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Abstract 

Since Planck’s explanation of blackbody radiation over one century ago, researchers have considered that the law 

of equipartition does not apply to photons. Furthermore, since the publication of Bose distribution theory, photons 

have been presumed to follow the Bose distribution (quantum statistics) rather than the Boltzmann distribution. I 

first show that the mean energy of photons based on Wien’s radiation law, which slightly differs from that of 

Planck’s law, equals the mean energy 3kT of the lattice vibrations of a solid and hence satisfies the idealized 

classical law of equipartition (where k is Boltzmann’s constant and T is the equilibrium temperature). However, 

zero-frequency photons are logically nonexistent because all of their components are zero; accordingly, they must 

be excluded from the distribution. Using this fact, I demonstrate that Planck’s law is merely Wien’s radiation law 

with the zero-frequency photons excluded from the distribution, which follows the classical law of equipartition 

and the Boltzmann distribution law. Additionally, I show that the accepted theory of photons cannot exclude zero-

frequency photons from the distribution. The present study might help to elucidate the mechanism of the specific 

heat of solids mediated by phonons, which (like photons in a cavity) form standing waves. 

 

Keywords: Boltzmann distribution law; Planck’s law; Wien’s radiation law; Law of equipartition; Rayleigh–Jeans 

law; Classical physics 
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1. Introduction 

The equipartition and Boltzmann distribution laws are the core concepts of classical thermodynamics and are 

inextricably linked [1, 2]. More than a century ago, it was thought that the energy in a cavity diverges if the law 

of equipartition is applied to electromagnetic fields. In blackbody radiation terms, this divergence is called the 

ultraviolet catastrophe. Similarly, it was believed that Planck dismissed the law of equipartition in his initial 

explanation of blackbody radiation, thus creating quantum physics [3-5]. Furthermore, photons are thought to 

follow the later-published Bose distribution (quantum statistics) rather than the Boltzmann distribution [6], 

although some studies still adopt the classical interpretation of blackbody radiation [7-11]. Researchers who 

recognize the importance of the classical interpretation of blackbody radiation for photons have dwindled in 

number, but their works point in an important direction. This study is an extension of their works. 

We first show that the mean energy of photons in a cavity derived from Wien’s radiation law equals the mean 

energy 3kT of lattice vibrations of a solid, and hence satisfies the idealized law of equipartition in classical physics. 

Here, k is Boltzmann’s constant and T is the equilibrium temperature. Meanwhile, the mean energy of photons 

derived from Planck’s law is 2.701kT, which slightly differs from that based on Wien’s radiation law [12]. I 

elucidate the cause of the difference between these two laws. 

Zero-frequency photons are logically nonexistent because all their components are zero. Therefore, they must 

be excluded in a correct derivation of the distributive law for photons1. Based on this fact, I demonstrate that the 

Wien’s radiation law follows not only the idealized law of equipartition and Boltzmann distribution law but also 

that the Planck’s law is merely the Wien's radiation with zero-frequency photons removed from the distribution, 

which follows the law of equipartition and Boltzmann distribution law (our new normalization constant added to 

Planck’s law does not change the relative energy distribution of the photons.) 

In this interpretation, the term 1/(ehν/kT − 1) in Planck’s law (where h is Planck’s constant and ν is the photon 

frequency) is merely a modified Boltzmann factor that excludes the zero-frequency photons from the distribution. 

We also show that the accepted theory of photons cannot exclude zero-frequency photons from the 

distribution. My demonstrations confirm that classical physics can explain the behaviors of photons, thus 

challenging the quantum-physical understanding of photons. 

Finally, I suggest that this interpretation can help to elucidate the mechanism of the specific heat of solids 

mediated by phonons, which (like photons in a cavity) form standing waves. 

