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Abstract 

 
The best-known profile function is the Gaussian function, which can be used, for instance, to 
fit successfully optical absorption bands or neutron scattering patterns. However, peaks of X-
ray powder pattern can hardly be fitted well with such a simple function. Whereas combined 
functions are widely in use for such purpose, we applied Cauchy functions to fit our well 
resolved Guinier powder diffraction data. The Cauchy function of second order is well suited 
and will be described in more detail as a didactic exercise in crystallography as well as 
mathematics. In addition, a profile function with an exotic non-integer exponent based on the 
golden mean is supplemented. This contribution will be continuously revised before its final 
publication to react of Fewster’s new diffraction theory that will change the matter in future. 
As an example beyond crystallography the author fitted German Covid-19 data to correlate 
virus infection peak maxima with causal events.   
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1. Introduction 

 
Profile functions of different full width at half maximum were used as so called line functions 
to decompose optical spectra or X-ray powder diffraction patterns. Normalized to unity, they 
will be simply multiplied with the line intensity to represent the full information.  Fit 
parameters are the location of the line, its intensity, and the width, respectively. In this 
exercise, we don’t consider combined functions as used today in Rietfelt refinement, but the 
series of Cauchy functions of ever steeper profile, where the first number of the series (order 
one) is alternatively known as Lorentzian profile function. Mitra [1] recently described 
theoretical models of diffraction line profiles in detail. However, we used the second order 
Cauchy function successfully to decompose the highly resolved X-ray powder diffraction 
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patterns, taken with our double-radius Guinier diffractometer with imaging plate (IP) detector 
[2] [3].  
Baron Augustin-Louis Cauchy was a French mathematician and physicist (* Aug. 23. 1789 in 
Paris, † May 23. 1857 in Sceaux, France). In this contribution, we deal with two findings of 
this great researcher, the Cauchy profile functions beside the Cauchy integral formula to 
verify their half-peak widths. In addition, we contribute a sort of Cauchy line functions with 
non-integer order. 
 

2. Cauchy Functions 
 

Cauchy line profile functions Pn of order n are represented by the following equation: 
 

                                                         �� = �
� ∙ {1 + (���� )�}��,                                                 (1) 

 

where w is the effective half-width and a the fictive one, with �	 = 	�� =
��
�� ,  wF = 2w 

represents the full width at half maximum (FWHM). 

 

Peak (line) maximum is given for t = to   

                                                                  ��,��� =	��                                                             (2) 

 
It yields further for n = 1:                   B = 1/π ,    c = 1                                                            (3) 

                                n = 2:                   B = 2/π,     c = �√2 − 1 = 0.64359425…                    (4) 
 
The constant c can be verified, if we set w = t1/2 –to for Pmax/2. 

Doing this, we can find the constant c for the third order Cauchy function, because � = ��/ –�
� .  
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Solving for c gives                       � = �√2$ − 1 = 0.509825 

 
For the Cauchy functions P1(t) respectively P2(t) we get      
 

                                                      �%(,) = �
-(� '(���) )

                                                          (6) 
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Integration of the Cauchy function of first order yields with the substitution  1	 = 	, − ,2 
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Therefore, this integral is normalized to unity. 
 
Integration of the Cauchy function of second order yields 
 

                                           3 �
�
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when simplifying with the substitution  1 = (, − ,2	)/�   and 61 = 6,/�  or  6, = � ∙ 	61 
 
The solution gives   

                                       3 >�
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4
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Thus the integral  3 ��4
�4 6, = = ∙ 3 >�

(%'� ) 
4
�4 = 	= ∙ -� =

�
- ∙

-
� = 1 is also normalized to unity. 

 

The integral width wi results from the relation  

                                               ���� ∙ 5? = 1 giving  5? = 1/����                                       (11) 

We get for n = 1                      5? = -
� ∙ 5@ 		= 1.570796 ∙ EFGH�                                   (12) 

                  n = 2                      5? = -
I� ∙ 5@ 	= 1.220331 ∙ EFGH�                                   (13) 

                  n = 3                      5? = K-
%L� ∙ 5@ = 1.155394 ∙ EFGH�                                  (14)    

 

Cauchy functions were illustrated in the Figures 1 and Figure 2 below. 

