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We will consider all policies of the agent and will prove that one of them is the best performing 

policy. While that policy is not computable, computable policies do exist in its proximity. We 

will define AI as a computable policy which is sufficiently proximal to the best performing 

policy. Before we can define the agent’s best performing policy, we need a language for 

description of the world. We will also use this language to develop a program which satisfies the 

AI definition. The program will first understand the world by describing it in the selected 

language. The program will then use the description in order to predict the future and select the 

best possible move. While this program is extremely inefficient and practically unusable, it can 

be improved by refining both the language for description of the world and the algorithm used to 

predict the future. This can yield a program which is both efficient and consistent with the AI 

definition. 

1. Introduction 
Once, I was talking to a colleague and he told me: ‘Although we may create AI someday, it will 

be a grossly inefficient program as we will need an infinitely fast computer to run it’. My answer 

was: ‘You just give me this inefficient program which is AI, and I will improve it so that it 

becomes a true AI which can run on a real-world computer’. 

 

Today, in this paper I will deliver the kind of program I asked my colleague to give me at that 

time. I will set out an inefficient program which satisfies the AI definition. I will go further and 

suggest some ideas and guidance on how this inefficient program can be improved to become a 

real program which runs in real time. My hope is that some readers of this paper will succeed to 

do this and deliver the AI we are looking for. 

 

How inefficient is the program described here? In theory, there are only two types of programs – 

ones which halt and ones which run forever. In practice however, some programs will halt 

somewhere in the future, but they are so inefficient that we can consider them as programs which 

run forever. This is the case with the program described here — formally it halts, but its 

inefficiency makes it unusable (unless the computer is infinitely fast or the world is extremely 

simple). 

 

What is the definition of AI? We will define AI as a policy. An agent who follows this policy 

will cope sufficiently well. This is true for any world, provided however that there are not any 

fatal errors in that world. If a fatal error is possible in a given world, the agent may not perform 

well in that particular world, but his average performance over all possible worlds will still be 

sufficiently good. 

 

Which worlds we will consider as possible? The world’s policies are continuum many. If we do 

not have any clues as to what the world should be, then we cannot have a clue about what the 

expected success of the agent should look like. We will assume that the world can be described 

and such description is as simple as possible (this assumption is known as Occam’s razor). In 
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other words, we will choose a language for description of worlds and will limit our efforts only to 

the worlds described by that language. The worlds whose description is simpler (shorter) will be 

preferred (will carry more weight). 

 

This paper will consider several languages for description of the world. The first language will 

describe deterministic worlds. This language will describe the world by means of a computable 

function, which will take the state of the world and the action of the agent as input and return the 

new state of the world and the next observation as output. If we know the initial state of the world 

and agent’s actions, this function will give us the life of the agent in that world. 

 

The second language will describe non-deterministic worlds – again by a computable function, 

but with one additional argument. This argument will be randomness. In this case, we will need 

to know one more thing in order to obtain the agent’s life in that world. We will need to know 

what that randomness has been. 

 

We will define AI by these two languages and will make the assumption that these two 

definitions are identical. We will make even the assumption that the AI definition does not 

depend on our choice of language for description of worlds, and all languages produce the same 

definition of AI. 

 

On the basis of these two languages we will make two programs which satisfy the AI definition. 

These two programs will calculate approximately the same policy, but their efficiency would be 

dramatically different. Therefore, the choice of language for description of the world will not 

affect the AI definition, but will have a strong impact on the efficiency of the AI obtained 

through the chosen language. 

 

Contributions 

This paper improves the AI definition initially provided by Hernández-Orallo et al. in 1998 [3] 

and then substantially improved by Marcus Hutter in 2000 [4]. More precisely, this paper 

introduces two improvements: 

1. An AI definition which does not depend on the complexity of the world, nor on the length 

of life. Papers [3, 4] do provide an AI definition, however, the assumption there is that the 

complexity of the world and the length of life are limited by some constants and these constants 

are parameters of the definition. 

2. An AI definition which does not depend on the language for description of the world. The 

language in [3, 4] is fixed. Thus, papers [3, 4] imply that there is only one possible way to 

describe the world. 

2. Terms of the problem 
Let the agent have n possible actions and m possible observations. Let  and  be the sets of 

actions and respectively observations. In the observations set there will be two special 

observations. These will be the observations good and bad, and they will provide rewards 1  

and -1. All other observations in  will provide reward 0. 

