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Abstract

In this paper, we prove the recurrence relation for Franel number using an
elementary method. Consequently, we generate another recurrence relation
invloving the third powers of binomial coefficients.
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Introduction

The binomial coefficients are the positive integers that occur as coeffi-
cients in binomial expansion. For instance, the binomial coefficients of (x+y)4

are 1, 4, 6, 4, 1. A binomial coefficient is denoted by
(
n
k

)
, for n ≥ k ≥ 0, where

n and k are nonnegative integers. Many identities involving binomial coeffi-
cients have been discovered. For instance, Boros and Moll [1, 14–15] showed
that sums of the form

∑n
k=0

(
n
k

)
kr are given by:

n∑
k=0

(
n

k

)
k = n2n−1, (2.1)

n∑
k=0

(
n

k

)
k2 = n(n+ 1)2n−2, (2.2)
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n∑
k=0

(
n

k

)
k3 = n(n+ 3)2n−3, (2.3)

n∑
k=0

(
n

k

)
k4 = n(n+ 1)(n2 + 5n− 2)2n−4, (2.4)

n∑
k=0

(
n

k

)
k5 = n2(n3 + 10n2 + 15n− 10)2n−5, (2.5)

and so on.
In 1894, Franel [2, ] showed that if

fn =
n∑

k=0

(
n

k

)3

,

then

(n+ 1)2fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1. (2.6)

Also, in 1895, Franel [3, ] showed that if

Pn =
n∑

k=0

(
n

k

)4

,

(n+ 1)3Pn+1 = 2(2n+ 1)(3n2 + 3n+ 1)Pn + 4(4n− 1)(4n+ 1)2Pn−1.
(2.7)

We should note that fn is called the nth Franel number. They arise in
first and second Strehl [4, 5, ] identities which state that:

fn =
n∑

k=0

(
n

k

)2(
2k

n

)
. (2.8)
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n∑
k=0

(
n

k

)2(
n+ k

k

)2

=
n∑

k=0

k∑
j=0

(
n

k

)(
n+ k

k

)(
k

j

)3

. (2.9)

The purpose of this paper is to prove (2.6) using an elementary method
and as a result, we generate a recurrence relation for numbers of the form∑n

k=0

(
n
k

)3
k2. Both results are presented in section three. Also, we propose

two problems involving the fourth powers of binomial coefficients in section
four, which when proven true will be intrumental in generating recurrence

relations for
∑n

k=0

(
n
k

)4
k2 and

∑n
k=0

(
n
k

)4
k3.

Main results

Theorem 1. If fn =
∑n

k=0

(
n
k

)3
, then

(n+ 1)fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1.

Proof. Let

S(n,i) =
n∑

k=0

(
n

k

)3

ki, (3.1)

Since
(
n
k

)
=

(
n

n−k

)
for n ≥ k ≥ 0, we see that (3.1) can also be written as

S(n,i) =
n∑

k=0

(
n

k

)3

(n− k)i. (3.2)

Adding (3.1) and (3.2), we have

S(n,i) =
1

2

n∑
k=0

(
n

k

)3

(ki + (n− k)i), (3.3)

Setting i = 1 in (3.3), we have

S(n,1) =
n

2

n∑
k=0

(
n

k

)3

,

S(n,1) =
n

2
fn, (3.4)
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n∑
k=0

(
n

k

)3

k =
n

2
fn. (3.5)

Setting i = 3 in (3.3), we have

S(n,3) =
1

2

n∑
k=0

(
n

k

)3

(n3 − 3n2k + 3nk2),

S(n,3) =
1

2

(
n3fn − 3n2S(n,1) + 3nS(n,2)

)
,

S(n,2) =
1

3n

(
3n2S(n,1) − n3fn + 2S(n,3)

)
. (3.6)

Setting i = 3 in (3.1), we have

S(n,3) =
n∑

k=0

((n
k

)
k
)3
.

Since
(
n
k

)
k = n

(
n−1
n−1

)
for n ≥ k > 0, then

S(n,3) = n3

n−1∑
k=0

(
n− 1

k − 1

)3

,

Shifting the index of k by 1, we have

S(n,3) = n3

n−1∑
k=0

(
n− 1

k

)3

. (3.7)

Putting (3.4) and (3.7) in (3.6), we have

S(n,2) =
n2

6

(
fn + 4fn−1

)
, (3.8)
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n∑
k=0

(
n

k

)3

k2 =
n2

6

(
fn + 4fn−1

)
. (3.9)

Setting i = 4 in (3.1), we have

S(n,4) =
n∑

k=0

(
n

k

)3

k4,

S(n,4) =
n∑

k=0

((n
k

)
k
)3
k,

S(n,4) = n3

n−1∑
k=0

(
n− 1

k − 1

)3

k.

