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Abstract 

We propose a modified Cattaneo-Vernotte relation between heat flux and temperature gradient, 
which leads to a second-order equation describing the evolution of temperature in solids with 
finite rate of propagation. A comparison of the temperature field spreading in the framework of 
Fourier, Cattaneo-Vernotte (CV) and modified Cattaneo-Vernotte (MCV) equations is discussed. 
The comparative analysis of MCV and Fourier solutions is carried out on the example of simple 
problem of plate cooling. 

1. Introduction 

In classical consideration the process of heat transfer in solid is described by a phenomenological 
equation based on two assumptions [1]. The first is the continuity of heat propagation 
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
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where c  is the specific heat capacity,   is the mass density,   is the temperature, q  is the vector 
of heat flux. The second assumption is Fourier’s law, which establishes the relationship between 
heat flux and gradient of temperature  

  q  ,       (2) 

where   is the thermal conductivity. Substitution (2) into equation (1) gives the classical 
equation for the temperature 
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where /q c    is the thermal diffusivity,   is the Laplace operator.  

The disadvantage of relation (3) is that it leads us to the equations of parabolic type (3), which 
describes the instantaneous propagation of heat [2,3]. However, this contradicts the physical 
nature of the heat transfer process.  

To overcome the drawback in heat conduction, a modified Fourier’s law was proposed, taking 
into account “inertia” of the heat transfer process [4-7] 
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where q  is a relaxation time depending on material properties. When 0q   the expression (4) is 

transformed to the Fourier’s law (2). The relation (4) in combination with continuity condition 
(1) leads us to the wave equation of hyperbolic type 
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which is widely discussed as Cattaneo-Vernotte (CV) equation [8-19].  
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The parabolic Fourier equation (3) and hyperbolic CV equation (5) describe the same 
stationary states, which are determined by Laplace operator, but the dynamics of relaxation to 
these stationary states is different. However, eliminating the paradox of instantaneous heat 
propagation [2,8,9], the CV heat equation leads to other paradoxical results associated with 
interference of temperature waves, their reflection from the boundaries of the body and the 
formation of shock heat waves [10-19]. Therefore, discussions about the applicability of the 
Fourier and CV equations continue [20,21]. We also note that despite the fact that the 
phenomenological equations of diffusion and heat transfer are the same [22], the hyperbolic 
diffusion equation and diffusion waves are not discussed in a literature. 

In this paper, we propose a modification of CV approach to the description of heat transfer, 
which leads to the alternative equation and describes a different dynamics of heat propagation. 

2. Comparison of Fourier equation and Cattaneo-Vernotte equation  

Let us compare Fourier and CV equations in detail. The equation (5) introduces a very 
important parameter q  that describes the time scale of heat relaxation and allows one to 

determine the rate of heat propagation as  
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Besides the spatial scale of heat diffusion is defined as 

,q q q q ql s         (7) 

This allows one to rewrite Fourier and CV equations in the similar form 
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The equations (8) and (9) admit the solutions in the form of plane waves  

  expA i t i   k r ,      (10) 

where   is the frequency, k  is the wave vector. The dispersion relation for parabolic Fourier 
equation (8) is 

2 2
q qi s k  ,       (11) 

where k  is the wave number ( | |k  k ). In this relation, the frequency is an imaginary quantity. 
Thus, the solutions of the Fourier equation are spatial harmonics decaying with time. The 
damping factor is 

2 2
q qi s k   .       (12) 

The dependence of the decrement (12) on the wave number is shown in fig. 1.  
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Fig. 2. The schematic plot of decrement for hyperbolic C
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region *k k  represents the decrement in expression (17).
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The schematic plot of dispersion dependence for parabolic Fourier equation.
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The schematic plot of decrement for hyperbolic CV equation. The solid curve corresponds to the 
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The schematic plot of dispersion curves for Cattaneo-Vernotte
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which differs from condition (4) by the sign in front of the time derivative.
e time derivative describes diffusive relaxation, and not the inertia of heat propagation.

Let us analyze the consequences of such modification. The modified 
is written as: 
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Evidently, that the hyperbolic heat equation is a consequence of the concept of "inertia" for 
his concept raises doubts, since the macroscopic transfer of heat is 

associated not with their directed motion, but with chaotic vibrations of atoms in crystal lattice. 
Vernotte condition and obtain alternative equation 
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The schematic plots of dispersion curves (25) are represented in Fig. 4.  
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4. Comparison of Fourier equation and modified Cattaneo-Vernotte equation  

Let us compare Fourier and MCV equations. We write these equations in the similar form  
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The dispersion relation for Fourier equation (28) is 

2 2
q qi s k   .       (30) 

The dispersion relation for MCV equation (29) is  
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The schematic plots of (30) and (31) are represented in Fig. 1.  

 

Fig. 5. The schematic plot of dispersion curves for Fourier (dashed blue line) and MCV (solid red line) 
equations. The asymptote (26) is shown by dot-dashed line. 

In the region of small k the dependence (31) coincides with dependence (30), while at k    it 
tends to the asymptote  

1 2
.

2
q q

q

s k
i







        (32) 

This value tends to infinity when k   . The analog of group speed for MCV equation is 
2

2 2 2

2
.