 

We will add another special observation – finish. The agent will never see that observation 

(finish), but we will need it when we come to define the model of the world. The model will 

predict finish when it breaks down and becomes unable to predict anything more. For us the 

finish observation will not be the end of life, but rather a leap in the unknown. We expect our AI 
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to avoid such leaps in the unknown and for this reason the reward given by the finish observation 

will be -1. 

 

Definition 1: The tree of all possibilities is an infinite tree. All vertices which sit at an even-

number depth level and are not leafs will be referred to as action vertices and those at odd-

number depth levels will be observation vertices. From each action vertex there will depart n 

arrows which correspond to the n possible actions of the agent. From each observation vertex 

there will depart m+1 arrows which correspond to the m possible observations of the agent and 

the observation finish. The arrow which corresponds to finish will lead to a leaf. All other arrows 

lead to vertices which are not leafs. 

 

Definition 2: In our terms the world will be a 3-tuple <S, s0, f>, where: 

1. S is a finite or countable set of internal states of the world; 

2. s0  S is the initial state of the world; and 

3. f: S  S is a function which takes a state and an action as input and returns an 

observation and a new state of the world. 

 

The f function cannot return observation finish (it is predicted only when f is not defined and 

there is not any next state of the world). What kind of function is f – computable, deterministic or 

total? The answer to each of these three questions can be Yes, but it can also be No. 

 

Definition 3: A deterministic policy of the agent is a function which assigns a certain action to 

each action vertex. 

 

Definition 4: A non-deterministic policy of the agent is a function which assigns one or more 

possible actions to each action vertex. 

 

When the policy assigns all possible actions at a certain vertex (moment) we will say that at that 

moment the policy does not know what to do. We will not make a distinction between an agent 

and the policy of that agent. A union of two policies will be the policy which we get when choose 

one of these two policies and execute it without changing that policy. Allowing a change of the 

chosen policy will lead to something else. 

 

Definition 5: Life in our terms will be a path in the tree of all possibilities which starts from the 

root. 

 

Each life can be presented by a sequence of actions and observations: 

a1, o1, … , at, ot, … 

 

We will not make a distinction between a finite life and a vertex in the tree of all possibilities 

because there is a one-to-one correspondence between these two things. 

 

Definition 6: The length of life will be t (the number of observations). Therefore, the length of 

life will be equal to the length of the path divided by two. 

 

Definition 7: A completed life is one which cannot be extended. In other words, it will be an 

infinite life or a life ending with the observation finish. 
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When we let an agent in a certain world, the result will be a completed life. If the agent is non-

deterministic then the result will not be unique. The same applies when the world is non-

deterministic. 

3. The grade 
Our aim is to define the agent’s best performing policy. For this purpose we need to assign some 

grade to each life. This grading will give us a linear order by which we will be able to determine 

the better life in any pair of lives. 

 

Let us first determine how to measure the success of each life L. For a finite life, we will count 

the number of times we have had the observation good, and will designate this number with 

Lgood(L). Similar designations will be assigned to the observations bad and finish. Thus, the 

success of a finite life will be: 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝐿) =
𝐿𝑔𝑜𝑜𝑑(𝐿) − 𝐿𝑏𝑎𝑑(𝐿) − 𝐿𝑓𝑖𝑛𝑖𝑠ℎ(𝐿)

|𝐿|
 

 

Let us put Li for the beginning of life L with a length of i. The Success(L) for infinite life L will 

be defined as the limit of Success(Li) when i tends to infinity. If this sequence is not convergent, 

we will take the arithmetic mean between the limit inferior and limit superior. 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝐿) =
1

2
. (lim inf 

𝑖→∞
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝐿𝑖)) + lim sup 

𝑖→∞
(𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝐿𝑖))) 

 

By doing this we have related each life to a number which belongs to the interval [-1, 1] and 

represents the success of this life. Why not use the success of life for the grade we are trying to 

find? This is not a good idea because if a world is free from fatal errors then the best performing 

policy will not bother about the kind of moves it makes. There would be one and only one 

maximum success and that success would always be achievable regardless of the number of 

errors made in the beginning. If there are two options which yield the same success in some 

indefinite time, we would like the best performing policy to choose the option that will yield 

success faster than the other one. Accordingly, we will define the grade of a completed life as 

follows: 

 

Definition 8: The grade of infinite life L will be a sequence which starts with the success of that 

life and continues with the rewards obtained at step i: 

 

Success(L), reward(o1), reward(o2), reward(o3), … 

 

Definition 9: The grade of finite and completed life L will be the same sequence, but in this 

sequence for i>t the members reward(oi) will be replaced with Success(L): 

 

Success(L), reward(o1), … , reward(ot), Success(L), Success(L), … 

 

(In other words, the observations that come after the end of that finite life will receive some 

expectation for a reward and that expectation will be equal to the success of that finite life.) 
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In order to compare two grades, we will take the first difference. This means that the first 

objective of the best performing policy will be the success of entire life, but its second objective 

will be to achieve a better reward as quickly as possible. 

