Masses of Virtual Quarks

Branko Zivlak

Abstract: The values of quark masses have been determined.

Keywords: Bošković, Virtual particle, Quark

Any particle of matter is connected with every other particle, no matter how great is the distance between them, in such a way that, in accordance with a change in the position, no matter how slight, of any one of them, the factors that determine the motions of all the rest are altered ;...

Roger Joseph Boscovich, [1, article 2]

1. Virtual particles in Bošković's Theory

Let's quote from the introduction of the English translation of Bošković's Theory, [1]:

- To sum up, it would seem that the curve of Boscovich is an acceleration-interval graph; and it is a mistake to refer to his cosmic system as a system of "force-centres".

Bošković often uses the word *propensity*, for example [1, article 9]:

9. I therefore consider that any two points of matter are subject to a determination to approach one another at some distances, & in an equal degree recede from one another at other instances. This determination I call ' force '; in the first case ' attractive ', in the second case ' repulsive '; this term does not denote the mode of action, but the **propensity**...

Figure 1 - General shape of Bošković curve show the change of attractive and repulsive forces with the change of distance (abscissa) between the elementary points of matter,

In Quantum Field Theory [6], we call the emergence of real mass from virtual mass an *excited state*, let's quote:

Quantum field theory treats particles as *excited states* (also called *quanta*) of their *fundamental fields*, which are, in a sense, more fundamental than the underlying particles.

"Fundamental fields": in this paper are virtual quarks which are shown in Table 2.

Note that in Figure 1, a large number of virtual particles (*fundamental fields*) are possible, so it would be more natural, instead of the terms: *fields* to use the Bošković *limits* which are substitute for all fields, they are more comprehensive preceded *Quantum Field Theory* by two centuries.

How virtual (unexcited) points are excited will be left for another time, and here we will pay attention to virtual particles.

2. Formulas for virtual quarks

I understand Bošković's quote at the beginning: as a fundamental feature of the universe that it constantly self-adjusts according to an all-valid pattern and what else is that but mathematics. For Bošković, these are: geometry, algebra and God. Many say that the universe is a mathematical creation; moreover, here we will apply it to the relations of virtual quarks.

Data from Table 1 were taken from CODATA 2018, [2]: inverse fine structure constant $\dot{\alpha}$, proton mass - pr and proton/electron mass ratio - μ . The mass ratio of Tau and Muon lepton –T: is different than in [2] because the improvement from [3] was used. Dimensionless: β and σ are determined from previous data, and mass: $P = \sigma 1/3*\beta-2/3*(pr/2\pi)$, will appear often. Coefficient K_f – converts masses from: [kg] to [GeV/c2], in which usually quarks are shown.

Constants		[kg]	[GeV/c ²]
Two pi	$2\pi =$	6,283185307	
Fine structure inverse	$\dot{\alpha} =$	137,035999084	
Tau / Muon mass ratio	T =	16,816735060	
Proton	pr =	1,67262192E-27	0,9382720885
Proton / electron mass ratio	$\mu =$	1836,15267343	
$eta=\mu$ / ($2\pi\dot{lpha}$) =	$\beta =$	2,1325255860	
$\sigma = 2^{(2*(2-1/(2\pi\beta+2))/3)} =$	σ =	2,4453494201	
$P = \varsigma^{1/3} * \beta^{-2/3} * (2\pi)^{-1} * pr =$	$\mathbf{P} =$	2,16472164E-28	0,1214319782
$K_{f} =$		1,7826619E-27	

Table 1 Dimensionless constants and masses

The quark masses - m_o are shown in column 1 of Table 2 from Wikipedia as given in [MeV/c²] or [GeV/c²], based on the latest measurement results, (bottom, strange, down, top, charm, up).

