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Abstract
The impetus for the work is this quote:

“...as shown by Gel’fand’s approach, we can only abstract a unique manifold if our 
algebra is commutative.” (Hiley and Callaghan, 2010)

Geometric algebra is non-commutative. Components of different grades can be staged on different 
manifolds. As operations on those elements proceed, they will effect the promotion and/or demotion 
of components to higher and/or lower grades, and thus to different manifolds. This paper includes 
imagery that visually displays bivector addition and rotation on a sphere.

David Hestenes interpreted the vector product or rotor in two-dimensions:

“as a directed arc of fixed length that can be rotated at will on the unit circle, just as 
we interpret a vector a as a directed line segment that can be translated at will 
without changing its length or direction…” (Hestenes, 2003)

Rotors can be used to develop addition and multiplication of bivectors on a sphere. For those 
rotational dynamics, rotors of length π /2 are the basis elements. The geometric algebra of 
bivectors – Hamilton’s “pure quaternions” – is thus shown to transparently reside on a spherical 
manifold.

Keywords: Bivectors/Visualization/Rotors/Spherical Manifold/Quaternions/Non-Commutative 
Algebra

Introduction
Hiley’s quest for an algebra of process led him to develop rules that quickly take shape in one form as a quaternion 
algebra (Hiley, 2012). In his seminal textbook (Macdonald, 2011), Alan Macdonald redefines the pure quaternions, which
exclude the scalar part, for use as the bivectors of geometric algebra. Those sit comfortably on a spherical manifold as we
will see. In three dimensions, that manifold hosts visual metaphors for both bivector multiplication, and bivector addition,
representations which transparently subsume the algebraic formulation of those operations. The algebra is a symbolic 
analog for transformations in 3D space, highlighting the power of the geometric algebra developed by David Hestenes 
(Hestenes, 1986).

In the case formulated by Hiley which led him to the quaternions, the quest for the process in question implicates 
rotational dynamics on a spherical manifold in three dimensions. That process further equipped with the dynamics of time
for those operations, will encompass swirling movements both expansive and contractive throughout the spherical 
domain. The trajectory of those movements will be a geometrical mirror for the dynamical process in question.
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An algebra that embeds into multiple geometries
In a follow-up paper (Hiley and Callaghan, 2010), Hiley and Callaghan expand on the reasoning for pursuing an algebra 
for that structure process:

Most of the work in (Hiley, 2012) was to establish how it is possible to produce an algebraic 
description of this structure process. Having demonstrated how this was possible, we went on to 
show that this algebra had enfolded in it a series of what we called ‘shadow manifolds’. We 
deliberately choose the plural ‘manifolds’ because we have a non-commutative algebra and as 
shown by Gel’fand’s approach, we can only abstract a unique manifold if our algebra is 
commutative. [emphasis added]

Notice that our approach stands the conventional approach on its head, as it were, because we start 
with the algebra and then abstract the geometry. We do not start with a a priori given manifold and 
then build an algebra on that.

For a non-commutative geometric algebra, the premise is that algebraic components of different grades can be staged on 
different geometric manifolds. As operations on those elements proceed, they will effect the promotion and/or demotion 
of components to higher and/or lower grades, and thus to different manifolds. The model I’ve used in my writing is of a 
baseball given both linear and rotational motion by the pitcher – think of a curveball headed towards the plate here. The 
batter can “operate” on the baseball, providing the force necessary to transform, eliminate, or modify those graded 
elements.

As one example, the rotational dynamics of the ball can transmute into purely linear motion. What had been a regime of 
spin dynamics on a spherical manifold – the baseball – has changed grade and can properly be modeled with vectors in 
3D euclidean space. Or the batter might undercut the ball, exchanging one set of rotational dynamics for another – a 
within-grade transformation of the dynamics on a spherical manifold.

In his Oersted Medal Lecture (Hestenes, 2003), Hestenes introduced the key to bivectors in two dimensions, one that 
translates to three dimensions as well. He established a definition for rotors that parallels the definition for vectors in the 
plane. In his words:

...we should interpret U θ  1 as a directed arc of fixed length that can be rotated at will on 
the unit circle, just as we interpret a vector a as a directed line segment that can be 
translated at will without changing its length or direction.

Corresponding to those two-dimensional bivectors, the basis components of a three-dimensional bivector algebra can be 
staged and rotated on a spherical manifold, each translated without changing its length or direction. Hamilton’s pure 
quaternions are revealed to be homologous to the coordinate-free rendering of bivectors on that manifold.

The notation below is used, defined by the following relationship of bivectors to Hamilton’s pure quaternions i , j , k 2:

i1=e2 e3= j
i2=e3 e1=k
i3=e1e2= i

1 Uθ is the bivector product of two vectors.
2 The basis bivectors in Macdonald (Macdonald, 2011)  are negatives of these.
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Bivector addition on a spherical manifold
The e1 , e2 , e3 are orthonormal basis vectors for axes x1 , x2 , x3 in three dimensions (Figure 1).

Bivector e1 e2 can be derived by multiplying corresponding unit vectors (Figure 1).While π /2 takes on the role of 
the unit element on the sphere, for explanatory purposes the diagram posits it as twice that length for the sake of 
displaying bivector addition. As mentioned previously, the bivectors are rotational elements corresponding to rotors in 
two dimensions. That is to say, they can be considered as existing anywhere on the great circle they inhabit. The images 
explaining bivector addition present a visual extension of that unitary motion.