1 4

q q
MCV

q q

s kd
i v i

dk s k




  


     (33) 

This quantity tends to be constant qs  at k   . 
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The plate cooling 

As an example, let us consider one-dimensional problem of cooling a plate with thickness 2l  
uniformly heated to a temperature 0  and with zero temperature at the boundaries x l  . In this 
case we have natural spatial scale l  and we introduce new dimensionless variables / qt t   and 

/x x l . Then the Fourier equation is represented as 
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while MCV equation is  
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where /ql l   is the ratio of the diffusion length to half of the plate thickness. Corresponding 

dispersion relations are 
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The solution to this problem in the frame of Fourier equation (34) is expressed by the 
following Fourier series [1]: 
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with decrement of temperature damping  
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On the other hand, the solution to this problem in the case of MCV equation (35) is expressed by 
the following series: 
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with damping parameter 
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Thus, comparing damping parameters in (39) and (41) one can see that in case of MCV equation 
the higher harmonics decay more slowly than in case of Fourier equation in accordance with 
dispersion dependences (36) and (37).  
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Fig. 6. The process of cooling the thick plate with ql l  ( 2 0.01  ). (a) Time dependence of temperature 

at the point 0x  . (b) Temperature profiles at different time ( 20, 200, 350, 600t  ). The solutions of 
Fourier equation are indicated by dashed blue lines. Solutions of MCV equation are shown by solid red 
lines.  

 

Fig. 7. The process of cooling the thin plate with ql l  ( 2 10  ). (a) Time dependence of temperature at 

the point 0x  . (b) Temperature distributions at different time ( 0.01, 0.03, 0.05, 0.1t  ). The solutions of 
Fourier equation are indicated by dashed blue lines. Solutions of MCV equation are shown by solid red 
lines.  

The results of numerical calculations for the plates with different thicknesses are represented 
in Fig. 6 and Fig. 7. It is seen that in the case of thick plates ( ql l ) the solution of MCV 

equation (red solid curves in Fig. 6a,b) coincides with the solution of Fourier equation (blue 
dashed curves in Fig. 6a,b). However, for thin plates ( ql l ) the solution to Fourier equation 

demonstrates a rapid decrease in temperature gradients and faster cooling of the plate (blue 
dashed curves in Fig. 7a,b) than in the case of the solution described by MCV equation (red solid 
curves in Fig. 7a,b). 

To clarify the time evolution of Fourier and MCV solutions, we analyze the behavior of zero 
harmonics. Let us consider the cooling a plate (thickness 2l ) with  0 cos / 2x l   initial 

temperature and with zero temperature at the boundaries x l  . In this case  

2 2
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2 4F x t
   
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     (43) 

The dependence of the ratio of damping parameters /M Fd d as the function of   is represented 
in Fig. 8. 
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Fig. 8. The dependence of damping parameters ratio /M Fd d  on the parameter  . 

 

For thick plates when 2 2 1    we have  
2 2

4M Fd d
 

   ,     (44) 

and time behavior of Fourier and MCV solutions is practically the same. The temperature 
profiles at different time and the dependence of temperature at the central point of plate on time 
are shown in Fig. 9.  

In opposite case of thin plate when 2 2 1    we have 

2M Fd d


   ,     (45) 

and MCV equation predicts slower cooling than Fourier equation. The corresponding profiles 
and time dependences are shown in Fig. 10. 

 

Fig. 9. The process of cooling the thick plate with ql l  ( 2 0.01  ). (a) Time dependence of temperature 

at the point 0x  . (b) Temperature distributions at different time ( 1, 15, 30, 60t  ). The solutions of 
Fourier equation are indicated by dashed blue lines. Solutions of MCV equation are shown by solid red 
lines.  
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Fig. 10. The process of cooling the thick plate with ql l  ( 2 0.01  ). (a) Time dependence of 

temperature at the point 0x  . (b) Temperature distributions at different time ( 0.001, 0.02, 0.05, 0.1t  ). 
The solutions of Fourier equation are indicated by dashed blue lines. Solutions of MCV equation are 
shown by solid red lines.  

Thus it is seen that the differences between solutions of Fourier and MCV equations are 
noticeable only at small spatial scales, when the plate thickness is less than the diffusion length. 

5. Conclusion 

Thus we propose alternative relationship between heat flux and temperature gradient, which 
leads us to the MCV equation describing the evolution of temperature with finite rate. Solutions 
of MCV equation have the same spatial temperature distributions as in the case of Fourier and 
CV equations, but describe a different dynamics of heat transfer process. The peculiarities of 
MCV solutions and their comparison with Fourier solutions have been analyzed on the example 
of simple problem of plate cooling. It was shown that on large spatial scales, when the plate 
thickness is greater than the thermal diffusion length, the differences between the solutions of 
MCV and Fourier equations are insignificant. However, in the case when the plate thickness is 
less than the diffusion length, the MCV equation predicts a slower cooling in accordance with 
finite heat transfer rate.  

Thus, it has been shown that MCV equation provides the finite rate of transfer processes, but 
it does not have the disadvantages of a CV equation, which predicts many paradoxical results 
associated with the possible propagation of heat in the form of real harmonic waves. The same 
approach can be applied to describe diffusion processes in solids. 
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