A compact Solution of a Cubic Equation

Tai Choon Yoon*
(Dated: Oct. 9th., 2022)
In this article, a simple solution of cubic equation is presented by the use of a new substitution $y=(\sqrt[3]{\alpha}+s / \sqrt[3]{\alpha})$, which can replace a complicated solution presented by G. Cardano, and François Viète's Vieta substitution. This paper also shows that one of the existing solution of the trigonometric function is to be changed to $-\cos \left(\phi-\frac{\pi}{3}\right)$ instead of $\cos \left(\phi-\frac{4 \pi}{3}\right)$ due to the range limit of the inverse trigonometric function.

A. Derivation of a compact solution of a cubic equation

The solution of cubic equations is well known since an Italian mathematician Gerolamo Cardano had established. In order to replace G. Cardano's solution, I hereby settle a simple and compact substitution for an easier solution. A general form of cubic equations is written as,

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0, \quad a \neq 0 . \tag{1}
\end{equation*}
$$

Then, a simplified equation divided both sides by the coefficient a is given as,

$$
\begin{equation*}
x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0 . \tag{2}
\end{equation*}
$$

Substituting $x=y-\frac{b}{3 a}$ by using a Tschirnhaus transformation, we get ${ }^{1}$

$$
\begin{equation*}
y^{3}+s y+t=0 \tag{3}
\end{equation*}
$$

Here the coefficients s and t represent respectively

$$
\begin{align*}
& s=\frac{c}{a}-\frac{b^{2}}{3 a^{2}}, \tag{4}\\
& t=\frac{2 b^{3}}{27 a^{3}}-\frac{b c}{3 a^{2}}+\frac{d}{a} .
\end{align*}
$$

A solution of the cubic equation [1] obtained by Cardano is quite complicated because it needs several steps to get solutions. For a simplified solution, I define a new substitution analogous to Vieta's substitution ${ }^{2}$ [4], which is basically similar to Vieta's, as is given in the form,

$$
\begin{equation*}
y=\sqrt[3]{\alpha}-\frac{s}{3 \sqrt[3]{\alpha}} \tag{5}
\end{equation*}
$$

*Electronic address: tcyoon@hanmail.net
${ }^{1}$ Cardano's basic form is

Cardano's substitution is

$$
y^{3}+3 p y+q=0
$$

$$
u^{3}+v^{3}=-q, u v=-p
$$

where $y=(u+v)$ is a root of the given cubic equation.
${ }^{2}$ Vieta's solution of a cubic is read as follows

$$
\begin{gathered}
t^{3}+p t+q=0 \\
t=w-\frac{p}{3 w}
\end{gathered}
$$

And the substitution is
which provides $w^{3}=-\frac{q}{2} \pm \sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}$.

It is to be noted that this substitution provides only one solution of a cubic equation, while Cardano's and Vieta's provide three solutions. By using this substitution, we get from the equation (3),

$$
\begin{align*}
& \left(\sqrt[3]{\alpha}-\frac{s}{3 \sqrt[3]{\alpha}}\right)^{3}+s\left(\sqrt[3]{\alpha}-\frac{s}{3 \sqrt[3]{\alpha}}\right)+t \\
& =\alpha+t-\frac{s^{3}}{27 \alpha} \tag{6}\\
& =0
\end{align*}
$$

Multiplying both sides by α, we get a quadratic equation,

$$
\begin{equation*}
\alpha^{2}+t \alpha-\frac{s^{3}}{27}=0 \tag{7}
\end{equation*}
$$

And, then we get a pair of solutions

$$
\begin{equation*}
\alpha=\frac{-t}{2} \pm \sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}} \tag{8}
\end{equation*}
$$

Though the resolvent quadratic equation (7) provides two roots as per the above, we can identify that they produce only one radical of the reduced cubic form (3). Substituting each α of (8) respectively, then we find the same result as follows

$$
\begin{align*}
y & =\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}-\left(\frac{s}{3 \sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}}\right) \\
& =\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}-\left(\frac{s}{3 \sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}}\right) \tag{9}\\
& =\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}+\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}
\end{align*}
$$

With this result, we can get the two remaining solutions by letting the above solution as $y=y_{1}$ and solving the factorized quadratic equation of the right hand side

$$
\begin{align*}
y^{3}+s y+t & =\left(y-y_{1}\right)\left(y^{2}+y_{1} y+y_{1}^{2}+s\right) \tag{10}\\
& =0 .
\end{align*}
$$

From this, we get

$$
\begin{align*}
y_{2}, y_{3}= & \frac{-y_{1}}{2} \pm \sqrt{\frac{-3 y_{1}^{2}}{4}-s} \tag{11}\\
= & -\frac{1}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}+\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}\right) \\
& \pm \frac{i \sqrt{3}}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}-\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}\right)
\end{align*}
$$

