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Abstract
Derivative-matching approximations are constructed as power series

built from functions. The method assumes the knowledge of special val-
ues of the Bell polynomials of the second kind, for which we refer to the
literature. The presented ideas may have applications in numerical math-
ematics.

Introduction
Given a function f and a point of expansion x0, it is customary to say that the
Taylor polynomial (TP) of degree one, two, three,... is the best linear, quadratic,
cubic,... approximation of f at x0. In this sense we present here several new
approximations Afi of f such that

dn

dxn
f (x) |x=0 =

dn

dxn
Afi (x) |x=0, n ∈ N0, (1)

where, without loss of generality, we assume that the expansion is done at x0 = 0
(shift to an arbitrary point x0 is achieved by shifting the argument). We denote
the equality (1) by f ≈ Afi .

1 Power series built from functions
We build Afi as a power series of some properly chosen function g following the
construction from Sec. 4.1.2 of [4]. We propose

Afi (x) =
∞∑
n=0

an [g (x)]
n ≈ f(x) with g (0) = 0 and g′ (0) 6= 0. (2)

The existence of a non-zero derivative at zero implies g can be inverted on some
neighborhood of zero x ≡ g−1 (y). We have

f
[
g−1 (y)

]
≈
∞∑
n=0

any
n, (3)
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i.e. the expansion coefficients an are given by the power expansion coefficients
of f

(
g−1

)
an =

1

n!

dn

dxn
f
(
g−1 (x)

)
|x=0. (4)

This can be written in terms of the Faà di Bruno’s formula, where the Bell
polynomials of the second kind Bn,k appear

an =
1

n!

n∑
k=0

dfkBn,k(d
g−1

1 , dg
−1

2 , . . . , dg
−1

n−k+1); dhn ≡
dn

dxn
h (x) |x=0. (5)

In [4] only few expansions were presented, here we systematically review the
existing formulas for special values of the Bell polynomials [8, 7, 6] and propose
a larger number of them1.

To keep the text brief, we organize our results as a list where only the
necessary information is summarized. We define

(−1)!! = 1, 00 = 1, 〈α〉n =

n−1∏
k=0

(α− k) //falling factorial,

W (x)→ principal branch of the Lambert W function,
s
n
m

{
=

1

m!

m∑
k=0

(−1)k
(
m

k

)
(m− k)n ,

(Stirling numbers of the second kind)[
n
m

]
=

n−m∑
j=0

(−1)j
(
n− 1 + j

n−m+ j

)(
2n−m
n−m− j

)s
n−m+ j

j

{
.

(Stirling numbers of the first kind)

When needed, we extend the definition of g (or g−1) to zero by its limit value

g(0) = lim
x→0(±)

g (x) ,

and note it with .
=. The exact version of the limit (left, right, both sides)

depends on the context.

2 List of expansions
The expansion is for all cases constructed as

Afi (x) = f(0) +

N∑
n=1

1

n!

[
n∑
k=1

dfkBn,k(d
g−1

1 , dg
−1

2 , . . . , dg
−1

n−k+1)

]
[g (x)]

n
, (6)

1Included are also those from [4], so as to provide a complete list of approximations of this
kind.
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where we isolate the constant term so as to avoid ambiguities for n = 0 (such
as 00) in the formulas which follow. We separate cases where an explicit for-
mula for g is found and those where it is not. In the first scenario we present
also the formula for the Belle polynomial values2, in the second situation we
do this only for short formulas, for the long ones we cite the literature. The
displayed constants directly appearing as arguments of the Belle polynomials
Bn,k(c1, c2, c3, . . .) give the information about the derivatives of g−1 at zero for
the case in question, i.e. ci = dg

−1

i .

2.1 Formulas with explicit expression for g

• Logarithm-based expansion (Af1 )

g (x) = ln (x+ 1) ; g−1 (x) = exp (x)− 1, (7)

Bn,k(1, 1, 1, . . .) =

s
n
k

{
.

• Exponential-based expansion (Af2 )

g (x) = 1− e−x; g−1 (x) = − ln (1− x) , (8)

Bn,k(0!, 1!, 2!, . . .) = (−1)n−k
[
n
k

]
.

• Expansion with inverse hyperbolic sine (Af3 )

g (x) = asinh(x); g−1 (x) = sinh(x), (9)

Bn,k(1, 0, 1, 0, 1 . . .) =
1

2kk!

k∑
l=0

(−1)l
(
k

l

)
(k − 2l)

n
.