Shifting the index of k by 1, we have

S(n,4) = n3

n−1∑
k=0

(
n− 1

k

)3

(k + 1),

S(n,4) = n3(S(n−1,1) + fn−1). (3.10)

Subtracting 1 from n in (3.4) and putting it in (3.10), we have

S(n,4) =
n3(n+ 1)

2
fn−1. (3.11)

Setting i = 5 in (3.3), we have

S(n,5) =
1

2

n∑
k=0

(
n

k

)3

(n5 − 5n4k + 10n3k2 − 10n2k3 + 5nk4),

S(n,5) =
1

2

(
n5fn − 5n4Sn,1 + 10n3S(n,2) − 10n2S(n,3) + 5nS(n,4)

)
. (3.12)
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Putting (3.4), (3.7), (3.8) and (3.11) in (3.12), we see that

S(n,5) =
n4

12

(
nfn − 5(n− 3)fn−1

)
,

n∑
k=0

(
n

k

)3

k5 =
n4

12

(
nfn − 5(n− 3)fn−1

)
. (3.13)

But

n∑
k=0

(
n

k

)3

k5 =
n∑

k=0

((n
k

)
k
)3
k2,

n∑
k=0

(
n

k

)3

k5 = n3

n−1∑
k=0

(
n− 1

k − 1

)3

k2,

n∑
k=0

(
n

k

)3

k5 = n3

n−1∑
k=0

(
n− 1

k

)3

(k + 1)2,

n∑
k=0

(
n

k

)3

k5 = n3

n−1∑
k=0

(
n− 1

k

)3

(1 + 2k + k2),

n∑
k=0

(
n

k

)3

k5 = n3(fn−1 + 2S(n−1,1) + S(n−1,2)). (3.14)

Subtracting 1 from n in (3.4) and (3.8) and putting them in (3.14), we
see that

n∑
k=0

(
n

k

)3

k5 =
n3

3

(n2 + 4n+ 1

2
fn−1 + 2(n− 1)2fn−2

)
. (3.15)
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Adding 1 to n in (3.13), we have

n+1∑
k=0

(
n+ 1

k

)3

k5 =
(n+ 1)4

12

(
(n+ 1)fn+1 − 5(n− 2)fn

)
. (3.16)

Adding 1 to n in (3.15), we have

n+1∑
k=0

(
n+ 1

k

)3

k5 =
(n+ 1)3

3

(n2 + 6n+ 6

2
fn + 2n2fn−1

)
. (3.17)

Equating the right-hand sides of (3.16) and (3.17), we see that

(n+ 1)2fn+1 = (7n2 + 7n+ 2)fn + 8n2fn−1. (3.18)

We are done.

Theorem 2. If S(n,2) =
∑n

k=0

(
n
k

)3
k2, then

n2(3n− 1)S(n+1,2) = (21n3 + 14n2 − 5n− 6)S(n,2) + 8n(3n2 + 5n+ 2)S(n−1,2).

Proof. Subtracting 1 from n in (3.8), we have

S(n−1,2) =
(n− 1)2

6

(
fn−1 + 4fn−2

)
, (3.19)

Adding 1 to n in (3.8), we have

S(n+1,2) =
(n+ 1)2

6

(
fn+1 + 4fn

)
, (3.20)

Subtracting 1 from n in (3.18), we have

n2fn = (7n2 − 7n+ 2)fn−1 + 8(n− 1)2fn−2. (3.21)

Making fn+1 the subject of the formula in (3.18) and putting it in (3.20),
we have

fn−1 =
6S(n+1,2) − (11n2 + 15n+ 6)fn

8n2
. (3.22)
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Making fn−2 the subject of the formula in (3.21) and putting it in (3.19),
we have

fn−1 =
n2fn − 12S(n−1,2)

n(5n− 3)
. (3.23)

Making fn−1 the subject of the formula in (3.8), we have

fn−1 =
6S(n,2) − n2fn

4n2
. (3.24)

Equating the right-hand sides of (3.22) and (3.23), we have

fn =
96nS(n−1,2) + 6(5n− 3)S(n+1,2)

8n3 + (5n− 3)(11n2 + 15n+ 6)
. (3.25)

Equating the right-hand sides of (3.23) and (3.24), we have

fn =
48nS(n−1,2) + 6(5n− 3)S(n,2)

4n2 + n2(5n− 3)
. (3.26)

Equating the right-hand sides of (3.25) and (3.26), we have

n2(3n− 1)S(n+1,2) = (21n3 + 14n2 − 5n− 6)S(n,2) + 8n(3n2 + 5n+ 2)S(n−1,2).
(3.27)

We are done.

Open Problems

If Pn =
∑n

k=0

(
n
k

)4
, show that

n∑
k=0

(
n

k

)4

k2 =
n

5

(
nPn + (4n− 1)Pn−1

)
. (3.28)

and
n∑

k=0

(
n

k

)4

k3 =
n2

20

(
nPn + 6(4n− 1)Pn−1

)
. (3.29)
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Conclusion

In this paper, we were able to prove the recurrence relation for Franel
number using an elementary method. Consequently, we were able to able to

generate a recurrence relation for
∑n

k=0

(
n
k

)3
k2 using (3.8) and (3.18). We

should note that if (3.28) is true, then combining it with (2.7) will yield a

recurrence relation for
∑n

k=0

(
n
k

)4
k2. Also, combining (3.29) and (2.7) will

yield a recurrence relation for
∑n

k=0

(
n
k

)4
k3.
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