are ready to introduce Shannon TV and its discrete version of the order n (we call it n - Shannon TV):

Definition 2.3. [16] Let |- | denotes the /2 norm (in discrete or continuous domains), Q = I, X Iy, and u € RMN the
Shannon total variation of u is defined by

TVsu(u) = f [VU(x, y)ldxdy. (10)
[0,M]x[0,N]
Moreover, for n > 2, the n - Shannon total variation of u is defined by
1
TVsw(@) = — > Vaulk. Dl (11)
(k.DEQ,

where, V,, and Q, are defined in definition[2.2]

The following lemme helps us to compute the discrete Fourier transform of the n - Shannon gradient operator as
well as its adjoint efficiently, which leads to a simple way to compute the n - Shannon total variation.

Lemma 2.4. [|I6] For any n > 2 and (a,8) € I’,;V X 7,1;, we have

v _ nzgft(a"ﬁ)’ |G,’| < M’ Iﬂ' < E,
Vati(@, ) = { 0, otherwise, 12)
Moreover, assume (V,)* = —div,, then, for any p = ( il ) € RMNY anyn > 2,(a,B) € TA; X i]\v,
2
div(p)a, ) = 2mi (ki (p1)(a. ) + %kz(l?z)((l,ﬁ)), (13)
where
1 pi(a,p), la| < % 16l < %A’]
_ > (D1, B) — pi(—a, B)), a=-7,6 <73,
kl(pl)(a,ﬁ) %(ﬁl(a,ﬂ)'i'ﬁl(a, _ﬁ)); |a| < M’ — _%’ (14)
I gttt P10, 52B), (. B) = (%, -5),
1 paa, p), la| < % 16l < %A’]
_ 5 (P2, B) — pa(—a, B)), a=-7,6l <73,
LD @B =1 L5, + polas—B),  lol < L5 =5, (1)
I Yttt P21, 52B), (. B) = (%, -5),

2.3. The second order TGV

TGV is a celebrated variational model, because of its capability to remove staircase artifacts. Moreover, in the
discrete imaging problems, TGV performance is far better than TV and even Shannon TV. It is worth to mention
that TGV and the Shannon TV remove artifacts in different ways. That is, in the second order TGV model, a trade
off between first and second derivatives leads to track the undesirable effects, whereas, in Shannon TV model, a
trigonometric like (Shannon) interpolation leads to reduce the deep staircase effects. Therefore, introducing a model
that preserves the advantages of both models would be valuable. In this paper, we are going to fulfill this aim. Now,
we give a brief explanation of the second order TGV.

Letu e L} (€),Q CRY, a9 >0,a; > 0, then, the second order TGV of u is defined by

TGV?(u) = sup { f u-div’v dX : v e CH(Q, Sym*(RY), ||div'v]le < 1,1 =0, 1}. (16)
Q

In this paper, we focus on the two dimensional setting, i.e., N = 2. If u € C?(Q), this definition can be simplified by

awy | oy

oy i
TGV2(x) = min {aq f [Vu — w|| dX + aof le(w)| dX} Jew)=| 8 o, 2 . a7
w Q Q B rE I
2 ady

4



C2(Q, Sym*(R?)) is the set of symmetric R**? matrices whose components belong to C2(Q). To study the higher order
TGV models, the properties, and the standard discretization scheme of the second order TGV, we refer the reader to
[L5]].

3. Shannon TGV operators and their properties

Inspired by Shannon TV model, which is introduced in Section 2, we are going to give a new discretization for the
second order TGV. To define the new model, we need to define the suitable derivative operators and their adjoints. The
n - Shannon gradient operator in Definition [2.2]is not enough for our target, so we define the new Shannon operators
(lets call them Shannon TGV operators) and explain their adjoints.

3.1. Shannon first and second derivative operators

Assume u : Iy X Iy — R is a two dimensional discrete gray scaled image. Let U is the Shannon interpolation of
u, then from Definition 2.1 we get

2
2 2 @ 2 o, o
V2. v Vi = Qri) (—)U(x, y), Vy, = Qi) (——=)U(x, y)
VU(x,y) = ( v v ) - iy MN (18)
Xy » Vyy = (2mi) (ﬁ)U(XvY)
Definition 3.1. (Shannon TGV operators) Assume n > 2,
(a) The n- Shannon Hessian operator is defined by V2 : RM*N — § (RN | yith
2 2. k1
Vnu(ka l) =V U(_’ _)7 k’l € Ql’l = Iwm X InN7 (19)
n'n
that is
2 1 2( 2 £1) .2 . ;I_ZZ ;41_/13\[
Vaulk,l) = 375 X oy v gy €MTNS (@, B),  Sa(a.p) = Qri)ey(@enPBia.p)| o5 F |- (20)
MN N2

(b) The n - Shannon gradient operator &, : (R"™>™Ny2 — §(RM*NY2X2 for y, v : Ly X Iy — R, is defined by

(V) uck, D) n(V)1v(k, ) + (V)au(k, D)

u _ 2 =
5"(v)("”>— P19k D + (Vi)autk, D) L€ = dyx L. 1)
> n(Vi)v(k, 1)

where, operators (V1); and (V) are defined in (8], forn = 1.

We are interested in obtaining the efficient ways to compute the required objects for our simulation aspects. From
the definition of the discrete Fourier transform, we get the following simple way to compute the discrete Fourier
transform of the n - Shannon Hessian, for a given signal:

Lemma 3.2. For anyn > 2 and (a,B) € fnz\v X m, we have

n*Su@.p), lol<E,181< 5,
0

, otherwise. (22)

Vu(a, ) = {

Remark 3.3. and (22), hold for n = 1, if (4, B) = i@, %) = 0, for any (@.8) € Iy X Iy.