                                                   
1 The zero point energy is thought to be irrelevant in an electromagnetic field, and is not considered in Planck’s 

law. Therefore, this study accepts a stochastic interpretation without considering the zero point energy. 
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2. Comparison of Wien’s radiation law and Planck’s law, and derivation of the law of equipartition for 

photons 

2.1. Wien’s radiation law follows the classical law of equipartition 

If the energy hν of a photon with frequency ν follows Wien’s radiation law, its energy Uw(ν) at the equilibrium 

temperature T is given by [13] 

Uw(ν) = V
ec

h
kTh

 18 3

３
,                               (1) 

where V is the cavity volume and c is the speed of light. The energy density UDw at that frequency is 

UDw = 


0
/)( VdUw  =

.
 

Letting x = hν/kT and rearranging for ν = kTx/h, this expression becomes 
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As Γ(4) = 6, the right hand side of this expression reduces to 
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The number density NDw of photons is given by 
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Again, letting x = hν/kT and rearranging as ν = kTx/h, I get 
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As Γ(3) = 2, the right hand side of this expression reduces to 
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Therefore, the mean energy EMw of photons following Wien’s radiation law is 

EMw = UDw/NDw = 3kT,                                 (4) 

which is exactly the mean energy of the lattice vibrations of a solid. 




0

3

3

8 
 d

ec

h
kTh




0

3

33

448
dx

e

x

hc

Tk
x






dx
e

x
x0

3




0

2

3

8 
 d

ec kTh




0

2

33

338
dx

e

x

hc

Tk
x






dx
e

x
x0

2



5 
 

 
 

As a photon is simply a vibration of an electromagnetic field, it can be approximated as a three-dimensional 

(3D) harmonic oscillator with six degrees of freedom [14-16]. Therefore, I can write 

 EMw = 3kT = kT/2 × 6,                                   (5) 

where I have allocated an energy of kT/2 to each of the six degrees of freedom. Therefore, if photons follow the 

Wien’s radiation law, they also follow the idealized law of equipartition, and fundamentally behave analogously 

to lattice vibrations in a solid [8]. 

 

2.2. Law of equipartition for photons 

2.2.1. Mean energy of photons based on Planck’s law 

Although a modified version of Planck’s law will be presented later in this report, the original Planck’s law can 

be used in this section, as described in Footnote 9.  

According to Planck’s law, the energy U(ν) per unit frequency of photons with frequency ν and temperature 

T is [17] 

=
３c

h 38 
1

1
/ kThe  V.                         (6) 

The energy density UD of the photons in the cavity is then given by [18] 

  UD = /V = . 

Letting x = hν/kT and rearranging to give ν = kTx/h, the right hand side of this expression becomes 

= =
,
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By (6), the number density ND of the photons can be expressed as follows, where NP is the number of photons in 
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Again, letting x = hν/kT and rearranging for ν = kTx/h, I have 

= =
.
 

As Γ(3) ζ (3), where ζ(x) is the Riemann zeta function and Γ(3) = 2, the right hand side of this 

expression reduces to
 

=                                    (8) 

Therefore, the mean energy EM of photons based on Planck’s law is [12] 

EM = UD/ND 

= = 2.701kT,                        (9) 

where ζ(3) 1.202 and ζ (4) = π4/90. 

The mean energy 3kT based on Wien’s radiation law slightly differs from 2.701kT based on Planck’s law. The 

relationship between this difference and the law of equipartition will be clarified in the next subsection. 

 

2.2.2. Derivation of the law of equipartition for photons and confirmation with state equations 

Here, I derive the law of equipartition for photons by comparing the behaviors of gas molecules and photons. 

According to the ideal gas state equation, PV = moRT = moNAkT = NkT (where P is pressure, V is volume of 

a vessel, mo is the number of moles, R is the universal gas constant, NA is Avogadro’s number, and N is the number 

of gas molecules contained in the vessel) [1, 2]. The Boltzmann’s constant k is the following function of N, T, V, 

and P: 

TN

PV
k 

. 

Denoting the mean and total energies of the gas molecules as EMg and EMg N, respectively, and setting P equal to 

2/3 of the energy density (2EMgN/3V) [1, 2], I have
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Equation (10) is a direct manifestation of the law of equipartition, which confirms that the mean energy of each 

degree of freedom is kT/2, as one gas molecule has three degrees of freedom [1, 2]. Thus, (10) results from an 

exquisite balance among N, T, V, and P under the law of equipartition. 