 

Figure 1. Cauchy function of second order with a chosen FWHM = 0.2 and normalized to 
unity peak integral. The function is symmetric around the center at chosen xc= 5. 
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Figure 2. Cauchy functions of order n = 1 to 3 with the same FWHM = 0.2 

3. Gaussian Profile Function in Comparison with the Cauchy Function of Second Order 

This profile function with the smallest width in the base compared to Cauchy functions was 
treated for the sake of completeness. This normal distribution represents the most important 
continuous probability distribution and has been frequently described in the literature. It is 
defined as follows 

                                                    N(1) = 	 %
O√�- exp	−

%
� (

���
O )�                                              (15) 

First, we will show that the below given integral is normalized to unity 

                                                   S ≔ %
√�- 	3 exp	(− %

�
4
�4 ,�)	6,                                                (16) 

According to Evesons [4] one may write in a higher dimension 
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4
�4 1�)	61 3 exp	(− %
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Using now polar coordinates one yields 
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�
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�

4
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Thus, the integral is  

                                                               S	 = √S� = 1                                                         (19) 
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For purposes of programming applying the least squares refinement routine, we reformulate 
the equation to get the full width at half maximum wF, thereby the area under the integral 
must remain unity. We get the following equation 

                                                     N(1) = 	 ����
∙ exp :− � (���[) 

��
 ;,                                       (20) 

where the constants are     �% = �√(� \](�))
√(�-) =	��

�^
= 0.93943728   and    �� = 4 ∙ ln	(2) 

Figure 3 compares the normalized Gaussian function with the Cauchy function of second 
order, both with the same peak height but different FWHM.  The Cauchy function shows 
reduced FWHM compared to the Gaussian, but smeared broader out in the base to give the 
same unit integral area (see also Figure 4). Therefore, be cautious with a statement like ‘the 
Gaussian has smaller half-width than Cauchy functions’, because this is only true near the 
base of the function. 

We use both functions alternatively in our Profile-C2G.bas program (pre-published in 
Researchgate.net), replacing the scattering angle 2θ for x, and the measured X-ray intensity 
for y, respectively [5]. If you want to use the program to fit UV-VIS data, then you have to 
choose the Gaussian option.  

 

 

Figure 3. Normalized Gaussian profile function (blue) in comparison with a Cauchy function 
of second order (red) with the same peak height, showing then different FWHM. 
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Figure 4. Enlarged image detail from Figure 2 
 Gaussian blue, Cauchy function of second order red, the arrow shows the position at FWHM. 

 
4. Convolution of Gaussian respectively Cauchy Functions 

 
Results of such calculation can be useful when the apparatus contribution to the broadening of 
an X-ray reflection is to be calculated out, for example to determine the true crystallite size. 
Two peaks represented by the same function type can be convoluted and deliver on the back 
transformation of the Fourier transform the following result for the width at half maximum 
considering the combined peak. 
 
     Cauchy function of order 1:                        w = 5% + 5�                                                (21)   
                          

     Cauchy function of order 2 [6]:              5√� = 5%
√� + 5�

√�                                            (22) 
 
     Gaussian function [7]:                              5� = 5%

� +	5�
�                                               (23) 

 
The convolution of the functions f(t) and g(t) reads as 

                                               N(,) ∗ b(,) = 	3 N(c)b(, − c)6c4
�4                                         (24) 

The Fourier transform of the convolution product represents the product of the Fourier 
transforms of both starting functions 

                                   ℱ = 3 e�?f�g3 N(c)b(, − c)6c4
�4 h4

�4 6, = E(i)j(i)                     (25) 
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where in the case of the Gaussian  E(i) = exp	(−f O� 
� ) respectively j(i) = exp :− f O  