4. The expected grade 
Definition 10: For each deterministic policy P we will determine grade(P): the grade we expect 

for the life if policy P is executed. 

 

We will determine the expected grade at each vertex v assuming that we have somehow reached v 

and will from that moment on execute policy P. The expected grade of P will be the one which 

we have related to the root. 

 

We will provide a rough description of how we relate vertices to expected grades. Then we will 

provide a detailed description of the special case in which we look for the best grade, i.e. the 

expected grade of the best performing policy. 

 

Rough description: 

1. Let v be an action vertex. 

Then the grade of v will be the grade of its direct successor which corresponds to action P(v). 

 

2. Let v be an observation vertex. 

2.1. Let there be one possible world which is a model of v. 

If we execute P in this world we will get one possible life. Then the grade of v will be the grade 

of that life. 

2.2. Let there be many possible worlds.  

Then each world will give us one possible life and the grade v will be the mean value of the 

grades of the possible lives. 

 

The next section provides a detailed description of the best performing policy. The main 

difference is that when v is an action vertex, the best performing policy always chooses the 

highest expected grade among the expected grades of all direct successors. 

5. The best performing policy 
As mentioned above, we should have some clue about what the world looks like before can have 

some expectation about the success of the agent. We will assume that the world can be described 

by some language for description of worlds. 

  

Let us take the standard language for description of worlds. In this language the world is 

described by a computable function (this is the case in [3, 4]). We will describe the computable 

function f by using a Turing machine. We will describe the initial state of the world as a finite 

word over the machine alphabet. What we get is a computable and deterministic world which in 

the general case is not a total one. 

 

Definition 11: A world of complexity k will be a world in which: 

1. The f function is described by a Turing machine with k states. 

2. The alphabet of that machine contains k+1 symbols (λ0, …, λk). 
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3. The initial state of the world is a word made of not more than k letters. The alphabet is  

{λ1, …, λk}, i.e. the alphabet of the machine without the blank symbol λ0. 

 

Here we use the same k for three different things as we do not need to have different constants. 

 

We will identify the best performing policy for the worlds of complexity k (importantly, these 

worlds are finitely many). For this purpose we will assign to each observation vertex its best 

grade (or the expected grade if the best performing policy is executed from that vertex onwards). 

 

Let us have life a1, o1, … , at, ot, at+1. 

Let this life run through the vertices v0, w1, v1, … , wt, vt, wt+1, 

where v0 is the root, vi are the action vertices and wi are the observation vertices. 

 

Now we have to find out how many models of complexity k are there for vertex vt. 

 

Definition 12: A deterministic world is a model of vt when in that world the agent would arrive at 

vt if he executes the corresponding actions (a1, … , at). The models of each action vertex are 

identical with the models of its direct successors. 

 

Definition 13: The best performing policy for the worlds of complexity k will be the one which 

always chooses the best grade (among the best grades of the direct successors). 

 

Definition 14: The best grade of vertex wt+1 is determined as follows: 

 

Case 1. Vertices vt and wt+1 do not have any model of complexity k. 

In this case the best grade for wt+1 will be undef. At this vertex the policy will not know what to 

do (across the entire subtree of vt) because the best grade for all successor vertices will be undef. 

 

If we do not want to introduce an undef grade, we can use the lowest possible grade – the 

sequence of countably many -1s. The maximal grade will be chosen among the vertices which are 

different from undef. Replacing undef with the lowest possible grade will give us the same result. 

 

Case 2. Vertices vt and wt+1 have one model of complexity k. 

Let this model be D. In this case there are continuum many paths through wt+1 such that D is 

model of all those paths. From these paths (completed lives) we will select the set of the best 

paths. The grade we are looking for is the grade of these best paths. Each of these paths is related 

to a deterministic policy of the agent. We will call them the best performing policies which pass 

through vertex wt+1. 