Near the end of one of his online tutorials (Geometric Algebra 3, 2015), Macdonald works through an example using 
geometric algebra to derive a result that, as will be shown, can be transparently visualized on the sphere. Carefully 
explaining how rotations compose in the algebra, his example starts with the composition of rotations:

exp(− i2θ2/2)exp(− i 1θ1/2)u exp (i1 θ1/2)exp (i2 θ2/2)

from which he derives the equivalent normalized unit bivector in the 3D geometric algebra G3 :

exp( i θ/2)=exp(
e1 e2+e2 e3+e1e3

√3
π
3
)

The two-dimensional plane where θ operates is defined by the bracketed pseudoscalar e1 e2+e2 e3+e1 e3 . A crucial
point is that this equation specifies how the pseudoscalar defining the two-dimensional hosting plane can be described 
using the bivector bases in the three-dimensional space where it is located. Such is the transparency of geometric algebra.

The normal to that plane in the dual space can be obtained through right multiplication by e3 e2 e1 , the reversion of the
three dimensional pseudoscalar e1 e2 e3 so that:

(e1 e2+e2 e3+e1e3)e3 e2 e1=e3+e2−e1
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Figure 1: The rotor that results from multiplying e2 by e1

Figure 1: Standard basis for Euclidean space.



With this elegant algebraic formulation for the plane and the normal to it, we can proceed to develop its visualization on 
the sphere.

As in Figure 1 we proceed by developing a bivector on the plane defined by the x2 and x3 axes in the same fashion,
extending it to a half-circle. (Figure 2).

The logical route to the addition of bivectors is to assume their position on the sphere mediates the resulting bivector. The
operation should, therefore, result in a bivector that is halfway between them (Figure 3).

Note that the bivector sum e1 e2+e2 e3  is displaced by ±π /4 from its parents, which informs the next calculation.

The bivector in the third plane defined by x1 and x3 can next be displayed on the sphere as we proceed (Figure 4). 
Note that this addition is commutative.
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Figure 2: The two rotors e1 e2 and e2 e3 on the sphere

Figure 3: The addition of two bivectors halfway between them



We now have a framework in place to complete the summation. Adding e1 e2+e2 e3 to e1 e3 splits the difference 
once again, with the bivector positioned halfway between the two. The bivector sum, itself a new bivector, is angled 
between them. The plane the bivector rotates on is shown in the image to offer perspective. That plane runs through the 
center of the sphere, as do the different planes which host all the bivectors on the sphere.

The normal e1+e3−e2 to the plane of the bivector sum, projects downward into the x1 ,−x2 , x3 portion of the 
sphere (Figure 6).
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Figure 4: Bivector e1 e3 overlaid on the sphere

Figure 5: The bivector sum e1 e2+e2 e3+e1 e3



This mirrors the algebraic calculation with bivector addition residing comfortably on a sphere in this example. This 
provides the impetus for mobilizing spherical geometry to derive properly weighted bivectors emerging from 
calculations.

Bivector multiplication on the sphere
Multiplication of bivectors can be properly understood as the rotation of one bivector into a different axial plane when 
acted upon by another. The result is that anti-commutative multiplication of basis bivectors has a representation on a 
sphere in three dimensions. Once again, the starting point is a set of orthonormal basis vectors for axes x1 , x2 , x3 in 
three-dimensions (Figure 7).

This model for bivector multiplication on a sphere was derived from earlier work researching the imagery necessary to 
visualize the operation. Movements initially portrayed in Euclidean space were eventually seen to migrate naturally to a 
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Figure 6: Bivector sum, its plane and normal to it: e1+e3−e2

Figure 7: Standard basis in Euclidean space.



sphere. Careful thought led to the realization that the paradigm for bivectors which had been developed to portray rotors 
in two-dimensions was also meaningful for a proper understanding of bivectors operations in three dimensions. Each of 
the three dimensional planes anchoring a spherical manifold can host a canonical unit rotor on a sphere of radius 1
which is π /2 in length.  With that understanding, we proceed to bivector multiplication.

The unit bivector i1=e2e3 is shown in (Figure 8).

The unit bivector i2=e3 e1 , can be synthesized in the same fashion (Figure 9).
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Figure 8: Unit bivector i1 from the vector multiplication e2 e3 .

Figure 9: Unit bivectors i1 and i2 .



Bivectors i1 and i2 are next shown on a unit sphere with the multiplication i1 i2 generating i3 . All the 
bivectors have the properties of rotors which Hestenes defined in two dimensions: they have unit length and their 
placement on a great circle is immaterial (Figure 10).

The anti-commutative property of bivectors then flows naturally from the definition of unit rotors on the sphere. The 
resulting rotation reverses direction when the order changes. That is in line with the algebraic formulation since

i2 i1=−i3 in G3 (Figure 11).

The symmetry of the sphere insures the proof of anti-commutativity for each of the other unit bivector multiplications. 
An appropriate bias will inform the trajectory of all bivectors regardless of their length and placement on the sphere 
once impacted by other bivectors – a swirling orbital path the result.
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Figure 10: Bivector multiplication with i1 i2=i3 .

Figure 11: Bivector multiplication with i2 i1=−i3 .



The ecology of multi-dimensional space
The profoundly visionary work of Hermann Grassmann(Grassmann, 1995) which he pursued for decades and which 
eventually led Clifford to his epiphany(Clifford, 1878), reveals itself to transcend Euclidean space, providing the 
conceptual tools to move smoothly between multiple manifolds. Singular points on a real line, rotations on circles, 
angular Euclidean movements, twisting spherical spirals ... these are the two- and three-dimensional abstract dynamisms
available to geometric algebra. They only hint at the extra-dimensional extensions that will find their proper home in this
all-encompassing mathematical framework.
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