It is worth to note that, in the definition of the Shannon operators for defining corresponding Shannon TGV
model, we tried to use the definition of continuous operators, defined in TGV models @ and , for the Shannon
interpolation of the discrete signal u (which is denoted by U ). More precisely, V,u ~ VU, E,u ~ €U and Viu ~
V2U. It is natural to expect that, relations between continuous operators in TGV definitions would be preserved for
the new discrete operators. One of these relations for the continuous operators is €V = V2. In the following theorem,

we show that §,V,, = Vﬁ. This, justifies the existence of the factor "n" as a coefficient in the elements of the defined
2 x 2 matrix in the definition of &, ZI).



Theorem 3.4. Assume u € RM*N  then, for any k,1 € Q, = Ly X Ly, E,(V)u(k,[) = Vﬁu(k, D).

Proof. From definition of &,, we get

(Va)iu _
(V)i )(’" b=
(Y OL(V )k, D
(VD)1 (T20)k D)+ (VD)2((Ve)k, )
2

En(Vau)(k, 1) = Sn(
n((VD1((Va)2w)(k, D) + (V)2 (Vi) 1u)(k, ])) (23)
2
n(V1)2((Va)ou)(k, 1)

It is enough to show that for any &,/ € Q,, = I,y X Iy, (23) equals to (20). We prove this for the element (1,2) (which
is the same as (2, 1)). The remaining elements have the similar procedures.

_o 1 on(k ),
ATk ) = neres y > e @z (@),
- <a< >
nN nN (24)
- g

(871 (@) = 2risu(@en BV au(@. H—-).

m given in , that is

o[ 2nmisy@en@Ba@.B)L), L <a<¥ Vg
(Vihu(a, B) = { 0, otherwise

IA

Substituting in (24) and the fact that in (24), sentences outside the indexes —% < &
we get g,y(@) = 1, &,n(B) = 1, for the nonzero sentences. Consequently

M _N N wi
5.—% < B < 5 will be zero,

1 2k 4 BL
mTle) =i > ) A ) (g i (. ).
-5 a5 (25)
-3<B<%
(G (@.p) = —n24n2isM<a>sN<ﬁ)a<a,/3>(%)(niM)
Comparing (23) with (20), we get
n(V )1 ((Vaau)(k, 1) = (Vutk, D)(1,2) = (Viulk, D)2, 1),
similarly
n(V)2(Var)k, 1) = (Viulk, 1)(1,2) = (Viu(k, D)(2, 1).
This proves that elements (2, 1) (as well as (1,2)) of &,(V,,)u and V2u are equal. O

3.2. Adjoint Operators

In the sequel of this section, we propose an applicable way to compute the adjoints of the derivative operators, by
means of discrete Fourier transform. The results are expressed in the following theorem:

Theorem 3.5. Assume (V2)* = div? and (E,)* = —div),, then

I Letp = ( o ) & SRMIN2 then for any n > 2, (@, ) € Ty x Iy,
2 3

— 2 2 2
RPN = =472 (2 () ) + o () ) + %hl(m)«v,ﬁ)), 6)



where, for p;,i = 1,3,

Y ol < %181 < &,
] Spep pap). a=-lg <k
MR = L + ples-p),  lel< 4 p=-%, @n
iZS]:;tl,Szzil pAi(sla, Szﬁ), (avﬁ) = _%,_%)7
and
1 pr(a.p), o] < %M 1Bl < %N
_ §(ﬁ2(a’ﬂ) - ﬁ2(_a’ﬁ))a a=-7, Iﬁl < bR
XD 2N L) - pr gy, el < hp= -5, =
1 Xttt D210, $2B),  (@.B) = (-4, -F).

2. Assume p = ( prp2 ) € SR™MNY2 > 1, (a, ) € Tumt X Ly, moreover, pi(—="2 B) = pi(a, ~"X) = 0,i =

P2 D3
1,2, 3, then
N [ wi(a,B)
dlvn(p)(a,’ﬂ) - ( WZ(a,ﬁ), ) (29)
S B
Wi(@,) = 27 (i (P + Tha(p)(@.)). (30)
S B
wa(a, B) = 2ni (Mkl(l?z)(a,ﬂ) + Nkz(m)(a,ﬂ)), (€29)]
where ki, ky are defined in (I4) and (I3).
Proof. For the proof of part 1, we should find div? such that for each u € RV and § (R"M>"N)2x2,
(Vau, p) = (u,div, p), (32)

on the other hand we know that for two signal of the same size, x,y € RM (x,y) = %( %, 9), thus it is enough to find

div?p such that (@, Py = n¥a, @). This is equivalent to the following equation

o< 2 Vi@ A1 DG @B + 2Vl )1 2P )" + V(e H2. (@ )
Bl < 4 -
=) (@ivip(@.p)ia.p). 33
—% <a< %
-J<p<%

Substituting V2u(a. B)(i, j). i, j = 1,2, from (22)), we obtain

Qrire S |, < y en(@en®i@. p){ f (PP + 255 @B + (@) |
A= o G4
=n‘) M <a< % (divip(a,B)) i, B).
-3<p<y

From the definition of fast Fourier transform, i(e + M, + N) = ii(, §). the indexes (y, ) such that i(a, 8) = i(y,n)
in the left side of equation (34) are listed in the second column of Table [I]and the corresponding &, ey coefficients
are listed in the third column.