 

This is the procedure by which we will construct the set of best deterministic policies: Let P0 be 

the set of all policies which lead to wt+1. We take the success of each of these policies in the 

world D. We create the subset P1 of the policies which achieve the maximum success. Then we 

reduce P1 by selecting only the policies which achieve the maximum for reward(ot+2) and obtain 

subset P2. Then we repeat the procedure for each i>2. In this way we obtain the set of the best 

deterministic policies P. (The best ones of those which pass through vertex wt+1 as well as the 

best ones for the paths which pass through vertex wt+1. As regards the other paths, it does not 

matter how the policy behaves there.) 
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𝑃 = ⋂ 𝑃𝑖

∞

𝑖=0

 

 

We can think of P as one non-deterministic policy. Let us take some pP. This will give us the 

best grade: 

 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑝), 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑡+1), 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑝,𝑡+2), 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑝,𝑡+3) , … 

 

Here we drop out the members reward(oi) at it because they are uniquely defined by vt. The next 

member depends on wt+1 and D, but does not depend on p. The remaining members depend on p. 

 

Another way to express the above formula is: 

 

max
𝑝𝑃0

𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑝) , 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑡+1), max
𝑝𝑃1

𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑝,𝑡+2) , max
𝑝𝑃2

𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑝,𝑡+3) , … 

 

Case 3. Vertices vt and wt+1 have a finite number of models of complexity k. 

Let the set of these models be M. Again, there are continuum many paths through wt+1 such that 

each of these paths has a model in M. These paths again form a tree, but while in case 2 the 

branches occurred only due to a different policy of the agent, in this case some branches may 

occur due to a different model of the world. Again, we have continuum many deterministic 

policies, but now they will correspond to subtrees (not to paths) because there can be branches 

because of the model. Again we will try to find the set of best performing deterministic policies 

and the target grade will be mean grade of those policies (the mean grade in M). 

 

We will again construct the set of policies Pi. Here P1 will be the set of policies for which the 

mean success reaches its maximum. Accordingly, P2 will be the set of policies for which the 

mean reward(ot+2) reaches its maximum and so on. This is how the resultant grade will look like: 

 

max
𝑝𝑃0

∑ 𝑞𝑚

𝑚𝑀

. 𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑚, 𝑝), ∑ 𝑞𝑚

𝑚𝑀

. 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑚,𝑡+1), max
𝑝𝑃1

∑ 𝑞𝑚

𝑚𝑀

. 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑚,𝑝,𝑡+2), … 

 

If we take some pP, the resultant grade will look like this: 

 

∑ 𝑞𝑚

𝑚𝑀

. 𝑆𝑢𝑐𝑐𝑒𝑠𝑠(𝑚, 𝑝), ∑ 𝑞𝑚

𝑚𝑀

. 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑚,𝑡+1), ∑ 𝑞𝑚

𝑚𝑀

. 𝑟𝑒𝑤𝑎𝑟𝑑(𝑜𝑚,𝑝,𝑡+2), … 

 

Here qi are the weights of the worlds which have been normalized in order to become 

probabilities. In this case we assume that the worlds have equal weights, i.e.: 

 

𝑞𝑖 =
1

|𝑀|
 

∎ 

What we have described so far looks like an algorithm, however, rather than an algorithm, it is a 

definition because it contains uncomputable steps. The so described policy is well defined, even 
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though it is uncomputable. Now, from the best grade for complexity k, how can we obtain the 

best grade for any complexity? 

 

Definition 15: The best grade at vertex v will be the limit of the best grades at vertex v for the 

worlds of complexity k when k tends to infinity. 

 

How shall we define the limit of a sequence of grades? The number at position i will be the limit 

of the numbers at position i. When the sequence is divergent, we will take the arithmetic mean 

between the limit inferior and limit superior. 

 

Definition 16: The best performing policy will be the one which always chooses an action which 

leads to the highest grade among the best grades of the direct successors. 

 

What makes the best performing policy better than the best performing policy for worlds of 

complexity k? The first policy knows what to do at every vertex, while the latter does not have a 

clue at the majority of vertices because they do not have any model of complexity k. The first 

policy can offer a better solution than the latter policy even for the vertices at which the latter 

policy knows what to do because the first policy also considers models of complexity higher than 

k. Although at a first glance we do not use Occam’s razor (because all models have equal 

weights), in earnest we do use Occam’s razor because the simpler worlds are calculated by a 

greater number of Turing machines, meaning that they have a greater weight. 