1	2	3	4	5	6
$m_o [MeV/c^2], [GeV/c^2]$		$m_v = (\dot{\alpha}^a * T^b * 2^c)^{1/3} * P$	а	b	c
4.18 +0.04; -0.03	bv	4,1857705337	4	-1	-9
95 +9; -3	sv	0,0969744679	1	-1	-4
4.7 +0.5; -0.3	dv	0,0046449801	-2	1	-4
172.76 ± 0.3	tv	174,454908321	4	1	-1
1.275+0.025; -0.035	cv	1,2730589735	1	1	-1
2.2 +0.5; -0.4	uv	0,0023224900	-2	1	-7

Table 2 Masses of quarks

In column 3, the masses \mathbf{m}_v are obtained by a single speculative or intuitive formula in the header, thanks to [1]: with the accuracy of the input data. Where **a**, **b**, **c** in columns 4, 5, and 6 are the corresponding exponents over the dimensionless constants: $\dot{\alpha}$, T, and "2". Formula applied in column 3 is correct by definition, only the question arises: what does it represent? Let's call those masses: virtual masses \mathbf{m}_v . That masses \mathbf{m}_v are close to \mathbf{m}_0 in column 1, is only an indication for formula in header to be the way to obtain correct formula for real quarks.

3. Virtual quark mass relations

For virtual quarks (suffix v in quark designation): it is easy to show that the relations shown in column 1 of Table 3 and calculated in columns 2 and 3 hold.

$tv / bv = 2^{8/3} * T^{2/3}$	41,678086966	41,678086966
$cv / sv = 2*T^{2/3}$	13,127774772	13,127774772
$bv/sv = \dot{\alpha} * 2^{-5/3} =$	43,163634960	43,163634960
$tv / uv = 4* \dot{\alpha}^2$	75115,460180	75115,460180
$tv * sv / cv*bv = 2^{5/3}$	3,174802104	3,174802104
$tv / cv = \dot{\alpha}$	137,03599908	137,03599908
$bv/dv = \dot{\alpha}^{2} T^{-2/3} * 2^{-5/3}$	901,13853164	901,13853164
$tv/bv * sv/cv * dv/uv = 2^{8/3}$	6,349604208	6,349604208
$(dv/uv)^{5/3} * bv*tv / (cv*sv) = \dot{\alpha}^2$	18778,865045	18778,865045

Table 3 Mass relations of virtual particles

Where it is indicative in the last formula that: the first generation has an exponent of 5/3 while the others have 1. I leave the analysis of other relationships to the reader.

4. Conclusion

• For four quarks, the ratio of masses of Tau and Mion leptons is proportional, and for two, inversely proportional (column 5, Table 2);

• Virtual quarks are related to: integer exponents a, b and c in columns 4, 5 and 6 of Table 2, which is an expected quantum property;

• Bošković's position from the beginning was confirmed: "*Each particle of matter is connected with every other*".

• The article has been reduced to a minimum to make it easier to follow the main flow of the presentation.

1. References

[1] Boscovich J. R.: (a) "Theoria philosophia naturalis redacta ad unicam legem virium in natura existentium", first (Wien, 1758) and second (Venetiis, 1763) edition in Latin language; (b) "A Theory of Natural Philosophy", in English, The M.I.T. Press, Massachusetts Institute of Technology, Cambridge, Massachusetts and London, England, first edition 1922, second edition 1966.

[2] <u>http://physics.nist.gov/cuu/Constants/</u>, *CODATA internationally recommended values of the Fundamental Physical Constants*, values of the constants (2018)

[3] Improving the Koide Formula, https://vixra.org/pdf/1509.0135v1.pdf

[4] Masa Neutrona iz Masa Kvarkova, Kako? (Serbian), https://www.gsjournal.net/Science-Journals/Research%20Papers-Mathematical%20Physics/Download/8398

[5]. https://www.wolframalpha.com/

[6] https://en.wikipedia.org/wiki/Quantum_field_theory

[7] https://en.wikipedia.org/wiki/Elementary_particle

[8] https://en.wikipedia.org/wiki/Feynman_diagram