We first examine whether the following equation, which is equivalent to (10), holds for photons following 

Wien’s radiation law, where NPw is the number of photons and PRw is the radiation pressure based on Wien’s 

radiation law2: 

Pw

Rw

TN

VP
k＝

. 

Adopting Wien’s radiation law, the total energy of the photons is EMw NPw and PRw is one-third of the energy density 

(EM wNPw/3V) [19]. I thus have

 

k =
Pw

PwMw

TN

VVNE )3/(
=

T

EMw

3
 

(by which EMw = 3kT).                             (11) 

If (11) holds, then EMw = 3kT as shown in (4). Therefore, (11) directly results from the law of equipartition, 

confirming that the mean energy of each degree of freedom is kT/2 and that a photon has six degrees of freedom 

as shown in (5). 

Substituting the number of photons NP and the radiation pressure PR based on Planck’s law into (11) and 

letting the obtained value be kP 

P

R
P TN

VP
k ＝

. 

Letting the total energy of the photons be EM NP and PR be one-third of the energy density (EM NP/3V) [19]), I have

 

kP =
P

PM

TN

VVNE )3/(
=

T

EM

3
 (that is, EM = 3kPT).                               (12-a) 

If (12-a) holds, EM = 3kPT must hold. Using NP = V × ND from (8), PR = UD /3 from (7) [19], and ζ(3) = 1.202, (12-

a) can be rewritten as 

P

R
P TN

VP
k ＝ 





)/)3(28(

)315/8(
3333

33445

hcTkVT

VhcTk




0.9004k (constant).          (12-b) 

From (12-a) and (12-b), I obtain 

                                                   
2 Radiation pressure and the pressure of gas molecules both act on the walls of a cavity or vessel. Therefore, they 

are regarded as identical in this discussion. 
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 EM = 3kPT 3 × 0.9004kT = 2.701kT.                            (13) 

This result perfectly agrees with EM = 2.701kT in (9), implying that EM = 3kPT holds and that (12-a) holds for 

photons in a cavity. Therefore, like (10) and (11), (12-a) should confirm to the law of equipartition. 

In fact, given that a photon (a vibration of an electromagnetic field) can be approximated as a 3D harmonic 

oscillator with six degrees of freedom [14-16], I can write 

 EM = 3kPT = kPT/2 × 6 ( 0.9004k T/2 × 6 2.701kT).                    (14) 

The term 3kPT in (13) is the result of allocating kPT/2 to each of the six degrees of freedom of photons, as shown 

for the law of equipartition of photons based on Planck’s law. Therefore, the classical law of equipartition (or a 

law based on the same mechanism) can be applied to photons3. Like (10), (12-a) is the product of an exquisite 

balance among NP, T, V, and PR under the law of equipartition. 

We now clarify that the reexpression of k as kP in (12-a)–(14) is the result of applying the Boltzmann 

distribution law to photons, and that the distribution law must be expressed in terms of k (not kP). 

 

3. Distribution of all photons determined by applying the Boltzmann distribution law 

3.1. Wien’s radiation law following the Boltzmann distribution law and its error: Physical meaning of 

8πν2/c3 

As discussed above, (12-a) reflects the exquisite balance among NP, T, V, and PR. Therefore, NP and V are strongly 

correlated. When a cavity is divided, the equilibrium temperature and pressure in each partition are constant and 

equal to T and PR, respectively, to preserve (12-a). The ratio of the volume to the number of photons in each part 

must also be constant and equal to V/NP. This is realized by the following mechanism: 

If the mean volume per photon is sm = V/NP and n is an integer, then when the volume nsm is excluded from 

V (i.e., V − nsm), NP will inevitably reduce to NP – n, and thus, V/NP is always constant as follows. 

nN

nsV

P

m




=
nN

NnVV

P

P


 /

=
PN

V
 (constant).                      (15) 