6. The AI definition 
Definition 17: AI will be a computable policy which is sufficiently proximal to the best 

performing policy. 

 

At this point we must explain what makes a policy proximal to another policy and how proximal 

is proximal enough. We will say that two policies are proximal when the expected grades of these 

two policies are proximal. 

 

Definition 18: Let A and B be two policies and {an} and {bn} are their expected grades. Then the 

difference between A and B will be {n}, where: 

 

𝑛 = ∑ 𝛾𝑖(𝑎𝑖 − 𝑏𝑖)

𝑛

𝑖=0

=  𝑛−1 + 𝛾𝑛(𝑎𝑛 − 𝑏𝑛) 

 

Here γ is a discount factor. Let γ=0.5. We have included a discount factor because we want the 

two policies to be proximal when they behave in the same way for a long time. The later the 

difference occurs in time, the less impact it will have. 

 

When n goes up, |n| may go up or down. We have made the definition in this way because we 

want the difference to be small when the expected grade of policy A hovers around the expected 

grade of policy B. I.e., if for n-1 the higher expected grade is that of A and for n the higher 

expected grade is that of B, then in n the increase will offset the decrease and vice versa. 

 

Definition 19: We will say that |A-B|< if n |n|<. 
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7. A program which satisfies the definition 
We will describe an algorithm which represents a computable policy. Each action vertex relates 

to an uncompleted life and the algorithm will give us some action by which this life can continue. 

This algorithm will be composed of two steps: 

 

1. The algorithm will answer the question ‘What is going on?’ It will answer this question by 

finding the first k for which the uncompleted life has a model. The algorithm will also find the 

set M (the set of all models of the uncompleted life, the complexity of which is k). Unfortunately, 

this is uncomputable. To make it computable we will try to find efficient models with 

complexity k. 

 

Definition 20: An efficient model with complexity k will be a world of complexity k (definition 

11), where the Turing machine uses not more than 1000.k steps in order to make one step of the 

life (i.e. to calculate the next observation and the next internal state of the world). When the 

machine makes more than 1000.k steps, the model will return the observation finish. 

 

The number 1000 is some parameter of the algorithm, but we assume this parameter is not very 

important. If a vertex has a model with complexity k, but does not have an efficient model with 

complexity k, then n (n>k) such that the vertex has an efficient model with complexity n. 

 

2. The algorithm will answer the question ‘What should I do?’. For this purpose we will run h 

steps in the future over all models in M and over all possible actions of the agent. In other words, 

we will walk over one finite subtree and will calculate best for each vertex of the subtree (this is 

the best expected grade up to a leaf). Then we will choose an action which leads to the maximum 

by best (this is the best partial policy). 

 

Definition 21: A partial subtree of vertex vt over M with depth h will be the subtree of vt 

composed of the vertices which i) have a depth not more than 2h and ii) have a model in M. 

 

Definition 22: The grade up to a leaf of vertex vt+i to the leaf vt+j will be:  

  Case 1. If j=h, this will be the sequence: 

Success(vt+j), reward(ot+i+1), … , reward(ot+j)  

  Case 2. If j<h, then the sequence in case 1 will be extended by h-j times Success(vt+j). The 

purpose of this extension is to ensure that the length of the grade up to a leaf will always be h-

i+1. 

 

Definition 23: The best expected grade up to a leaf (this is best): 

1. Let vt+i be an action vertex. 

  1.1. If vt+i is a leaf, then best(vt+i) will be the grade up to a leaf of vt+i to the leaf vt+i. 

  1.2. If vt+i is not a leaf then: 

𝑏𝑒𝑠𝑡(𝑣𝑡+𝑖) = max
𝑎

𝑏𝑒𝑠𝑡(𝑤𝑎) 

 

 

By wa here we designate the direct successor of vt+i resulting from action a. The same applies 

accordingly to vo below. 