• Arcus-sine-based expansion (Af4 )

g (x) = arcsin(x); g−1 (x) = sin(x), (10)

Bn,k(1, 0,−1, 0, 1 . . .) =
(−1)k

2kk!
cos

[
(n− k)π

2

] k∑
q=0

(−1)q
(
k

q

)
(2q − k)n .

• Expansion in powers of α
√
x+ 1− 1 (Af5 )

g (x) = α
√
x+ 1− 1; g−1 (x) = (1 + x)α − 1; α ∈ R\ {0} , (11)

Bn,k (〈α〉1 , 〈α〉2 , 〈α〉3 , . . .) =
(−1)k

k!

k∑
l=0

(−1)l
(
k

l

)
〈αl〉n .

Notable spacial cases (polynomial and rational) happen for α = ±1/n,
n ∈ N. For α = 1 the TP is constructed.

2We want to provide the full information needed for an eventual implementation, so that
the reader does not need to look into the literature we cite.
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• Square-root-based expansion (Af6 )

g (x) =
√
2x+ w2 − w; g−1 (x) =

1

2
x2 + wx; w ∈ R\ {0} , (12)

Bn,k (w, 1, 0, 0, 0, . . .) =
1

2n−k
n!

k!

(
k

n− k

)
w2k−n.

• Polynomial expansion (Af7 )

g (x) =
x2 + 2

√
αx

β
; g−1 (x) =

√
α+ βx−

√
α; α, β ∈ R\ {0} , (13)

Bn,k

(
dg

−1

1 , dg
−1

2 , . . .
)
= (−1)n+k [2 (n− k)− 1]!!

αn−k/2

(
β

2

)n(
2n− k − 1

2 (n− k)

)
,

where

dg
−1

n = α
1
2−nβn

n∏
k=1

(
k +

1

2
− n

)
.

• Expansion with the square root in the denominator (Af8 )

g (x) = 1− 1√
x+ 1

; g−1 (x) =
1

(x− 1)
2 − 1, (14)

Bn,k(2!, 3!, 4!, . . .) =
n!

k!

k∑
l=0

(−1)k−l
(
k

l

)(
n+ 2l − 1

n

)
.

• Expansion with fraction including square root (Af9 )

g (x)
.
=
−1 +

√
4x2 + 1

2x
; g−1 (x) =

x

1− x2
, (15)

Bn,k(1!, 0, 3!, 0, 5!, 0 . . .) =
1 + (−1)n+k

2

n!

k!

(n+k
2 − 1

k − 1

)
.

• Expansion with the Lambert function (Af10)

g (x) =W
[
ew−1 (w + x− 1)

]
+ 1− w, w ∈ R\ {0} , (16)

g−1 (x) = (w + x− 1) ex + 1− w,

Bn,k(w,w + 1, w + 2, . . .) =

= kn−k
(
n

k

) k∑
l=0

(
k

l

)n−k∑
q=0

(−1)q

kq

(
n− k
q

)s
l + q
l

{

(
l+q
l

)
 (w − 1)

l
.

4



• Second expansion with the Lambert function (Af11)

g (x) =
W
[
−e−(x+1)(x+ 1)

]
x+ 1

+ 1; g−1 (x)
.
= − ln (1− x)

x
− 1, (17)

Bn,k

(
1!

2
,
2!

3
,
3!

4
, . . .

)
=

(−1)n−k

k!

k∑
m=0

(−1)m
(
k

m

)[ n+m
m

]
(
n+m
m

) .

As readily seen form the argument of the function W (which is defined
from −1/e to ∞), this approximation is valid in the right neighborhood
of zero.

• Third expansion with the Lambert function (Af12)

g (x) = −
W

(
− exp(− 1

1+x )
1+x

)
+ xW

(
− exp(− 1

1+x )
1+x

)
+ 1

1 + x
, (18)

g−1 (x)
.
=
ex − 1

x
− 1,

Bn,k

(
1

2
,
1

3
,
1

4
, . . .

)
=

n!

(n+ k)!

k∑
l=0

(−1)k−l
(
n+ k

k − l

)s
n+ l
l

{
.

As readily seen form the argument of the function W , this approximation
is valid in the left neighborhood of zero.

• Powers of sine (Af13)

g (x) = sin (x) , (19)

g−1 (x) = arcsin (x) ,

Bn,k

(
1, 0, 1, 0, 9, 0, 225, 0, . . . , [(n− k − 3)!!]

2
, 0, [(n− k − 1)!!]

