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Abstract

This technical report presents the 1st winning model for
Financial Community Question-and-Answering (FCQA),
which is a task newly introduced in the Challenge of Finan-
cial QA under Marker Volatility in WAIC 2022. FCQA aims
to respond to the user’s queries in the financial forums with
the assistance of heterogeneous knowledge sources. We ad-
dress this problem by proposing a graph transformer based
model for the efficient multi-source information fusion. As
a result, we won the first place out of 4278 participating
teams and outperformed the second place by 5.07 times on
BLUE.

1. Introduction
Community Question Answering [12, 13, 19, 22] (CQA)

is a well-defined task that aim to respond to user’s queries
timely and improve the experience in various platforms in-
cluding software user communities, interest groups, etc. It
has potential applications in various downstream tasks, in-
cluding video understanding [6,25–27], multi-modal analy-
sis [1,4,5,9,14], content generation [2,3,7,8,10,15,23], rec-
ommendation system [24, 25, 29], etc. The Financial Com-
munity Question-and-Answering (FCQA) is a new chal-
lenge introduced in WAIC1. As shown in Figure 1, FCQA
focuses on the Q&A tasks in financial scenarios. Compared
to the general scenarios, FCQA has the following two dif-
ficulties: 1) Marker volatility. The financial data fluctuate
over time; 2) High dependence on domain knowledge and
expertise. The user questions often require domain exper-
tise for better understanding.

In this challenge, besides the question-and-answer pair,
four different types of information sources are also provided
including 1) user articles, 2) article comments, 3) related
questions and 4) their answers.

To solve FCQA, we propose a novel graph transformer
based method to effectively leverage the heterogeneous
information source. Benefitting from this, our method
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Figure 1. Example of Financial Community Question-and-
Answering (FCQA).

Notations Definition

q Question
d Related document
qs Related question
as Related answer
c Related comment

Table 1. The referred notations.

achieves the first place among all the competing teams.

2. Our Model
In this section, we present our graph transformer based

approach. As shown in Figure 2, our method has three ma-
jor components.

2.1. Multi-source Encoder

We employ BART [17] to encode all the source infor-
mation (i.e., questions, source information, and answers).
Specifically, we represent each node with the output hidden
state of the BART encoder.

Formally, the definitions of some notations referred to in
this section are summarized in Table 1.

2.2. Graph Transformer

The Graph Neural Network (GNN) [28] has achieved
promising results in QA tasks [11, 16] due to its ability of
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Figure 2. Pipeline of our method.

message passing over nodes. Therefore, we also resort to
the graph transformer architecture to aggregate question-
related information from different types of input.
Node Representation: We regard the question-answer pair
as well as the multiple source information as the specific
nodes. All of them are embedded by BART [17] as stated
before.
Edge Construction: Intuitively, we build up four types of
edges to connect all the nodes: 1) related document to ques-
tion ⟨d, q⟩; 2) related question to question ⟨qs, q⟩; 3) related
answer to related question ⟨as, qs⟩; 4) related comment to
related document ⟨c, d⟩.
Question-aware Aggregation: Based on the established
edges, we aim to fuse the information in neighbor nodes
into the target node representation. Here we employ a
vanilla attention mechanism [21]. Firstly, we project the
input node representation into two spaces.

ps = MLP(feat(s)),

pt = MLP(feat(t)),
(1)

where ps and pt denote the source and target nodes, respec-
tively.

Secondly, we calculate the relevance between each node
pair as the attention scores.

α(s, e) = Softmax (pe ·W · ps) , (2)

where W is the learnable parameter.
Thirdly, we also incorporate the edge type into the atten-

tion score calculation.

M(s, e) = MLP (feat(s) ·Wmsg) , (3)

where Wmsg is the edge type-specific parameter matrix.
Lastly, we apply a weighted sum over all the messages

passed from all the source nodes.

feat(t) =
∑

α(s, e) ·M(s, e). (4)

2.3. Decoder

We employ the pre-trained BART decoder as our answer
generator. To incorporate both the input question and the
multi-source knowledge simultaneously, we compute the at-
tentive scores as follows.

pout = MHA(feat(i), qs) +MHA(feat(i),as)

MHA(feat(i),d) +MHA(feat(i), c) .
(5)

where MHA denotes the multi-head attention mechanism.
We employ the text generation cross-entropy loss as our

final loss function.
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Figure 3. The design of our graph transformer.

Method BLEU BLEU@1 @2 @3 @4

Ours 12.20 23.02 12.82 9.45 7.95
Runner-up 2.01 6.66 2.03 1.20 1.00

Table 2. Comparison results (%).

3. Experiment

3.1. Dataset and Metrics

The provided dataset contains 376,948, 1,920, and 2,409
samples for the training, validation, and testing split, re-
spectively.

We report five common automatic metrics: BLEU and
BLEU@k (k = 1, 2, 3, 4) [18].

3.2. Implementation Details

All of our experiments are conducted in eight NVIDIA
V100 GPUs. The pre-trained BART-Chinese-base [20]
model is employed to initialize the encoder and decoder.

3.3. Results

The comparison results in the challenge are listed in Ta-
ble 2. All results are presented on a percentage scale. As
shown, our method outperforms the runner-up by 5.07 times
on BLUE (12.20 v.s. 2.01).

4. Conclusion

In this paper, we address the Financial Community
Question-and-Answering (FCQA) task. Accordingly, we
propose a graph transformer based model to extract and
align multi-source information. We achieved the inspiring
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performance and won first place out of 4278 participating
teams.
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