M M M M

As aresult, it can be seen that for a given @ € [-7, 3),B8 € [-7, 5), the coefficient of i(@, §) in the right hand side



The indexes (y, 1), appeared in the .
(@, B) left side of @ where (@, f) = The corresponding &,(y), en(n7) coeffi-
iy, n) cients
M N
la| < g,lﬂl <3 (y,m = (a,B) em(y) =en(m) =1
M N M 1
@=-—.f<7 v.m = &7.5) em(y) = 5. en() =1
M M N 1
la| < 7’5 == (y,m) = (a,ig) em(y) = Len(n) = 3
M M _ M N _ _1
a=_7,3=_7 (%n)—(iz,iz) 8M(7)—8N(77)—2

Table 1: List of all indexes in the ranges of the summation in the left side of are shown in first column, second column illustrate (y, 77) indexes
with the property i(y,n) = ii(a,8), and third column shows the corresponding &y, ey values

of is equal to (dTv%\p(a, £))* which can be obtained from the left hand side of li by the following calculation:

2

(div2p(e.p)) = —4r> Z en(exmaty.n) {%(
yl <&, <%
ia,B) = i(y,n)

2
PO + 2L (Baym) + 25 (a(r, n))*} :

(35)
Observing Table [T] and taking complex adjoint from both sides, (26) will be obtained. By referring to Remark [3.3]
part 2, can be proved in the similar way and the proof of the theorem is completed. O

Suppose X and Y are finite-dimensional real vector spaces, A : X — Y is a continuous linear operator and
F : X — [—o0,+00] is a convex, proper and lower semicontinuous function. Hereafter, we assume A* : Y* — X* is
adjoint of A, F*, is Fenchel - Legendre conjugate of F' and prox is proximal operator associated to function F (see
more details about convex analysis in [17]]).

4. Shannon TGV

Based on the defined first and second order Shannon TGV operators, we are ready to define the second order
Shannon TGV and derive its dual formulation.

Definition 4.1. Assume u € RM*V then, for a given & = (ap, ) € R2, n - Shannon second order TGV of u with
weight vector a, is defined by

1 ,
Tavgggn)(m = max {—2<u, divivy v e SR™MMNY22 iyl o < o, |div, vl < al}, (36)
v n

V1

whereforvz( va ),vieRPXQ,i=1,2,3,
V2 V3

Wl = max { 3G ) + 263G, )+ V3G, ) G ) € T X T
8



andforw:( vwvl ),wieRPXQ,iz 1,2,

2
Wlloeo = max { WG, J) + w2 ). G J) € Ip X IQ} .

Let
K = {(V, w, S) c S(RnMXnN)ZXZ X (RZ)nMXnN X RMXN : ||V||2,°° < ap, ”W”loo <ap,w= diV;,LV, s = dlviv} s (37)
then for u € RM*N
, 1
TGV;;IY()”)(M) = (rvnvg)s() {;(u, ) — L {(v,w, S)}} , (38)
L . L. _ 0, pek,
where I is indicator function which is defined by Ix(p) = { too, pék

Define linear operator L: S(RnMXnN)ZXZ % (RZ)nMXnN % RMXN - S(RnMXnN)ZXZ X (RZ)nMXnN X RMXN % (R2)nM><nN and
its adjoint L* (which can be obtained using Theorem [3.5)) by

1

0 ? 8 1 0 -V2 g,

L= 5 , L'=lo1 0 I | (39)
—div, 0 I 00 I 0
~div, I 0

In order to formulate imaging problems via the proposed model, we need to find the dual form of it. In the following
theorem, we give the dual formulation of the n - Shannon TGV, through a minimization problem.

Theorem 4.2. (Dual formulation of TGV§§§”(),,))

2 . — _
TGV (u) = minay|[ll; + a1l

SH(n) 40
s.t. V=& = 5Vu. (40)
where
y= ( VLV ),v,» ERMCI=123 i = D, AW+ 290 )+ ).
Va2 V3 y
@@, ))elpxlg
[ W™ P . _ [ YT, VYVTEE,
W_( WZ ),W,’eR XQ’Z_ 1529||W||2,1 - Z Wl(l,])+W2(l,])-
(. p)elpxly
Proof. From (38)) and definition of operators in (39) we have
%
1 Y W
TGV iy @) = max 5. ) : L[ W ] = o |l < a0, ¥l < o0
s
0
Assume u = (v, w, $)",v = (3, W,2, D7, F(w) = & (u, w), and G(V) = Ijsy... <ao. il <1 20,10} (V).
Therefore TGVé(;I’()n)(u) can be reformulated by the following optimization problem:
max —F(u) — G(L(uw)). (41)
u

Note that {1]) is equivalent to the following problem

m&lx F(u) - G(L(w)),

9



in the other word, if u = (v, s, w) is a solution of this problem, then —u = (—v, —w, —s) is the corresponding solution
of (@I), with the same optimal value.
From [[I7]], It is well known that the dual formulation of is:

min G*(v) + F*(=L*(v)), (42)

where G* (v, w, 5, 1) = aollVll2,1 + a1 [[Wll2,1 and

0, 7=0,w=0,§=+%u,
, othewise.

Therefore (@2) can be reformulated by

2 . - -
TGV (1) = min apllFllas + a1 (Wil

SH(n)
v
- 0
| Y= [ 0 ] . 43)
S 1
7 wlt
By substituting L* in {3)) we obtain (0) and the proof is completed. O

5. Applications on image processing

In this section, we apply the proposed model to formulate image restoration problems; e.g., denoising and de-
convolution. For the both problems, the equivalent Fenchel-Rochafellar dual forms are obtained and a primal-dual
algorithm is employed to solve the problems numerically (see [L7] for instance). The analysis of the primal-dual
algorithm for image restoration by means of Shannon TV is reviewed in Appendix as well.