 

2. Let wt+i be an observation vertex. Then:  
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𝑏𝑒𝑠𝑡(𝑤𝑡+𝑖) =  ∑ 𝑝𝑜 .

𝑜′

(𝑟𝑒𝑤𝑎𝑟𝑑(𝑜) insert_at_1_in 𝑏𝑒𝑠𝑡(𝑣𝑜)) 

 

Thus, we take the best of the direct successor vo and extend it by one by inserting reward(o) at 

position 1. Here ′=   {finish} and po is the probability of the next observation being o. Let 

M(v) be the set of the models of v. Then: 

 

𝑝𝑜 =
(∑ 𝑞𝑚𝑚𝑀(𝑣𝑜) )

(∑ 𝑞𝑚𝑚𝑀(𝑤𝑡+𝑖) )
=

|𝑀(𝑣𝑜)|

|𝑀(𝑤𝑡+𝑖)|
 

 

In this formula qm are the weights of the models. The last equality is based on the assumption that 

all models have equal weights. If M(vo)=∅ then po=0 and it will not be necessary to calculate 

best(vo). 

∎ 

So far we showed how the best partial policy is calculated. Will that be the policy of our 

algorithm? The answer is No because we want to allow for some tolerance. 

 

If two policies differ only slightly in the first coordinates of their expected grades, then a minor 

increase of h is very likely to reverse the order of preferences. Therefore, for a certain policy to 

be preferred, it should be substantially better (i.e. the difference at some of the coordinates should 

be greater than ε). 

 

We will define the best partial policy with tolerance ε and that will be the policy of our algorithm. 

8. The tolerance ε 
We will modify the above algorithm by changing the best function. While the initial best function 

returns the best grade, the modified function will return the set of best grades with tolerance ε. 

 

How shall we modify the search for the maximum grade to a search for a set of grades? The 

previous search looked at the first coordinate and picked the grades with the highest value at that 

coordinate. The search then went on only within these grades to find the ones with the highest 

value of the second coordinate and so on until it settles for a single grade. The modified search 

will pick i) the grades with the highest value of the first coordinate and ii) the grades which are at 

distance ε from the maximum value. Let E0 be the initial set of grades. Let in E0 there be n 

grades, all of them with length m+1. We will construct the sequence of grade sets E0, … , Em+1 

(Ei+1 Ei) and the last set Em+1 will be the target set of best grades with tolerance ε. Let E0={G1, 

…, Gn} and Gj=gj0, … , gjm. We will also construct the target grade  (=0, …, m). The target 

set of grades Em+1 will be comprised of the grades at distance ε from . 

 

Definition 24: The target grade  and the target set Em+1 are obtained as follows: 

0 = max
𝐺𝑗𝐸0

𝑔𝑗0 

E1={ GjE0 | 0-gj0<ε } 

1 = max
𝐺𝑗𝐸1

𝑔𝑗1 
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E2={ GjE1 | (0-gj0)+ .(1-gj1)<ε } 

 

Here  is again a discount factor. Thus, we have modified the way in which the maximum is 

calculated. We also need to modify the sum of the grades.  

 

Now the individual grades will be replaced with sets of grades. We will develop all possible 

combinations and calculate the sum for each combination. The resulting set will be the set of all 

sums for all possible combinations. 

 

The only remaining thing to do now is to select the next move. We will take the sets of grades 

provided by the best function for the direct successors of vt. Then we will make the union of these 

sets and from that union we will calculate the set of best grades with tolerance ε. Finally, we will 

select one of the actions which take us to one of these best grades. 

9. Is this AI? 
Does the algorithm described above satisfy our AI definition? Before that we must say that the 

algorithm depends on the parameters h and ε. In order to reduce the number of parameters, we 

will assume that ε is a function of h. For example, this function can be ε=h
-0.5

. 

 

Statement 1: When the value of h is sufficiently high, the described algorithm is sufficiently 

proximal to the best performing policy. 

 

Let the best performing policy be Pbest, and the policy calculated by the above algorithm with 

parameter h be Ph. Then statement 1 can be expressed as follows: 

ε>0 n h>n ( |Pbest - Ph|<ε ) 

 

Although we cannot prove this statement, we can assume that when h tends to infinity then Ph 

tends to the best performing policy for the worlds the complexity of which is k. When t tends to 

infinity, k will reach the complexity of the world or tend to infinity. These reflections make us 

believe that the above statement is true. 

10. A world with randomness 
The first language for description of worlds which discussed here describes deterministic worlds. 

But, if the world involves some randomness, then the description obtained by using that language 

would be very inaccurate. Accordingly, we will add randomness to the language for description 

of worlds. This would improve the language and make it much more expressive. 

 

The new language will also describe the world by a computable function. However, this function 

will have one additional argument – randomness. By randomness we will mean the result from 

rolling a dice. Let the complexity of the world be k. Then the dice will have k faces and can 

accordingly return k possible results. The probabilities of occurrence of one of these results will 

be p1, … , pk. 