The discriminant of the cubic is given as

$$
\begin{equation*}
D=\frac{t^{2}}{4}+\frac{s^{3}}{27} \tag{12}
\end{equation*}
$$

These three roots, (9) and (11), are the solutions of a cubic equation in terms of two unknown coefficients, s and t. In case the discriminant $D>0$ of a cubic equation, the roots of (9) and (11) can be used as they are, because the
cubic equation has one real roots and two complex conjugate. However, in case of $D<0$, the value in the square root of (9) is changed to an imaginary unit, in which case, it is convenient to use trigonometric functions,

$$
D= \begin{cases}\frac{t^{2}}{4}+\frac{s^{3}}{27}>0, & \text { a real root and a pair of complex conjugate } \\ \frac{t^{2}}{4}+\frac{s^{3}}{27}=0, & \text { three real roots at least two of them equal } \\ \frac{t^{2}}{4}+\frac{s^{3}}{27}<0, & \text { three real roots unequal to each other. }\end{cases}
$$

In case $D<0$, we may eliminate the imaginary unit by using the trigonometric functions, so we can define an intermediary coefficient θ as follows,

$$
\begin{align*}
\cos 3 \theta & =\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}} \tag{13}\\
\sin 3 \theta & =\frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}
\end{align*}
$$

where θ is given as

$$
\begin{equation*}
\theta=\frac{1}{3} \arccos \left(\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}\right) \tag{14}
\end{equation*}
$$

By substituting the above into the equation (9), we get the following result by using the de Moivre's formula [5] ${ }^{3}$.

$$
\begin{align*}
y_{1} & =\sqrt[3]{\frac{-t}{2}}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}+\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}} \tag{15}\\
& =\frac{\sqrt{-s}}{\sqrt{3}}\left(\sqrt[3]{\left.\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}+i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}+\sqrt[3]{\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}-i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}}\right)}\right. \\
& =\frac{\sqrt{-s}}{\sqrt{3}}(\sqrt[3]{\cos 3 \theta+i \sin 3 \theta}+\sqrt[3]{\cos 3 \theta-i \sin 3 \theta}) \\
& =\frac{\sqrt{-s}}{\sqrt{3}}\left(\sqrt[3]{(\cos \theta+i \sin \theta)^{3}}+\sqrt[3]{(\cos \theta-i \sin \theta)^{3}}\right) \\
& =\frac{2 \sqrt{-s}}{\sqrt{3}} \cos \theta
\end{align*}
$$

where i represents the imaginary unit.
And the remaining two roots are given from the equation (11)

$$
\begin{align*}
y_{2}, y_{3}= & -\frac{1}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}+\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}\right) \pm \frac{i \sqrt{3}}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}-\sqrt[3]{\frac{-t}{2}-\sqrt{\frac{t^{2}}{4}+\frac{s^{3}}{27}}}\right)(1 \tag{16}\\
= & \frac{-\sqrt{-s}}{\sqrt{3}}\left(\frac{1}{2} \sqrt[3]{\left.\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}+i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}+\frac{1}{2} \sqrt[3]{\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}-i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}}\right)}\right. \\
& \pm \frac{\sqrt{-s}}{\sqrt{3}}\left(\frac{i \sqrt{3}}{2} \sqrt[3]{\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}+i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}}-\frac{i \sqrt{3}}{2} \sqrt[3]{\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}-i \frac{3 \sqrt{3}}{\sqrt{-s^{3}}} \sqrt{-\frac{t^{2}}{4}-\frac{s^{3}}{27}}}\right)
\end{align*}
$$

[^0]\[

$$
\begin{aligned}
& =\frac{-\sqrt{-s}}{\sqrt{3}}\left(\frac{1}{2}(\sqrt[3]{\cos 3 \theta+i \sin 3 \theta}+\sqrt[3]{\cos 3 \theta-i \sin 3 \theta}) \pm \frac{i \sqrt{3}}{2}(\sqrt[3]{\cos 3 \theta+i \sin 3 \theta}-\sqrt[3]{\cos 3 \theta-i \sin 3 \theta})\right) \\
& =\frac{-2 \sqrt{-s}}{\sqrt{3}} \cos \left(\theta \pm \frac{\pi}{3}\right)
\end{aligned}
$$
\]

with $\theta[2]^{4}$ of (14).
As the results, in case that the discriminant of the cubic equation (3) is $D<0$, the three real roots of (15) and (16) can be expressed as an inverse function of trigonometry as follows,

$$
\begin{aligned}
y_{1} & =\frac{2 \sqrt{-s}}{\sqrt{3}} \cos \theta \\
& =\frac{2 \sqrt{-s}}{\sqrt{3}} \cos \left(\frac{1}{3} \arccos \left(\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}\right)\right) \\
y_{2,3} & =\frac{-2 \sqrt{-s}}{\sqrt{3}} \cos \left(\theta \pm \frac{\pi}{3}\right) \\
& =\frac{-2 \sqrt{-s}}{\sqrt{3}} \cos \left(\frac{1}{3} \arccos \left(\frac{-3 \sqrt{3} t}{2 \sqrt{-s^{3}}}\right) \pm \frac{\pi}{3}\right)
\end{aligned}
$$