5.1. Denoising

Assume x € RN and R is a discrete regularization function. Consider, the following denoising problem:

1
min §||x - uII% + R(u), (44)

where, a positive multiplication of any variational functional such as TV, TGV?2, TVgy, and TGVé(}‘II()n), can play the

role of R. In the sequel, for the proposed Shannon TGV, the dual problem of will be explained, and a primal-dual
algorithm will be suggested to solve the problem. Consider the following problem:

n- Shannon TGV Denoising Problem min, %le - ulI% + TGVg‘{’()n)(u), 45)
From Theorem[.2] {@3])), has the following equivalent version:

. 1 — _
ming s 3llx = ull} + aolVllor + il

st V=&w=5Vau. (46)

Define linear operator T by T = [—nizVﬁ — &, 1], then we get another equivalent form of :

)

< I <

mingsm 31X = ull} + @ollPlla + @il + Ik [T[

st. K ={0.
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5.1.1. Dual form of the n - Shannon TGV denoising

Assume |
u= (w7, Gu) = Sl - ull; + aollvlly + ailwlh1, p = p, F(p) = Ik(p). (48)
Now, we rewrite (7)) by
min F(T (w)) + G(u). (49)
u
It is well known that, the dual form of (@9) is
max —F'(p) - G*(=T"(p)), (50)
where |
F'(p)=0, G (u;,wi,v1) = (ug, x) + 5”“1”% F 4 e <o lpeozan } (W1 V1) (51

AsT* = [-%div2 div, 1], by substituting T*, in (51), we get the following dual formulation of :
Theorem 5.1. n-Shannon TGV denoising problem [{#3)) is equivalent to the following dual formulation:

1 . 1 .
max,, —glldlvﬁpllg - n—z(dlvzp, x)
(52)
st Iplhe < @, ldiv,plhe < @i

5.1.2. Primal-dual algorithm
To solve problem (@9) and its dual (50), simultaneously, we apply primal-dual algorithm T}

Data: T, T*, F*, G, and € as a tolerance
Result: u* as primal solution and p* as dual solution
initialization: Choose parameters 0 < 7,0 < 1/||T|| and initial estimates (u’, p?), @’ = u’.
while fork =0,1,---, F(T@") +GW") + F*(p*) + G*(-T*(p*)) > € do

1-p**! = prox, . (p* + oT(0*))

2- uk*! = prox, ;(uf — rT*p**h)

3_l~lk+1 — 2uk+1 _ uk
end

Algorithm 1: The Chambolle-Pock algorithm for solving problems (49) and (50)

To employ Algorithm [I] for denoising problem @5) and its dual (52), we need to compute prox,.(p) and
prox,;(u), for given p and u, where G and F* are defined in @ and |3_T| respectively. Obviously prox_ ..(p) = p
and

T
PIOX (W) = (PrOX 4y (1), PrOX g s, O), PTOX gy, () 53)
where ProX 1z (1) = 4 and for (i, j) € Iy X Iy,
NPT T .. NPT T ..
O STIN)(A )=(1— — )V(t, ), PTOXq i), (W)L, )=(1— — w(i, j).
PrO%ragipte, (Y1 J max{rao, [5G, it )P PrO e, SR max{zar, WG, i) 1(54)

As a result we propose Algorithm [2]for solving (@3) and (52).

5.2. Deconvolution

Let A is a convolution operator and x is a kind of blurred image, which is concluded from a clean image u, through
A (Au = x). For a given regularizer R, the Tikhonov type deconvolution problem is formulated with the following
optimization model:

1
min §||x - Aull% + R(u), (55)
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Data: x as a noisy image, and € as a tolerance

Result: u* = (u*,v*, w*) as primal solution and p* as dual solution

initialization: Choose parameters 0 < 7,0 < 1/||T|| and initial estimates (u’, p°), @’ = u°.
while for k =0,1,---,  3lx — ub|3 + aolVHllo1 + arlwhllag + gz lldiviptll3 + 5(divip*, x) > e do
l—pk+l = pk + a'(—n—12V2~k - &0 + 75,

o = uk+1'("i2divﬁ(pk“)+x)

1+7 ’

3- v = prox ey, (= 7P,

4- whtl = PIOX 10, sl Wk — zdiv (pF*1)),

5_ak+l — Zuk+1 _ Mk,

6- f)k+1 - 2vk+1 _ Vk,

7- Wk+1 — 2wk+1 _ Wk.

end
Algorithm 2: The Chambolle-Pock algorithm for solving problems (43) and (52)

We are going to solve this problem via variational models studied in this paper. Shannon TGV deconvolution is
formulated as the following:

1
n-Shannon TGV Deconvolution Problem min 3 [|x — Au||% + TGVé(H”()n)(u), (56)

From Theorem[.2] (56)), has the following equivalent version:

. 1 - _
minggm 51X — Aull3 + @ollPll + @il

st V=8W = 5Vau (57)
Let s
(A2 1 -g,
T‘( A0 0 ) (58)
then can be reformulated by
minggsep.s - @ollFllar + @1l + 3l = slly + o) (p)
u
w ol )
w

5.2.1. Dual form of n-Shannon TGV deconvolution

Assume u = (u, v, w),p = (p, s), and define G(u) = ao|[V|l2.1 + @1]Wll2.1, F(p) = %le - sllg + Ij0y(p). The primal
Fenchel-Rochafellar form of @]) is "miny F(Tu) + G(u)". Now, we need to obtain the dual form "max, —F*(p) -
G*(-T*(p))". One can verify

F*(p) = F*(p, s) = (s, x) + 5Isl3,
-Ldiv, A
T = I 0
div, 0

0, u=0,|PVlheo < a0, Who < a,
+o00, otherwise,

G*(u) = G*(u, v, w) = { (60)
Consequently we get the following result:

Theorem 5.2. n-Shannon TGV deconvolution problem (56)) is equivalent to the following dual formulation:

1
max,, —(s,x)— 3llsli3
s.1. —Ldivip+A’s = 0, (61)
Ipll2,eo < @, ldiv,pll2,eo < aj.
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5.2.2. Primal-dual algorithm

We solve n-Shannon TGV deconvolution problem (56) and its dual form (6I), by means of Algorithm [I] The
required proximal operators are as the following:

_ T

ProX,(w) = (4, Prox, oy, (), ProX g g, (M)

S—TX

62
prOXTF*(p) = (Ps 1+‘r)’ ( )

where prox,,, s, (W) and prox., s, (v) are defined in @ As a result, Algorithm EI, is a primal-dual algorithm to
solve deconvolution problems (56) and (61).

