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Abstract

This is a primer for Chapter 3 of Hadlock’s book Field Theory

and Its Classical Problems : Solution by Radicals. We take a rather

näıve perspective and consider the linear and quadratic cases afresh

and evolve what is really met by solving a polynomial by radicals.

There are what we consider to be several hidden premises that some

students might be subconsciously puzzled about.

Introduction

Consider solving the first degree polynomial ax + b = 0. What could be
simpler? There are however complexities that underlie such a concept. Are
there specific techniques or rules that are to be followed, other rules not
being allowed? This seems näıve to even consider; just isolate the x by doing
the same arithmetic operation to both sides; arrive at x = −b/a. But this
procedure embeds the assumption that one is to use arithmetic operations
on the coefficients of this polynomial whereas Galois theory we will show
doesn’t confine allowed procedures to be just these manipulations. We will
develop this hidden premise.

Another hidden premise resides in the difference between an expression
and a formula. We will show that all polynomials will have all roots that can
be given as expressions (ultimately this means elements of a final sequence
of field extensions). To give a flavor of what we are talking about consider
x − a = 0. The expression x = a gives a solution to this polynomial, but it
does not give a formula for all linear polynomials. It does give a formula for
linear polynomials of the form x − a = 0, a subset of all linear polynomials.
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We will show that solution by radicals means a general formula (not just
expressions) for all polynomials of a given degree.

Referring to the arithmetic steps used to solve (find a formula for all
degree one polynomials), we used a finite number of algebraic manipulations.
Does this mean that any method that can be executed in a finite number of
steps is allowed and if any such method yields a solution in all cases then
the polynomial with a given degree is solved or solvable? To once again
get the flavor of this idea, consider that the rational numbers are countable,
that is there exists a one-to-one and onto mapping between natural numbers
and rational numbers. There are explicit functions. So, given that a and b
are integers (a premise to general polynomials assumed in this context) for
all linear polynomials we can search for a solution by enumerating all p/q
rational numbers until we find the solution. This searching idea is true for
all polynomials; that is all roots to all polynomials will have roots that can
be found by enumeration of all possible solutions. We will show that in this
sense all polynomials can be solved and then we will clarify this seeming
puzzle.

Allowed Methods

One might assume that the rules (the methods allowed) are to start with the
coefficients and use arithmetic operations (field operations) and the taking of
roots, but this can’t be the case; it is too limiting. Indeed, as Hadlock devel-
ops in his problems, the solutions to a cubic polynomial involves substitutions
that reduce the cubic to a quadratic (page 126 and 279). Can substitutions
distill to operations? Not really. One can substitute the answer, a root, for
x but this is an absurdity.

Consider z5 = k, k a constant. The roots are just the fifth roots of k in the
complex plane. In specifying these roots, I will use trigonometric functions,
sin and cos, but where in the lexicon of allowed arithmetic operations do
these occur? The next sections resolves this puzzle.

Expressions Versus Formulas

It must be the case that every polynomial has all its roots in the form of
expressions that are defined by being elements of a field. The field is the final
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field in a nesting sequence of radical extensions from the rational numbers.
That is the roots of a polynomial of any degree must consist of expressions
that involve some sequence of arithmetic operations and radicals that could
involve any integers, not necessarily the coefficients: Sections 3.1 and 3.2.
Every polynomial has such a sequence, but the splitting field might not reside
in its final field.

It must be the case that whereas all roots have an expression of the equiva-
lent of quadratic formula (one of its expressions), the expressions do not yield
a general formula for general degree five and greater polynomials. One can
also get this result from a combination of the fundamental theorem of algebra,
the root form (we’ll call it) of a polynomial, and symmetric coefficients that
relate these. So, by the FTA roots exists, so p(x) = (x−r1)(x−r2) . . . (x−rn)
and so the coefficients are the fundamental symmetric functions that com-
bine these roots to give integers, the coefficients. The only way an expression
for a root could not involve arithmetic combinations with radicals is if it was
a transcendental number – which by virtue of being a root of an integer
polynomial it isn’t.

The allowed methods are any methods including exhaustive searches of all
possible expressions of the right form. As algebraic numbers are countable,
these searches will always be successful, but (here it is) they will not yield
unique expressions that are general formulas for roots. Hadlock points this
out albeit in a round about way: he gives examples of solvable polynomials
and unsolvable polynomials in Section 3.7.

Finite Steps Clarified

Could we specify as our allowed step for solving all polynomials of arbitrary
degree the following: enumerate all possible algebraic numbers, feeding them
into our given polynomial and if a zero pops out we found a root? I say
yes. But here is a slight catch: we will not have in the end a finite list of
expressions for roots for degree greater than or equal to five. We will have
infinitely many expressions for roots – no formula.
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Conclusion

It is in no way mysterious that formulas for all roots of large degree poly-
nomials are possible. It is essentially that roots are deeply encrypted in
coefficients and no single method can pop them out. For degree n there are
n symmetric polynomials that are every more complicated. It is no wonder
that at some moderate degree like five, no single method can be used.

A quantum computer might be able to find expressions for roots of an
arbitrary degree polynomial via brute force searching.
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