According to (15), one photon and one volume sm (on average) must always be added or subtracted in pairs, and 

(15) and (12-a) cannot hold without this pair relationship. That is, each photon is enclosed by its own space with 

                                                   
3 Equations (12-a)–(14) also hold by (23), the modified version of Planck’s Law (see Footnote 9). 




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volume sm (on average) and cannot overlap with other photons (see Fig. 1a)4, 5. The space enclosing one photon 

can be regarded as a balloon or an exclusive cell. Consequently, only the spaces containing photons with frequency 

ν can be gathered in theory (see Fig. 1b, c). As each photon is separated from all other photons, the number density 

ρν of photons in the space of photons with ν necessarily equals the number density of standing waves based on the 

Rayleigh–Jeans law (see Section 4 for a comparison with the accepted theory) [20, 21]: 

ρν =
28 

３c
.                                 (16) 

Therefore, the particular volume (not sm) paired with a photon of frequency ν is c3/8πν2 (the reciprocal of ρν), 

which contains only one photon. The average of all particular volumes is sm (later, I will show that the particular 

volumes sum to V.) 

      

      Fig. 1 Relationship between the volume of a cavity and photons. (a) Single photons in exclusive 

cells, where each point (•) is a photon and each circle is an exclusive cell. (b) Conditions in a cavity, 

                                                   
4 This overlap differs from wave superposition in that the amplitude increases additively.  

5 The particular volume paired with a photon in (16) is not sm because (12-a) and (15) are statistical expressions 

based on the average value of each element, as shown in (12-a). 
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where each point (•ν) is a photon with frequency ν. (c) The gathering of photons of frequency ν, 

where Vν is the distributed volume of this group of photons. Panels (b) and (c) exclude the borders 

of the exclusive cells. 

 

The above derivation of ρν is nonstochastic so a statistical distribution function is not required. In fact, ρν is 

only the number density. The number of photons distributed in each energy level can be determined only be 

determining the volume occupied by ρν. Therefore, to provide a distribution law for ρν, I must establish a 

distribution function for the volumes in the cavity. 

Dividing V into NP cells of equal volume sm for convenience6, and assuming that the cell distribution follows 

the Boltzmann distribution law, the volume Vν and energy U(ν) of energy level hν (omitting the normalization 

constant) are respectively given by 

Vν = kThPm
e

Ns 

1
 ,                                                       (17) 

and 

U(ν) =  

 =   h
e

Ns
c kThPm 

18 2
３  

= kThe
Vh

c  18 2 
３  (because sm × NP = V).                              (18) 

Equation (18) is consistent with Wien’s radiation law given by (1). 

As the cavity exists in thermal equilibrium, the correct distribution law for photons should satisfy the second 

law of thermodynamics; that is, that entropy is always increasing [17, 22, 23]7. Planck rigorously proved that (18) 

satisfies the second law of thermodynamics before deriving (6) [22, 23]. This fact supports that (17) and (18) are 

based on the correct theory, meaning that the distribution of photons follows the Boltzmann distribution law. 

However, (18) is slightly erroneous in the low-frequency region. The following subsection describes a method 

for resolving these errors without violating the theory in (17) and (18). (Note: Planck considered these errors as a 

                                                   
6 However, sm defines the mean volume per photon as mentioned above, so the number of photons in the cell is 

not determined by this division alone. 

7 Planck proved that (18) satisfies the second law of thermodynamics by considering the entropy of oscillators. 

 hV
c

28
３
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manifestation of theoretical errors in Wien’s radiation law and derived (6) by a new approach using Boltzmann’s 

principle [17, 23]. However, this approach is problematic as discussed in Section 4.) 

 

3.2. Interpretation of Planck’s law as a modified Wien’s radiation law and its normalization: Physical 

meaning of 1/(ehν/kT − 1) 

In a cubic cavity of side length L, photons exist as standing waves with the wavelength components of 2L/nx, 

2L/ny, and 2L/nz parallel to the x-, y-, and z-axes, respectively, where nx, ny, and nz are integers [20, 21]. According 

to Maxwell’s equations, nx
2 + ny

2 + nz
2 = 4L2/λ2, λ = 2L/ 222

zyx nnn  , and ν = c 222
zyx nnn  /2L 

(where λ and ν are the photon wavelength and frequency, respectively) [20, 21]. 