Data: x as a blurry image, and € as a tolerance

Result: u* = (%, 1%, w¥) as primal solution and p* = (p¥, s*) as dual solution

initialization: Choose parameters 0 < 7,0 < 1/||T|| and initial estimates (u’, p°), @’ = u’.
while for k = 0,1, ,  Lllx = "3 + ol o1 + arlw¥lb,y + (55, x) + 3lIs*3 > e do
1-p*t = ph 4 o (-5 V2ik - EF + ),

2 sk+1 _ sfto(Adf—x)
- l+0
3- uktl = gk - T(A*s - nlzdivﬁ(pk“)) s
k+1 _ k k+1
4- = proxmonv”ll(v —-Tp*h),
k+1 _ k < ok+1
5- W = ProxXeg, iy, W — 7div,(pF),
6_ﬁk+1 - 2uk+1 _ I/lk,
7- f)k"'l — 2Vk+1 _ vk
- ]
8- \/T/kH — 2Wk+l _ Wk.

end
Algorithm 3: The Chambolle-Pock algorithm for solving problems (56) and (61))

5.3. Computational complexity

In the following, we address the computational complexity of Shannon TV and Shannon TGV versus TV and
TGYV, using primal-dual algorithm for denoising an M X N gray image per each iteration:

TV computational costs: computing discrete gradient and divergence take 4 M N flops, 14MN flops, MN taking square
roots and MN comparison are required for computation of proximals. Overall we need about 19MN = O(MN) flops
which is completely efficient.

n - Shannon TV computational costs: computing each of discrete Shannon gradient and Shannon divergence needs
2MN flops plus calculating FFT (or IFFT) of an M xN discrete signal and FFT (or IFFT) of two nM xnN signals which
take about 2MN(log(M) + log(N)) + n> MN(log(nM) + log(nN)) flops. The main body of the primal-dual algorithm
needs 14n> MN flops (computation of proximals) as well as n””? MN square roots and comparisons. Overall we need
about 4MN(log(M) +1log(N)) + 2n2MN(log(nM) +log(nN))+4MN + 14n*MN = O(nzMN(log(nM) +log(nN))) flops.

The second order TGV computational costs: SMN flops for computing & of a given signal, where & : (RM*V)2 —
S (RM*NY2x2 is the first order gradient operator. 4MN flops for div' = &, 8MN flops for the second order gradient
V2 and 8MN flops for div? = (V?)*. 10MN flops for proximal operators as well as 2MN square roots and 2MN
comparisons. Main primal-dual algorithm body requires 32M N flops. Overall number of floating point computations
is 67TMN = O(MN).

n-Shannon TGV computational costs: four Shannon operators; &,,div, = (&,)*, V2, and divZ = (V2)* would be
computed per iteration (each operator corresponds to an operator in TGV). To compute &,, FFT of two nM X nN ma-
trices and IFFT of three nM X nN matrices are required (52> MN(log(nM)+1og(nN)) flops). For V2, FFT of one M x N
matrix and IFFT of three nM X nN is needed (MN(log(M) + log(N)) + 3n’MN (log(nM) +log(nN)) flops). Moreover,
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we need 5Sn> MN(log(nM) +log(nN)) flops for div;,, and MN(log(M) +1og(N)) +2n> MN(log(nM) +log(nN)) flops for
div2. Proximal operators and main body primal-dual algorithm cost 42n> MN (similar to TGV) we should add 2n> MN
square roots and comparisons. Finally, we get:

Number of flops = 2MN(log(M) + log(N)) + 15n2MN(log(nM) + log(nN)) + 42n°NM.
One can verify that forn =2, M = N = 128
Number of Shannon TV flops = 11.14 x Number of TV flops

Number of Shannon TGV flops ~ 12.58 x Number of TGV flops

The above discussion confirms that, if we apply Shannon interpolation for any other variational model and set n =
2,M = N = 128 , we would expect more computational complexity, about 12 times compared to the original model.

6. Numerical experiments

In this section, we present numerical result of the proposed model and compare it with some authentic first and
second order variational models. In the following, models which are compared in the experiments, parameter setting,
noise ratios, number of iterations and sample image properties are expressed:

e Variational models in the comparisons: we have compared our method with three first order models, i.e., TV,
anisotrpic TV and Shannon TV and three second order models, i.e., the second order TGV, infimal convolution
(INFCON) and total Laplace (TL). The infimal convolution model and TGV are the most reliable higher order
variational models in the literature.

e Parameters of the primal-dual algorithms: in the algorithms we need two parameters 7 and 0. We set o = 7, for
the both denoising and deconvolution problems. For Shannon TV and Shannon TGV we set 7 = 0.1 and for the
5

others we set 7 = 3.

e Regularization parameters: the optimal parameters are determined for each method and for the restoration of a
given image separately. For instance, we set optimal parameter values (a;, @}), such that we get the best result
in terms of psnr values. In other words, assume x is noisy (or blurry) , and x,. is the clean image and o, = 2a]
(or aj = a@}) . Define