2
)
=

= δ(n−k)%2,0 (−1)
n−k

2 2n−k
n−k∑
l=0

(
k + l − 1

k − 1

)[
n− 1

k + l − 1

](
n− 2

2

)l
,

where δ is the Kronecker delta and % is the modulo operation. This
expansion has large similarities with [2] and represents Fourier series whose
standard form can be get by applying trigonometric power formulas to
[sin (x)]

n terms.

2.2 Formulas without explicit expression for g

With the function g−1 known, one can use numerical or approximation methods
to get g in the proximity of zero.
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• Case one

g−1 (x) = (w − 1 + ex)x; w 6= 0, (20)

Bn,k(w, 2, 3, 4, . . .) =

(
n

k

) k∑
r=0

(
k

r

)
(k − r)n−k (w − 1)

r
.

• Case two

g−1(x) = ex(x− 2)− x+ 2, (21)

Bn,k(−2, 0, 1, 2, 3, . . .) =
n∑
r=0

r!

(
n

r

)(
k

r

)
(−2)k−r

s
n− r
k

{
.

• Case three

g−1(x) =
(
2ex − x2 − 2x− 2

)
/
(
2x2
)
. (22)

The formula for Bn,k( 1
2.3 ,

1
3.4 , . . .) is shown in Eq. (2.1) of [8].

• Case four

g−1(x) =
(
6xex − 12ex − x3 + 6x+ 12

)
/
(
6x3
)
. (23)

The formula for Bn,k( 1
3.4 ,

1
4.5 , . . .) is shown in Theorem 2.7 of [8].

• Case five

g−1(x) = α+(α+a1− 1)x+
1

2
(α+a2− 2)x2+(x−α)ex; a1 6= 0. (24)

The formula for Bn,k(a1, a2, 3− α, 4− α, 5− α, . . .) is shown in Eq. (3.1)
of [8]. The function g can be expressed in terms of the Lambert W for
a1 = 1− α and a2 = 2− α, which however corresponds to Eq. (16) from
the previous section.

• Case six

g−1(x)
.
= − [arccos (x+ 1)]

2

2x
− 1. (25)

The formula forBn,k
(
− 2

12 ,
4
45 ,−

6
70 , . . . , 2

(2n−2k+2)!!
(2n−2k+4)!Q(2, 2n− 2k + 2)

)
to-

gether with the definition of Q is shown in Eqs. (5.1) and (2.3) of [7].
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3 Discussion and remarks

Plots
In Figs. (2)-(5), situated at the end of this text, we provide plots where four
elementary functions exp (x), sin (x), x2 and ln (x+ 1) are approximated with
expansions based on Eqs. (7)-(19), the value and first seven derivatives are
matched. For the sake of comparison we also include the TP. The numbering
subscript of approximations Ano. in the legend respects the order in which the
g functions are presented in the Sec. 2.1 and the superscript attempts to mimic
the function form of g so as to remind the reader about it. The parametric
expressions (11),(12),(13) and (16) are show with parameters α = 2, w = 1,
(α = 4, β = 3) and w = 1, respectively. Some lines in the graphs are overlaid,
the reason is mostly the fact that the approximation is exact3.

Convergence
Convergence properties can be easily addressed since the substitution as ex-
pressed by the Eq. (3) does not influence the point-wise behavior. So, consid-
ering

f (x) = f
[
g−1 (y)

]
≈
∞∑
n=0

any
n,

one applies the standard convergence criteria known from the usual power series
to the coefficient sequence {an} and determines the radius of convergence R for
the variable y

|y| < R⇒
∞∑
n=0

any
n converges.

Then for all x ∈ U , U = {x ∈ R : |g (x)| < R}, the series
∑∞
n=0 an [g (x)]

nconverges.
The convergence to the approximated function can also be treated in this

way, for simplicity we assume that we work on an interval I containing zero
where g can be inverted. Writing an equality which includes the reminder term

f
[
g−1 (y)

]
=

M∑
n=0

any
n +RM (y) ,

one can apply the standard criteria known from the Taylor series to see whether,
in a point-wise way, the reminder vanishes with M → ∞ at some y0. If W is
the set of all points such that

y ∈W ⇒
∞∑
n=0

any
n = f

[
g−1 (y)

]
,

then for all x ∈ I such that g (x) ∈W one has f (x) =
∑∞
n=0 an [g (x)]

n
.