However, photons with ν = c 222
zyx nnn  /2L = 0 (i.e., at nx = ny = nz = 0) are logically nonexistent 

because all their components are zero. This situation contrasts with that of gas molecules, which can be motionless. 

As shown in (15), a photon must always be paired with a particular volume (averaging V/NP = sm), and thus, the 

volume distributed to the photons with ν = 0 cannot exist. Therefore, the volume allocated to photons with ν = 0 

must be excluded from the distribution (see Footnote 1)8. These volumes are removed from the distribution by the 

following method. 

As shown in Figure 2, the reciprocal of probability (the total number of elements per target element) 

statistically equals the population size per target element (Popu.S/TE). The probability can thus be expressed as 

Popu.S/TE. 

           

                                                   
8 Analogously, if fictional spot (e.g., 0) is added to the population of elements on a die, I cannot derive the correct 

probability. 
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              Fig. 2 Conceptual illustration of population size per target element (Popu.S/TE). Among a 

population of nine elements (represented by circles), the number of target elements is three 

(black circles) or one (gray circle). The probability Po of drawing a black or gray target element 

from the total pool of elements is 3/9 (= 1/3) and 1/9, respectively. The corresponding Popu.S/TE 

is 1/Po = 3 and 9, respectively. 

 

Popu.S/TE in the Boltzmann distribution law in (18) is the reciprocal (f(x) = ex) of the Boltzmann factor 

(where x = hν/kT and the normalization constant is omitted). Exploiting the peculiar property of the Napier number 

(i.e., Cedxe xx  , where C is an integration constant), I have 
j xdxe

0
= ej − e0 and thus ej = 

j x dxe
0

+ 1. 

By the Boltzmann distribution law, Popu.S/TE at x = j can be obtained by sequentially adding the Popu.S/TE 

values from x = 0 to j (see Fig. 3A). Therefore, each Popu.S/TE includes Popu.S/TE (f(0) = e0 = 1) at x = 0, so the 

Boltzmann distribution law allows the allocation of volumes to photons with ν = 0. However, the peculiarity of 

the Napier number allows modification of the boundary condition such that f(0) = 0 (Fig. 3B). Therefore, I can 

exclude Popu.S/TE (f(0) = e0 = 1) at x = 0 from each Popu.S/TE and hence remove the volume allocated to the 

photons with ν = 0. The reciprocal (WB) of the correct distribution function (omitting the normalized constant) 

then becomes 

WB = 1xe .                                       (19) 

This approach alone can exclude the volume allocated to photons with x = 0 (ν = 0) from the population. (As 

elaborated in Section 4, the accepted theory of photons cannot exclude the photons with ν = 0 from the population.) 

                 

Fig. 3 Method for excluding the volume of photons with frequency ν = 0 from the distribution. 
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(A) Plot of f(x) = 
x xdxe

0
+ 1 (which coincides with that of f(x) = ex), where x = hν/kT. The 

vertical axis represents the population size per target element (Popu.S/TE). The length (a) is the 

increment of Popu.S/TE when x changes from 0 to △x: (a) = e△x – e0 = 
x xdxe

0
. The length 

(b) is the increment of Popu.S/TE when x changes from j to j +△x: (b) = ej + △x – ej = 
 xj

j

x dxe . 

The value of Popu.S/TE is the value obtained by sequentially adding each Popu.S/TE, including 

e0 = 1 (gray area). (B) Plot of f(x) = = ex − 1, which excludes e0 = 1 from each Popu.S/TE. 

