Tiling the Plane with k-Gons

VOLKER WILHELM THÜREY
Bremen, Germany *

September 20, 2022

Abstract

We present a way to tile the plane by k-gons for a fixed k. We use usual regular 6 -gons by putting some in a row and fill them with k-gons. We use only one or two or four different k-gons.

1 Introduction

It is a widespread opinion that one can tile the plane \mathbb{R}^{2} only with triangles, squares and regular 6-gons. This is wrong. A further possibility is to put regular 6-gons in a row. We think that it is useful to repeat the definition of a simple polygon.
A simple polygon with k vertices consists of k points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right)$ called vertices, and the straight lines between the vertices, where $k>2$. It is homeomorphic to a circle. We demand that there are no three consecutive collinear points $\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right),\left(x_{i+2}, y_{i+2}\right)$ for $1 \leq i \leq k-2$. Also we demand that the three points $\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{k-1}, y_{k-1}\right),\left(x_{k}, y_{k}\right),\left(x_{1}, y_{1}\right)$ are not collinear.
We call this just described simple polygon a k-gon.
Definition 1. Let t be any natural number. We call a simple polygon a t row 6 - gon, if t regular 6-gons are put in a row.

See the example in Figure 2. There we show a 5 row 6 - gon.
Note that a 1 row 6 - gon is just a regular 6-gon.
Proposition 1. One can tile the plane with t row 6 - gons for all fixed t .
Proof. Trivial.
Proposition 2. A t row 6 - gon has $2+4 \cdot \mathrm{t}$ vertices.
Proof. Easy.
*49 (0)421591777, volker@thuerey.de

2 Tiling

Theorem 1. Let k be a natural number larger than 2 . There exists for all k a tiling of \mathbb{R}^{2} with k-gons.

Proof. For $k=3$ and $k=4$ and $k=6$ the theorem is well-known. For $k=5$ please see Figure 1. We also can take a regular 6 -gon instead of a rectangle. We cut it into congruent halves.
Now let k be a natural number larger than 6 .

Lemma 1. It holds $k-2 \equiv p \bmod 4$, where $p \in\{0,1,2,3\}$.
Proof. Well-known.

We discuss the four possibilities.

- Possibility 1: $p=0$. In this easy case we take the polygon t row 6 - gon as a k-gon. We get t from the equation $k-2=4 \cdot \mathrm{t}$.
The sequence of the numbers of k is $10,14,18, \ldots$. By Proposition 2 the number of vertices of a t row 6 - gon is $2+4 \cdot t$. This is k.
- Possibility 2: $p=1$. In this case we had to calculate. We take a $(4 \cdot \mathrm{t}+1)$ row 6 - gon. It is filled with four k-gons. We use the vertices of the $(4 \cdot t+1)$ row 6 - gon as vertices of the four k-gons. See Figure 2. Note that the four k-gons have three edges in common. Therefore we have to subtract 6 from the number of the vertices.
We get t from the equation $k-2=4 \cdot \mathrm{t}+1$.
The number of vertices both for a $(4 \cdot \mathrm{t}+1)$ row 6 - gon and $4 k$-gons -6 is $16 \cdot \mathrm{t}+6$.
The sequence of the numbers of k is $7,11,15,19, \ldots$.
- Possibility 3: $p=2$. We take a $(2 \cdot \mathrm{t}+1)$ row 6 - gon. It is filled with two k-gons. We get t from $k-2=4 \cdot \mathrm{t}+2$.
The sequence of the numbers of k is $8,12,16,20, \ldots$. Two k-gons alltogether have $8+8 \cdot \mathrm{t}$ vertices. See Figure 3. Note that if two k-gons tile a polygon a pair of vertices is canceled, since the k-gons have a common edge.Therefore they have $6+8 \cdot \mathrm{t}$ vertices. This is also the number of vertices of a $(2 \cdot t+1)$ row 6 - gon.
- Possibility 4: $p=3$. We take a $(4 \cdot \mathrm{t}+3)$ row $6-$ gon. It is filled with four k-gons.

We get t from $k-2=4 \cdot \mathrm{t}+3$.
The common number of vertices is $16 \cdot t+14$.
The sequence of the numbers of k is $9,13,17,21, \ldots$.
The theorem is proved.

It follows three figures.

Figure 1:

Figure 2:
See below a 5 row 6 - gon, which is subdivided in four 7 -gons.
We see also three edges. Each is a common edge of two 7-gons.

Figure 3:
On the right hand we see a 3 row 6 - gon.

It consists of two 8-gons.

Acknowledgement: We thank Gavin Crosby for informations