 

Definition 25: A model of life until moment t with complexity k will be a world with complexity 

k and randomness with a length of t. We want that life to be generated by that model and that 

randomness. The randomness will be some word R of length t. The R letters will be those from 

the Turing machine alphabet except λ0. 
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The weight of the model is the probability of occurrence of R. 

 

Definition 26: The weight of the model will be 𝑝1

𝐿𝜆1(𝑅)
.  …  . 𝑝𝑘

𝐿𝜆𝑘
(𝑅)

. 

 

We will set the probabilities p1, … , pk of the model such that the probability of occurrence of R 

becomes maximal: 

 

𝑝𝑖 =
𝐿𝜆𝑖

(𝑅)

|𝑅|
 

 

Thus, we will end up with some low-weight models where the probability of occurrence of the 

life represented by the model is very low, and some heavy-weight models in which the 

probability of occurrence is higher. 

11. A definition with randomness 
Similar to the process described above, we will define the best performing policy for the models 

the complexity of which is k. (An important element here is that these models have different 

weights.) We will develop the policy which represents the limit when k tends to infinity, and that 

will be the best performing policy. Again, AI will be defined as a computable policy which is 

sufficiently proximal to the best performing policy. 

 

Statement 2: The two AI definitions are identical. 

 

This means that the best performing policy for worlds without randomness is the same as the best 

performing policy for worlds with randomness. Before we can prove this statement, we need to 

prove that: 

 

Statement 3: If we have some word  over the alphabet {0, 1} such that the instances of 1 occur 

with a probability of p, and if we make a natural extension of this word, then the next letter will 

be 1 with probability p. 

 

What is a natural extension? Let us take the first (simplest) Turing machine which generates . 

The natural extension will be the extension generated by that Turing machine. 

 

While we cannot prove statement 3, we can offer two ideas about how to prove it: 

 

The first idea is a practical experiment. We will write a program which finds the natural 

extension of a sequence and then we will run a series of experiments. We will keep feeding into 

the program various  words where 1 occurs with probability p. Then we will check the 

extensions and will calculate the average probability for all these experiments. If the experiments 

are many and if the average probability obtained from these experiments is p, then we can assume 

that statement 3 is true. 

 

The second idea is to prove the statement by theoretical reasoning. Let us have a computable 

function f from ℕ to ℕ. Suppose we start from the number n. The resultant sequence will be 

{f 
i
(n)}. We will convert this sequence into sequence {bi} which is made of instances of 0 and 1. 
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The number bi will be zero iff f 
i
(n) is an even number. Let  be some beginning of {bi}. What do 

we expect the next member of {bi} to be? 

 

Case 1. Sequence {bi} is cyclic and has the form 12
*
. Let  be longer than 1. Then there is 

some beginning of 2 which is part of  and for that beginning the instances of 1 occur with 

probability p. 

Case 2. Sequence {f 
i
(n)} has a long beginning in which odd numbers occur with probability p. 

We do not have a reason to expect that the p probability will change. 

12. A program with randomness 
We will develop a program which satisfies an AI definition based on models with randomness. 

We will proceed in the similar way as above, but with some differences. 

 

We will not search for the first k for which there is a model until moment t with complexity k 

since such a model exists for very low value of k. Instead, we will assume that k is fixed and k is 

parameter of the algorithm. 

 

The first step will be to find all models of complexity k of vertex vt. The second step will be to 

run at depth level h across a partial subtree of vertex vt over i) all discovered models, ii) over all 

possible actions of the agent and iii) over all probabilities R1R2, where R1 is the probability of the 

model and R2 is the probability after t. Here R1 is fixed (it is determined by the model), and R2 

runs over all possibilities. 

 

The next statement will be similar to statement 1: 

 

Statement 4: When the values of k and h are sufficiently high, the described algorithm is 

sufficiently proximal to the best performing policy. 

 

We assert that when the values of the parameters are sufficiently high, both algorithms will 

calculate approximately the same policy. However, are the two algorithms equally efficient? 

 

In practice both algorithms are infinitely inefficient, however, the second algorithm is far more 

efficient than the first one. We will look at three cases: 

 

1. Let us have a simple deterministic world. By simple we mean that its complexity k is very low. 

In this case the first algorithm will be slightly more efficient because it will find the model 

quickly. The second algorithm will find the same model because the deterministic models are a 

subset of the non-deterministic ones. 