 

According to (19), the relative probability (PB) based on the Boltzmann distribution law is modified as 

follows:
 

PB =
1

11




x
B eW

=                                 (20) 

Thus, the Bose distribution function is merely the Boltzmann function excluding the volume allocated to photons 

with ν = 0. Equation (20) requires the Boltzmann constant k rather than kP from the process of derivation, and 

thus, kP only appears to be a constant. The probability PBD is expressed in terms of the normalization constant DP 

as 

PBD = = ,                               (21) 

 
= 1.                                 (22) 

According to (21), Wein’s radiation law (18) is modified as follows:
 

U(ν) = V
eDc

h
kTh

P )1(

18
3

3




.                               (23) 

Equation (23) is Wien’s radiation law modified by excluding the zero-frequency photons from the distribution. It 

is based on the Boltzmann distribution law and differs from the original Planck’s law (6) only by inclusion of the 

term DP. Here, DP is essential because the distributed volumes must sum to V, meaning that the distribution of all 

photons is determined by one application of the Boltzmann distribution law: 


x x dxe

0

1

1

kThe 

BPWD

1

)1(

1

kTh
P eD 

 d
eD kTh

P



0 )1(
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V ×  d
eD kTh

P



0 )1(

1
= V.                               (24) 

The difference between (6) and (23) will be elaborated in subsection 3.3.9 

Relationship between Wien’s radiation law and (23): Wien’s radiation law follows the idealized 

Boltzmann distribution and equipartition laws (without DP) before excluding the zero-frequency photons from the 

distribution, which is responsible for slight errors in the low-frequency region. As (23) is merely Wien’s radiation 

law modified by excluding the zero-frequency photons from the distribution, it naturally follows the Boltzmann 

distribution law and the law of equipartition. Thus, the Wien’s radiation law and (23) (or Planck’s law) differ by 

a very simple mechanism. 

Relationship between Rayleigh–Jeans law and (23) (Resolution of the Ultraviolet Catastrophe): The law 

of equipartition has been considered inapplicable to photons because the Rayleigh–Jeans law U(ν) = 8πν2/c3 × kT 

based on the law of equipartition diverges at high frequencies. In contrast, although (23) is also based on the law 

of equipartition as shown in (14), it avoids the ultraviolet catastrophe because the volume distribution is smaller 

at high frequencies than at lower frequencies; this relationship reduces the number of high-frequency photons. 

 

3.3. Derivation of DP and difference between (6) and (23) 

From (22), DP can be expressed as 

DP =  d
e kTh



0 1

1

.                                  
(25) 

Note that (25) is undefined at ν = 0 because 1/(e0 − 1) =∞. To resolve this problem, I consider a cubic cavity of 

side length L and apply Maxwell’s equations ν = c 222
zyx nnn  /2L [20, 21] (see subsection 3.2). The 

minimum frequency ν0, which corresponds to 222
zyx nnn  = 1, is ν0 = c/2L. Therefore, (25) can be 

calculated over the range ν = c/2L to ∞. 

Defining x = hν/kT, I can write 

dx
e x 1

1
= dx

e

ee
x

xx

 

1

1
= dx

e

e
x

x

)
1

1( 
 = . 

                                                   
9 When (6) is replaced with (23), the DP terms in the denominator and numerator of (9) and (12-b) cancel so the 

final result (2.701kT and 0.9004k) is unchanged. 

)1log(  xex
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Letting g(x) = , I obtain 

DP = = ,                      (26) 

where ν0 = c/2L. 

In a cavity with side length L = 1.0 m and T = 1000 K, hν0/kT = hc/2kT ≈ 7.192 × 10−6, where I have used h 

= 6.626 × 10−34 Js, k = 1.381 × 10−23 JK−1, and c = 2.998 × 108 ms−1. Figure 4 plots DP as a function of x for L = 

1.0 m and different values of T. When T was 1000 K, DP converged to 11.85 (Fig. 4A); however, when T was 

2000 K and 2.725 K, DP converged to 12.54 and 5.94, respectively (Figs. 4B and C). Panels A and B of Figure 5 

compare the radiant energy distributions computed by (23) with DP = 11.85 and Planck’s law computed by (6), 

respectively. The numerical differences between the two laws are given in Table 1. The radiant energy computed 

by (6) is consistently 11.85 times that of (23). However, as clarified in Figure 4, although DP in (23) depends on 

the cavity length L and temperature T, the relative distributions of the two laws are identical [24, 25]10. 