3Sin(x) is exactly approximated by (19), x2 by (11),(12) and the TP and ln (x+ 1) by (7).
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The most difficult part is presumably the application of the standard criteria
to {an}, since the expression (5) is rather complicated (may contain several
nested sums).

The convergence criteria can be in a straightforward way extended to the
complex analysis.

Polynomial approximations
One observes that pure polynomial approximations are in the list: the paramet-
ric expression (11) with α = 1/k, k ∈ N+ and the expression (13). It is inter-
esting to realize, that these expansions in general do not exactly approximate
polynomials with the same number of terms. Since the polynomial coefficients
are in the one-to-one correspondence with the derivatives dfk , the two approxi-
mations contain the TP as their lower terms up to xN . In addition, they also
contain higher order terms which imply the deviations from the approximated
function if the latter is a polynomial of the degree N .

Further, expansions (11) and (12) with shifted arguments4 Af5 (x− 1) and
Af6
(
x− ω2/2

)
allow to build expressions where the integer and/or fractional

powers of x appear. They represent fractional order polynomials which have
already been introduced in the literature and in a special case are written as

F (x) =

N∑
n=0

ck (x
α)
n
, α > 0, (26)

see e.g. Eq. (4) in [9] or Eq. (11) in [5].

Applications
The applications may result from better approximation properties than what is
provided by the TPs. This however depends on the approximated function, yet
some claims are evident, e.g. there are cases where an approximation proposed
here converges beyond the radius of the convergence of the Taylor series. Indeed,
the function ln (x+ 1), when expanded at zero, can be approximated by the TPs
on the interval (−1, 1) only. By (7) it is approximated on the whole definition
interval exactly and with one term.

To be more fair, we compare the expansion in powers of g from Eq. (14)
with the TP inside its radius of convergence, i.e. we numerically investigate the
approximation of ln (x+ 1) at x = 0.5. We define ∆f = |ln (1.5)− f(1.5)| and
we get (N is the number of terms in the series, see (6))

N 3 7 10 20
∆Af8

≈ 6.65× 10−4 3.84× 10−7 1.74× 10−9 3.33× 10−16

∆TP ≈ 1.12× 10−2 3.38× 10−4 3.05× 10−5 1.53× 10−8

4Meaning that the derivatives are evaluated at x0 = 1 and x0 = ω2/2, respectively.
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Figure 1: The function 5
√
x+ 1 approximated by the series A5 built from the

powers of
[√
x+ 1− 1

]
and by the TP, in both cases with 8 terms.

The first few cutoff series for both cases indicate a significant difference in
the rate of convergence in favor of the expansion Af8 .

An important disadvantage for an eventual implementation of the series (7)-
(19) on a computer might be the time necessary for computing g (x) from x.
To speed up the evaluation of (2) the Horner’s method is to be used. More
importantly, a couple of expansions from Sec. 2.1 are based on the square root,
which is for several common architectures implemented as a basic arithmetic
operation included into the instruction set of the processor (often labeled fsqrt,
see [3] for x86, [1] for ARM ). This means it can be evaluated very rapidly which,
in combination with possible better convergence properties, can be a reason for
implementing new algorithms to compute values of some functions.

In this spirit, one potentially interesting application is the computation of
the mth root, which is (usually) not a basic instruction of a processor. Our
preliminary tests indicate that m

√
x+ 1 can be for −1 < x, 1 < m ∈ R computed

by the series based on the expansion in powers of (11), α = 2,

• with a significantly higher rate of convergence than have the Taylor series
(within its convergence domain) and

• on a significantly larger interval (i.e. beyond its convergence domain).

Such behavior was observed for all 1 < M we tested. An example with the fifth
root is shown in Fig. 1. Further investigations need to be done to confirm our
claims on a more rigorous basis.

4 Summary, conclusion, outlook
In this text we presented a number of presumably new expansions built as powers
series constructed from functions, we addressed and clarified the question of
their point-wise convergence and mentioned some advantages they may have in
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comparison with the Taylor polynomials. These advantages can represent the
reason for their application potential in numerical evaluation of some functions,
the issue however requires more detailed investigation in the future.
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Figure 2: The exp (x) function approximated by series (6) with 8 terms and
with various g from Sec. 2.1.
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Figure 3: The sin (x) function approximated by series (6) with 8 terms and with
various g from Sec. 2.1.
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Figure 4: The x2 function approximated by series (6) with 8 terms and with
various g from Sec. 2.1.
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Figure 5: The ln (x+ 1) function approximated by series (6) with 8 terms and
with various g from Sec. 2.1.

14