@) (x) = argmax, . = {psnr(u:;,x,ef),a = (ap, @1), @9 = 2a; (or @y = a1), u,, is the solution of } (63)

the optimal parameter A* for the first order models (TV, Shannon TV and anisotropic TV), and a* = (a, a) for
the second order models (TGV, infimal convolution and Shannon TGV), for each image and each noise ratio
are reported in tables 2| and [3{ Note that for the second order denoising models we assumed 4" = a] = laz‘) and

2
for deconvolution A4* = o] = ;.

e Noise ratios: artificial noises are added to the image for denoising problems. For the images with intensity
values in the range [0, 255], the added noises are Gaussian noises with 0 mean and the range of variances from
150 to 1000. Larger variance needs larger value of the regularization parameter and clearly the restored image
is less similar to the reference image. This facts can be observed in tables ... .

e [teration numbers: in our experiments for all models, the number of iteration for denoising is 2000 and for
deconvolution is 5000.

e Sample images: we have solved denoising (with the range of variances from 150 to 1000) and deconvolution
problems for sample "png" images; "Bird (186 x 154)", "Cat & Dog (261 x 261)", "Girl (150 x 150)" and
" Butterfly (285 x 193)" (see Fig. [I).
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(a) Bird

(c) Girl (d) Cat & Dog

Figure 1: Reference images.

6.1. Denoising

Assume u is a clean image, we add a Gaussian noise vector v to # and obtain x = u+v as a noisy image. Algorithm
[2is employed for the proposed model. Figures 2}f4] display the restored images for "Cat & Dog" image with noise
ratio 400. The size of zoomed in images (details) is 90 X 90. As it is discussed in [16], by transition from TV to TVsy,
the staircase effects resulted from TV, are attenuated via TVsy regularizer. However, the artifacts still remain with the
narrower depth. TGV is a well-known model in deceasing artifacts, especially staircases [15]. The results show that
the outcome of the second order TGV model admits distinguished performance to diminish staircase effects in the flat
areas. As we expect, transition from the TGV to 2-Shannon TGV, leads to attenuation and narrowing the remaining
artifacts observed in the TGV regularizer (compare (e) and (f) in the Fig. a) In other words, TGVé(;I’()z) is an authentic
generalization for TVgy in computational aspects, as well as the theoretical foundations.

For any added random noise with the noise ratio in the range [150, 1000], we have executed each algorithm for a given
image, 10 times, and the mean psnr and mean ssim values are reported in Table[2} The results confirm the effectiveness
of Shannon interpolation for both TV and TGV models. Specifically, we get higher accuracy of TGV compared

SH(2)
to TGV2.

6.1.1. High and low frequencies analysis of the model

The proposed model performs better than other state of the art models in both high and low frequencies. TGV
model is famous for reducing artifacts in smooth areas (low frequencies) and Shannon TV is capable to preserve
details (high frequencies). The introduced model preserves the benefits of Shannon TV to reduce the artifacts by
means of trigonometric interpolation. Moreover, it retains the distinguishing property of the second order discrete
TGYV, to remove staircase effects. In other words, for low frequencies the proposed model acts like the second order
TGV and for high frequencies acts like Shannon TV. To illustrate this fact, we have applied ideal high pass filter
for denoising results to address the differences of variational models in high frequencies. Ideal high pass filter in
frequency domain is defined by

0, D(u,v) < Dy,

me={L D@u,v) > Dy.
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(b) noisy image (¢) TV - restored (d) reference image: details

(e) noisy image: details (f) TV - restored: details

Figure 2: Denoising process and TV result: reference image, noisy image and restored image using TV model are shown in (a), (b) and (c)
respectively. Some details of reference and noisy images are shown in (d) and (e). The details of restored image using TV variational model is
shown in (f), where deep staircase artifacts around the borders are evident.
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(b) TL - restored (¢) INFCON - restored (d) anisotropic - restored : details

(e) TL - restored : details (f) INFCON - restored : details

Figure 3: Comparing results of the variational denoising problems: restored images via anisotrpic TV, total Laplace and the infimal convolution
variational models are shown in (a), (b) and (c) respectively. Consider details of restored images illustrated in (d), (e) and (f). Anisotropic TV
artifacts is very similar to TV model (Fig. [2] (f)), whreas in both second order models; TL and infimal convolution, the staircase effects are
diminished. However, some some sharp borders in smooth areas for infimal convolution and white noises in TL model are appeared.

17



(b) TGV?X - restored (c) TGVgg‘{’()z) - restored (d) TVsp(2) - restored : details

_—

(e) TGVi - restored : details (2 TGVE(}‘I”()Z) - restored : details

Figure 4: Comparing results of the variational denoising problems: restored images via 2- Shannon TV, the second order TGV and the second
order 2- Shannon TGV variational models are shown in (a), (b) and (c) respectively. Consider details of restored images illustrated in (d), (e) and
(f). Obviously the deep artifacts observed in the restored image using TV model (Fig. [2] (f)) are attenuated in (d). However, some undesirable
cloudy like pieces still remain, whereas for TGV model (e), these parts are completely faded. The restored image using proposed Shannon TGV
(f), preserves the properties of both TGV and Shannon TV models simultaneously. Referring to FigEl obviously, TGV result is very similar to
infimal convolution, but a little bit better in smooth areas, whereas Shannon TGV performs better than all variational models in the comparison in
terms of eliminating staircase effects and noise removal.
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where D(u,v) = Vu? + v2. We have compared the denoising results after ideal high pass filter for Dy = 10. See figures
and [6] for more details.