� ;,     

                                                   E(i)j(i) = exp :−f (O� 'O  )
� ;.                                       (26) 

In this way the convolution resulted in 

                                              N(1) ∗ b(1) = %
�O� 'O  	√�-

exp	[− %
� (

���
O� 'O  

)�],                     (27)                                              

leading for w = σ to the final result  

                                                             5� = 5%
� +	5�

�                                                   (see 23) 

For the first order Cauchy function we write now L(t) (Lorentzian) and substitute 1	 = 	, − ,2	 
	

                                                            k(1) = �
-(� '� )                                                         (28)	

then apply the Fourier transform   

                              ℱ{k(1)} = 3 �
-(� '(�) 

4
�4 	e�?l�61 = �

- 3
m)^no

(�'?�)(��?�)61
4
�4                    (29) 

From Cauchy’s integral formula it follows [8]: 

Case k < 0: the contour integral is taken counter-clockwise 

                                   ℱ{k(1)} = �
- ∮

m)^nq
r'?� ∙ %

r�?� 6s =
�-?�
-

m)^n(^/)
�?� = e�l                           (30) 

Case k > 0: the contour integral is taken clockwise (add minus to the integral!)  

                               ℱ{k(1)} = �
- ∮

m^nq
r�?� ∙

%
r'?�6s = − �-?�

-
m^n()^/)
��?� = e��l,                        (31) 

Finally we get                                    ℱ{k(1)} = e��|l|                                                        (32) 

Then we obtain for the product of two functions    

                                             ℱ{k%(1)}ℱ{k�(1)} = e�?l(��'� ).                                           (33) 

Because this product represents the convolution of two Lorentzian type functions, the 
convoluted function has a half-width of  

5 =	5% + 5� 

This result confirms Equation 21. 

The proof for the half-width of convoluted Cauchy functions of order two according to 
Equation 22 by a sophisticated decomposition of the integrand will be supplemented soon. 
Many years ago, we had analytically verified the validity of this relation [6]. 
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5. Cauchy-Type Line Profile Function with Exotic Non-Integer Order 
 

Tentatively, we can try to work also with a non-integer order for the Cauchy line profile 
function, for instance choosing an order between 2 and 3. A proposal is  

X�� 	= 	2.6180339887…	 , where X = 	 √v�%� = 0.6180339887…  is the golden mean. 

The quality to be exotic will only be used in context with Cauchy functions, not generally 
quoting the importance of this most irrational number in biology, cosmology, music, art, 
finance, and medicine.  

This function is represented by  

                                          �w =	�∙�� 	 ∙ {1 + �� ∙ (���� )�}��, n = X��,                                    (34) 

                       where = ≈ 	 K
�-w = 0.772554…,			 	� = 	√2w∙w − 1 = 0.5505601…             (35) 

However, the integral of �w	is somewhat smaller than 1 

                                                     3 �w	6, = 0.998… 	≈ 1		4
�4                                                (36) 

One can apply instead of B = 
K

�-w an expanded form for B to approximate the integral more 

exactly to unity 

                                             = ≈ 	 %�- [3X
�% + ( w

K'-)
� +	%v (

w
K'-)

I	].                                      (37) 

With this expansion that represents not the exact solution, the integral intensity deviates only 
marginally from 1 

                                                            3 �w	6, = 0.99965…			4
�4                                            (38) 

Such profile function near the Gaussian may find application in special cases concerning 
statistics, deciphering secrets of our cosmos or approaches in financial research. 

5. Conclusions 

The fundamental line profile functions for X-ray powder diffraction or neutron powder 
scattering have been summarized as an exercise, and small odds in previously published 
contributions misleading the reader have been tried to avoid. We extended the Cauchy line 
profile series with a function of non-integer order based on the golden mean. This 
contribution is continuously being revised also in light of Fewster’s new diffraction theory 
[9], before a final publication will be envisaged. As an example beyond crystallography 
Germany’s active Covid-19 infection cases were fitted with Cauchy respectively Gaussian 
functions [10]. 
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