         

             Fig. 4 DP in (26) versus x = hν/kT. The cavity length is L = 1.0 m. (A) T = 1000 K (hν0/kT = 7.192 

× 10−6); (B) T = 2000 K (hν0/kT = 3.596 × 10−6); (C) T = 2.725 K (temperature of the cosmic 

microwave background radiation of deep space, hν0/kT = 2.639 × 10−3). Around x = 5.0, DP 

converges to 11.85 in A, 12.54 in B, and 5.94 in C (the different convergence frequencies are 

explained by the different T in each cavity). 

 

                                                   
10 As shown in Fig. 4C, the energy density based on (23) at T = 2.725 K (temperature of the Cosmic Microwave 

Background Radiation of deep space) is 1/5.94 of that based on (6). Moreover, as the cavity length changes, so 

does the DP. Therefore, (23) may affect the proportions of the components of the universe, etc. 

)1log(  xex

dx
e

x

kTh x 0 1

1


 )()( 0 kThgxg 
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                 Fig. 5 Comparison of radiant energy distributions computed by (6) and (23). (A) Radiant 

energy distribution calculated by (23) with L = 1.0 m and T = 1000 K. The horizontal axis 

plots the photon frequency (× 1014Hz). (B) Radiant energy distribution calculated by (6). 

The absolute intensities differ by a factor of DP = 11.85, but the relative intensity 

distributions of (6) and (23) match. 

 

Table 1: Comparisons of radiant energies computed by (6) and (23) at T = 1000 K 

Frequency (Hz) A (Jm−3Hz−1) B (Jm−3Hz−1) B/A 

1011 1.084 × 10−23 1.285 × 10−22 ≈11.85 

1012 1.061 × 10−21 1.257 × 10−20 ≈11.85 

1013 8.470 × 10−20 1.004 × 10−18 ≈11.85 

1014 4.337 × 10−19 5.139 × 10−18 ≈11.85 

5 × 1014 2.486 × 10−25 2.946 × 10−24 ≈11.85 

1015 7.585 × 10−35 8.988 × 10−34 ≈11.85 

5 × 1015 4.242 × 10−116 5.026 × 10−115 ≈11.85 

1016 2.208 × 10−219 2.616 × 10−218 ≈ 11.85 

B is always 11.85 times higher than A. 
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4. Inability of the accepted theory to rationalize the law of equipartition for photons 

As shown in (12-a)-(14) and Footnote 9, the law of equipartition for photons [i.e., (12-a)–(14)] can be derived 

based on either the original Planck's law (6) or (23). However, the accepted theory of photons has interpreted 

various phenomena related to the Planck's law, denying the application of the law of equipartition (i.e., classical 

physics) to photons. Therefore, whether or not the law of equipartition (i.e., classical physics) is applied to photons 

should have a significant influence on the interpretation of these various phenomena. 

In the generally accepted theory of photons, 8πν2/c3 in Planck’s law is the number density of the modes 

containing photons of frequency ν, and hν/(ehν/kT − 1) is the mean energy Em of the modes. Em is thus derived as 

the following geometric series (where n is an integer) [6, 20, 21, 26]: 

Em =
















0

/

0

/

n

kTnh

n

kTnh

e

enh




=

1kThe

h



.                          (27) 

According to (27), the number of photons that can enter the volume per mode, c3/8πν2 (the reciprocal of 8πν2/c3), 

is unlimited, and empty modes (or cells) are allowed. 

However, in the interpretation of (15) and (16), 8πν2/c3 is the number density of photons (rather than modes), 

and the particular volume (not the average volume sm) paired with a single photon of frequency ν is c3/8πν2. 

Therefore, only a single photon can enter c3/8πν2, and empty modes (or cells) are not allowed. This result is a 

natural consequence of (12-a) and (15), which I earlier proved to be correct. Therefore, in theory, the interpretation 

of (6) based on (27) cannot rationalize the law of equipartition for photons [i.e., (12-a)–(14)]. 