6.2. Deconvolution

Assumeker : (=51, =1,0,1,--- , Elyx{-5L ... [ -1,0,1,--- , 55!} 5 R,k odd, is a kernel convolution and
u:{l1,2,--- ,m}x{1,2,--- ,n} - Ris a grayscale image. Let
k-1 k-1 k-1 k-1
u: {_Ta"' 9_1,0’1"“ ’m+ T}X{_T"" ’_17071,“' ,n+T}_>R

is the extension of image u with the property u(i, j) = u(i, j),(, j) € {1,2,--- ,m} x {1,2,--- ,n} and at the other
parts of the domain #(i, j) is determined by symmetric boundary conditions. In our simulation, the linear convolution
operator A : R"™" — R"™" is defined by

Au(i, j) = Z ker(a,B)u(i —a, j—B), (0, j) € {1,2,--- ,m} x{1,2,--- ,n} (64)

— k1
==

One can verify that the adjoint operator A*, is

.
2

A", j) = Z ker(a, )i+, j+6),v:{1,2,--- ,m} x{1,2,--- ,n} = R, (65)
where ¥ is the extended version of v, with the suitable boundary conditions.
Assume u is the original image and x = Au + v is the blurry image obtained from u through a linear convolution
operator A with a kernel convolution and a Gaussian noise vector v (mean=0 and variance = 7, for the images with
intensity values in the range [0, 255]). Our purpose is restoring x by means of variational models using primal-dual
Algorithm([I] Specifically, to solve problem[56] we apply Algorithm[3] The reconstructed images for the sample image
"Girl" for infimal convolution, Shannon TV, TGV and the proposed model are illustrated in figures E] and@ The size
of zoomed in images (details) is 90 x 90. The outcome of TGVé(P‘I’()n) show superiority in noise removal, preserving the
details and diminishing staircase artifact. The quantitative details of the obtained results are expressed in Table 3]

7. Conclusion

In this contribution, we get an idea from the Shannon TV model of Abergel and Moisan [16], and propose a
new discrete second order TGV model based on Shannon interpolation. The new discrete derivative operators are
defined and the divergence operators as the adjoints of the derivatives are expressed. Consequently, the new discrete
TGV model is defined as an optimization problem. In the simulations results, it is verified that the introduced model,
preserves the benefits of Shannon TV to reduce the artifacts by means of trigonometric interpolation. Moreover, it
retains the distinguishing property of the second order discrete TGV, to remove staircase effects. It is possible to
extend the present model for the higher order TGVs or other higher order variational models in the same way.
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(a) reference (b) noisy

©TV (d) TGV2

Figure 5: Denoising sample image "Girl" results after ideal high pass (a) reference, (b) noisy, (c) TV and (d) second order TGV. It is clear that
TGV and TV are very similar in the areas containing details (see hat and scarf textures). TV as a first order model could not recognize the smooth
areas (all over the cheek contains edges), whereas TGV as a second order mode is capable to restore smooth areas.
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(a) TVsne) (b) TGVé(}lII()z)

(c) total Laplace (d) infimal convolution

Figure 6: Denoising sample image "Girl" results after ideal high pass (a) Shannon TV, (b) Shannon TGV, (c) total Laplace and (d) infimal
convolution. Shannon TV suffers from the same drawback of any first order models, similar to TV, the smooth parts contain edges, whereas,
compared to TGV, the details (hat and scarf texture) are more like the reference (in high frequencies Shannon TV is better than TGV). The Shannon
TGV model (proposed) performance in the areas containing details is very similar to Shannon TV, whereas in smooth areas performs even better
than TGV. In total Laplace and infimal convolution which are second order models, results are blurry and the main edges are attenuated which is a
drawback.
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(b) blurry & noisy image (¢) TV - restored (d) reference image: details

(e) blurry & noisy image: details (f) TV - restored: details

Figure 7: Deconvolution problem and infimal convolution result: reference image, blurry & noisy image and restored image using infimal convo-
lution model are shown in (a), (b) and (c) respectively. Some details of reference and blurry & noisy images are shown in (d) and (e). The details
of restored image using infimal convolution is shown in (f).



(a) TVsp()- restored

(b) TGV2- restored (¢) TGVA? _ restored

SH(2)" (d) TVsnz)- restored : details

(e) TGV?Z- restored : details f) TGVé(}‘I’()D— restored : details

Figure 8: Comparing results of the variational deconvolution problems: restored images via 2- Shannon TV, the second order TGV and the second
order 2- Shannon TGV variational models are shown in (a), (b) and (c) respectively. Consider details of restored images illustrated in (d), (e) and
(f). Obviously the staircase artifacts observed in the restored image using infimal convolution model (Fig. m (f)) are disappeared in (d). However,
in the smooth areas, some unwanted edges are observed in TGV result which are eliminated with the proposed model.

23



Noise(variance) 150 400 500 600 1000

Metric A*  M-PSNR M-SSIM A*  M-PSNR M-SSIM A*  M-PSNR M-SSIM A*  M-PSNR M-SSIM A*  M-PSNR M-SSIM
Image Cat & Dog

vV 0.030 3198 09008 0.050 29.81 0.8267 0.065 2892 0.8047 0.065 2821 0.8270 0.100 27.62  0.7877
TL 0.030 3195 09079 0.050 29.89 0.8426 0.060 29.13 0.8297 0.060 28.54 0.8349 0.100 27.54 0.7820
Anisotropic 0.030 31.65 0.8983 0.050 29.80 0.8425 0.050 2854 0.8231 0.055 28.06 08205 0.082 2743 0.7791
INFCON 0.030 3254 09144 0055 30.53 0.8644 0.065 29.73 08545 0.067 28.80 0.8501 0.098 28.19  0.8157
TVsup) 0.028 3231 09095 0.050 30.52 08627 0.060 29.66 0.8517 0.060 28.65 0.8454 0.083 28.12  0.8067
TGV?2 0.030 3222 09081 0.060 3024 0.8621 0.065 29.41 0.8436 0.066 2844 0.8372 0.100 27.85 0.8040
TGV?{I’(}D 0.027 32.56 0.9143 0.050 30.65 0.8709 0.055 29.81 0.8560 0.058 28.81 0.8518 0.082 28.22 0.8144
Image Girl