B. A generalized Solution of a Cubic Equation

A general form of a cubic equation

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0, \quad a \neq 0 . \tag{17}
\end{equation*}
$$

Dividing by the leading coefficient a, we get a monic cubic equation

$$
\begin{equation*}
x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0 \tag{18}
\end{equation*}
$$

A depressed form of the above by substituting with $x=y-\frac{b}{3 a}$, we get

$$
\begin{equation*}
y^{3}+s y+t=0 \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& s=\frac{c}{a}-\frac{b^{2}}{3 a^{2}} \tag{20}\\
& t=\frac{2 b^{3}}{27 a^{3}}-\frac{b c}{3 a^{2}}+\frac{d}{a} .
\end{align*}
$$

From the above (19), we get a solution of a cubic,

$$
\begin{equation*}
y_{1}=\sqrt[3]{\frac{-t}{2}+\sqrt{D_{3}}}+\sqrt[3]{\frac{-t}{2}-\sqrt{D_{3}}} \tag{21}
\end{equation*}
$$

[^1]https://en.wikipedia.org/wiki/Cubic_equation
where D_{3} is the discriminant of a cubic equation given as
\[

$$
\begin{align*}
D_{3} & =\frac{t^{2}}{4}+\frac{s^{3}}{27} \tag{22}\\
& =-\frac{b^{2} c^{2}}{108 a^{4}}+\frac{b^{3} d}{27 a^{4}}-\frac{b c d}{6 a^{3}}+\frac{c^{3}}{27 a^{3}}+\frac{d^{2}}{4 a^{2}} \\
& =-\frac{1}{108 a^{4}}\left(18 a b c d-4 a c^{3}-27 a^{2} d^{2}+b^{2} c^{2}-4 b^{3} d\right)
\end{align*}
$$
\]

and the remaining two roots are

$$
\begin{equation*}
y_{2,3}=-\frac{1}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{D_{3}}}+\sqrt[3]{\frac{-t}{2}-\sqrt{D_{3}}}\right) \pm \frac{i \sqrt{3}}{2}\left(\sqrt[3]{\frac{-t}{2}+\sqrt{D_{3}}}-\sqrt[3]{\frac{-t}{2}-\sqrt{D_{3}}}\right) \tag{23}
\end{equation*}
$$

As the results, a solution of the cubic equation (18) is given as,

$$
\begin{equation*}
x_{1}=-\frac{b}{3 a}+\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}+\sqrt{D_{3}}}+\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}+\frac{d}{2 a}-\sqrt{D_{3}}} \tag{24}
\end{equation*}
$$

and the remaining two solutions,

$$
\begin{align*}
x_{2,3}= & -\frac{b}{3 a}-\frac{1}{2}\left(\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}+\sqrt{D_{3}}}+\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}+\frac{d}{2 a}-\sqrt{D_{3}}}\right) \tag{25}\\
& \pm \frac{i \sqrt{3}}{2}\left(\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}+\sqrt{D_{3}}}-\sqrt[3]{-\frac{b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}+\frac{d}{2 a}-\sqrt{D_{3}}}\right)
\end{align*}
$$

with D_{3} of (22).
In case $D_{3}>0$, the cubic equation has one real root of (24) and two complex conjugate of (25). In case $D_{3}=0$, it has three real roots, two of which are equal to each other.
If $D_{3}<0$, the cubic has three different real roots.
[1] J.H. Jeong et al., "Concise Mathematics Dictionary", Changwonsa, Seoul, Korea, 1993
[2] https://en.wikipedia.org/wiki/Cubic_equation
[3] https://en.wikipedia.org/wiki/Tschirnhaus_transformation
[4] http://www.itu.dk/bibliotek/encyclopedia/math/c/c818.htm
[5] http://en.wikipedia.org/wiki/De_Moivre's_formula

[^0]: ${ }^{3}$ De Moivre's formula proves that $\cos n x+i \sin n x=(\cos x+i \sin x)^{n}$.

[^1]: ${ }^{4}$ Refer to: The three real roots of a depressed form $\left(t^{3}+p t+q=0\right)$ can be expressed as

 $$
 t_{k}=2 \sqrt{-\frac{p}{3}} \cos \left(\frac{1}{3} \arccos \left(\frac{3 q}{2 p} \sqrt{\frac{-3}{p}}\right)-k \frac{2 \pi}{3}\right) \quad \text { for } \quad k=0,1,2
 $$