Furthermore, as shown in (19)–(22), photons with frequency ν = 0 must be excluded from the distribution; 

thereby, the term −1 was added to 1/ehν/kT, yielding 1/(ehν/kT − 1). The same term 1/(ehν/kT − 1) in the accepted theory 

given by (27), which includes Bose–Einstein statistics, is derived assuming that particles are indistinguishable. 

Consequently, the accepted theory cannot exclude the photons with frequency ν = 0 from the distribution11. The 

law of equipartition for photons must instead be understood through (23) based on the Boltzmann distribution 

law. 

 

5. Possible application to the theory of specific heat of solids 

                                                   
11 In this study, the concept of indistinguishable particles is not necessary. 
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A solid can be regarded as a set of 3D harmonic oscillators. The classical law of equipartition assigns an energy 

of kT/2 to each degree of freedom of each oscillator. As the mean energy is 3kT per oscillator, the total energy UH 

of the Avogadro’s number (NA) of oscillators (i.e., 1 mole of atoms) is UH = 3NAkT. Therefore, the specific heat 

Cv of the solid is Cv = dUH/dT = 3NAk = 3R, where R is the universal gas constant [8]. 

As revealed in this study, a cavity (like a solid) can be regarded as a set of 3D harmonic oscillators. If I accept 

Wien’s radiation law (4), the mean energy of photons is again 3kT. The modified Wien radiation law (23) also 

follows the law of equipartition (or a law based on the same mechanism) (i.e., EM = kPT/2 × 6 = 3kPT). Therefore, 

(23) should be applicable to solids after being modified to comply with the properties of solids [27]. Applying the 

Planck's law (or similar a theory), the Einstein and Debye models approximately explain specific heat in the low-

temperature region [28, 29], but both models assume that Planck’s law denies the law of equipartition. I believe 

that specific heat theory should be reconsidered by presuming that Planck’s law follows the law of equipartition 

and that DP (which depends on T as shown in Fig. 4) is required. 

By (17)–(22), if the volume of the solid is divided per frequency of oscillators or phonons and the energy 

distribution is determined accordingly, the specific heat will be contributed by oscillations or phonons with various 

frequencies rather than a single frequency [28, 29]. 

However, if zero-frequency oscillators (i.e., atoms) or phonons are included in the distribution, Wien’s 

radiation law in (1) with DP may be applied to the theory of specific heat. 

Intervention of Planck’s constant h in specific heat theory: If the frequency of a photon with mean energy 

3kPT in (14) is νm, I can define h in terms of a constant T/νm, namely, h = 3kPT/νm. This expression relates h to the 

law of equipartition and lattice vibrations. Therefore, h can intervene in the theory of specific heat of solids, which 

also follows the law of equipartition and is explained by lattice vibrations [28, 29]. However, T/νmax (where νmax 

is the peak frequency) is constant in Wien’s displacement law whereas T/νm depends on the mean energy. 

Of course, I should account for the properties of solids and the differences between photons and phonons, 

but I believe that the present study will help to elucidate the specific heat of solids. 

 

6. Conclusion 

I demonstrated that Wien’s radiation law follows the idealized law of equipartition and Boltzmann distribution 

law, and that Planck’s law is merely Wien’s radiation law modified by excluding the zero-frequency photons from 

the distribution. After excluding the zero-frequency photons from the distribution, the mean energy allocated to 

each degree of freedom of the photons is kPT/2 (not kT/2). The modified Planck’s law (i.e., the modified Wien’s 
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radiation law) based on the Boltzmann distribution law must also include the normalization constant DP, by which 

the radiant energies yielded by the original Planck’s law differ from those of the modified Planck’s law (but the 

relative distributions of the two laws are identical). These findings, which confirm the applicability of classical 

physics to photons, are expected to change our quantum-physical understanding of photons. This study should 

help elucidate the mechanism of the specific heat of solids mediated by phonons, which (like photons) form 

standing waves. 
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