TV 0.032 31.87 09039 0.057 2930 08469 0.065 2871 0.8324 0.070 2847 0.8189 0.096 27.30  0.7826
TL 0.024 32.60 09189 0.048 29.80 0.8649 0.057 2939 0.8585 0.070 29.05 0.8482 0.098 27.76  0.8084
Anisotropic 0.026 31.65 0.8987 0.045 29.11 0.8384 0.055 29.00 0.8274 0.058 2825 0.8102 0.078 27.09 0.7710
INFCON 0.030 32.87 09279 0.055 3020 08798 0.067 29.55 0.8690 0.070 29.39  0.8592 0.096 28.13  0.8268
TVsue) 0.026 3258 09176 0.047 29.89 08673 0.052 29.36 0.8547 0.060 29.10 0.8452 0.080 27.81  0.8086
TGV? 0.032 3240 09203 0.057 29.80 08708 0.065 29.19 0.8581 0.072 2897 0.8479 0.098 27.79  0.8138
TGV?;()Z) 0.030 3291 09309 0.045 30.22 0.8814 0.050 29.72 0.8706 0.080 2946 0.8640 0.082 28.15 0.8294
Image Bird

vV 0.028 31.16 0.8693 0.052 28.71 08025 0.060 28.12 0.7831 0.066 27.81 0.7694 0.090 26.78  0.7363
TL 0.018 30.72 0.8563 0.038 28.12 0.7780 0.046 27.55 0.7552 0.054 27.27 0.7465 0.084 2638  0.7244
Anisotropic 0.022 31.03 0.8639 0.042 2858 0.7965 0.055 28.00 0.7743 0.054 27.69 0.7626 0.074 26.67  0.7279
INFCON 0.028 3134 0.8805 0.052 28.88 08178 0.058 2826 0.7946 0.066 2797 0.7857 0.088 2698  0.7521
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Image Butterfly
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Table 2: Summary of experiments for denoising
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Image Cat & Dog Girl Bird Butterfly

Metric A M-PSNR M-SSIM r M-PSNR M-SSIM r M-PSNR M-SSIM N M-PSNR M-SSIM
vV 120x 10 31.62 0.8998 1.18x10™* 31.67 09048 8.60x10™* 29.86 08556 7.80x10™* 29.16 0.8742
TL 6.60x 107 3128 0.8817 7.80x10™* 3186 09110 560x10™* 29.14 08310 4.60x10™* 28.05 0.8163
INFCON 9.80x 107 3224 09107 9.40x10™* 3256 0.9232 7.00x10™* 29.93 08540 6.20x10™% 2921  0.8543
TVsne 1.02x107% 3232 09114 9.00x10™* 3260 09212 7.00x10™* 30.18 0.8665 640x10™* 29.50  0.8852
TGV2 500x10™*  31.89  0.8802 7.00x10™* 3291 09251 4.60x107* 2970 0.8378 7.00x10™* 29.00  0.8653
TGVIY 750x 107 3249 09131 7.50x 10 3320 09330 630x10°* 3019 0.8683 6.00x 10 29.50  0.8871

SH(2)

Table 3: Summary of Experiments for deconvolution

Appendix

Shannon TV primal-dual algorithm for image restoration

Assume u € RM*V, From image restoration problem, using n - Shannon TV model can be formulated by

1 , 1
min ZllAu - + — D Vautk, D),
(k,[)eQ,,

or equivalently

1 , 1
min Z||Au = x[I” + = |IVall2,1,
u 2 n

Assume T = [A,V,]7,p = (p.q1.q2) € RM™N), q = (g1, 92) € RMN)?. Now define
1 2
F(p) = EIIP — x5+ Ellqllz,h G:R"™N LR G=0.

One can investigate that

F(p) = §||P||% P2+ g, < 1)@, G W) = Tu=0w), T = [A7, =div,].
From and (50), the dual formulation of (66) is

maXp=(p,q) —%“PH% —{(p,x)
A*p - dlvn(q) = O,

llglheo < 4.

n?

Moreover, required proximal operators for primal - dual algorithms are as follow

B _p R /()2 G, il < 4,
prox,p-(p) = (r(p), s1(q), s2(qQ)), r1 = oo se(@), j) = { ||;]]E§,l)§|)lz(%)’ else

prox,;(u) = u.

(66)

(67)

(68)

(69)

(70)

(71)

Consequently, we get Algorithm 4] Note that for denoising A = I and for deconvolution, A is defined as (64).
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Data: x as a noisy image, and € as a tolerance
Result: ¥ as primal solution and p* = (p*, q’f , qé), q = (q’{, qg) as dual solution

initialization: Choose parameters O < 7,0 < 1/||T|| and initial estimates @®,p°,), @ =ul.
. 1 1 1
while for k =0,1,---,  3llAu— 2 + L[Vl + 3lpl5 + (. x) > e do
-ph+l = PitoARt
p 4o
k+1

2- ¢ = (g1, g5 = (s1(qF + o V,i0), s2(qk + Vi),
3- uk+1 — uk + T(divn(qk+1 _ A*PIIH),
4_ﬁk+1 — 2uk+1 _ I/lk,
end
Algorithm 4: The Chambolle-Pock algorithm for solving problems and
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