 

2. Let us have a deterministic world which is not simple, i.e. its complexity k is high. In this case 

the first algorithm will need a huge amount of time in order to find a model of the world. 

Moreover, rather than the real model of the world, it will probably find some simplified 

explanation. That simplified explanation will model the life until moment t, but after a few more 

steps the model will err. The second algorithm will also find a simplified explanation of the 

world, but that simplified explanation will be non-deterministic. While both algorithms will 

predict the future with some degree of error, the description which includes randomness will be 

better and more accurate. Moreover, the description with randomness will be much simpler (with 

smaller k). 
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3. Let us have a world with randomness. In this case the second algorithm has a major advantage. 

It will find the non-deterministic model of the world and will begin predicting the future in the 

best possible way. It may appear that the first algorithm will not get there at all, but this is not the 

case. It will get there, too, but much later and not so successfully. The non-deterministic model 

consists of a computable function f and randomness R. There exists a computable function g 

which generates R. The composition of f and g will be a deterministic model of the world at 

moment t. Certainly, after a few more steps g will diverge from the actual randomness and f
o
g 

will not be a model of the world anymore. Then we will have to find another function g. All this 

means that a deterministic function can describe a world with randomness, but such description 

will be very ungainly and will work only until some moment t. The non-deterministic model 

gives us a description which works for any t. 

 

The conclusion is that the choice of language for description of the world is very important. 

Although these two languages provide identical AI definitions, the programs developed on the 

basis of each language differ substantially in terms of efficiency. 

13. A world with many agents 
The world with randomness can be imagined as a world with one additional agent who plays 

randomly. Let us assume that there are many agents in the world and each of these agents belongs 

to one of the following three types: 

 

1. Friends, i.e. agents who help us. 

2. Foes, i.e. agents who try to disrupt us. 

3. Agents who play randomly. 

 

Let the number of additional agents be a (all excluding the protagonist). Let each additional agent 

have k possible moves (k is the complexity of the world). We will assume that the protagonist 

(that’s us) will play first and the other agents will play after us in a fixed order. We assume that 

each additional agent can see everything (the internal state of the world, the model including the 

number of agents and the type of each agent, i.e. friend or foe, as well as the moves of the agents 

who have played before him). We will also assume that the agents are very smart and capable to 

calculate which move is the best and which move is the worst. 

 

The model of the world will again be a Turning machine, but that machine will have more 

arguments (the internal state of the world and the move of the protagonist, plus the moves of all 

other agents). The model will also include the type of each agent, i.e. friend or foe. Furthermore, 

the model of life until moment t will include the moves of all a agents at all steps until t. 

 

Once again, we will develop an AI definition on the basis of this new and more complicated 

language. We will continue with the assumption that the third definition is identical to the 

previous two. We will also develop a program which looks for a model of the world in the set of 

worlds with many agents. In the end of the day we will see that the new language is far more 

expressive: If we have at least one foe in the world this way of describing the world is much more 

adequate and, accordingly, the AI program developed on the basis of that language is far more 

efficient. 
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14. Conclusion 
We examined three languages for description of the world. On the basis of each language, we 

developed an AI definition and assumed that all three definitions are the same. Now we will 

make an even stronger assertion: 

 

Statement 5: The AI definition does not depend on the language for description of the world on 

the basis of which the definition has been developed. 

 

We cannot prove this statement although we suppose that it is true. We also suppose that the 

statement cannot be proven (similar to the thesis of Church). 

 

Although we assumed that the AI definition does not depend on the language for description of 

the world, we kept assuming that the program which satisfies this definition strongly depends on 

the choice of language. The comparison between the first two languages clearly demonstrated 

that the second language is far more expressive and produces a far more efficient AI. 

 

Let us look at one more language for description of worlds – the language described in [2]. That 

language describes the world in a far more efficient way by defining the term ‘algorithm’. The 

term ‘algorithm’ enables us plan the future. For example, let us take the following: ‘I will wait for 

the bus until it comes. Then I will go to work and will stay there until the end of the working 

hours.’ These two sentences describe the future through the execution of algorithms. If we are to 

predict the future only by running h possible steps, then h will necessarily become unacceptably 

large. 

 

The language described in [2] is far more expressive and lets us hope that it can be used to 

produce a program which satisfies the AI definition and which is efficient enough to work in real 

time. 
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