
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

The Acceleration of multi-factor
Merton model on FPGA

Author:

Pengyu Guo

Supervisor:

Luk Wayne

Submitted in partial fulfillment of the requirements for the MSc degree in MSc of

Imperial College London

September 2020

Abstract

Credit risk stands for the risk of losses caused by unwanted events, such as the de-

fault of an obligor. The managing of portfolio credit risks is crucial for financial

institutions. The multi-factor Merton model is one of the most widely used tools

that modelling the credit risks for financial institutions. Typically, the implementa-

tion of the multi-factor Merton model involves Monte Carlo simulations which are

time-consuming. This would significantly restrict its usability in daily credit risk

measurement. In this report, we propose an FPGA architecture for credit-risk mea-

surements in the multi-factor Merton models. The presented architecture uses a

variety of optimisation techniques such as kernel vectorisation and loop unrolling,

to optimise the performance of the FPGA implementation. The evaluation results

show that compare to a basic C++ implementation running on a single core Intel

i5-4210 CPU, our proposed FPGA implementation can achieve an acceleration of up

to 22 times, with a precision loss of less than 10−8.

ii

Acknowledgments

I am extremely thankful for Prof Wayne Luk, for his academic guidance throughout

the project. I am also extremely grateful to Dr Ce Guo, for his technical assistance,

and also for the huge amount of confidence he placed in me to help me finish this

project.

I would be also grateful to Prof Stephen Weston, for his devotion to his knowledge

of the multi-factor Merton models.

I would also like to express my sincere thanks to my supportive parents, who give

me this great opportunity to study at Imperial college London and for always being

there for me.

iii

Contents

1 Introduction 1

2 Background and related work 4

2.1 Background . 4

2.2 Related work . 5

2.3 Multi-factor Merton model . 6

2.3.1 Model structure . 6

2.3.2 Monte Carlo Simulation . 8

2.4 Intel FPGA SDK for OpenCL . 9

2.4.1 OpenCL SDK programming model 9

2.4.2 Memory structures . 13

3 FPGA design and implementation 15

3.1 Basic C++ implementation . 15

3.2 NDRange Mode . 18

3.2.1 Basic Implementation . 19

3.2.2 Kernel vectorization implementation 21

3.2.3 Multiple compute units implementation 25

3.2.4 Loop unrolling implementation 27

3.3 Single work-item . 30

3.3.1 Single work-item basic implementation 31

3.3.2 Loop unrolling implementation 35

3.4 Fixed point vs Floating point . 37

3.5 Optimised implementation . 38

4 Evaluation 42

4.1 Accuracy evaluation . 42

4.1.1 Result distribution analysis 43

v

CONTENTS Table of Contents

4.1.2 Result accuracy analysis . 44

4.2 Performance Comparison Between CPU and FPGA Implementations . 46

4.3 Result analyze . 48

4.3.1 Compare with Intel FPGA implementation of single factor Mer-

ton model . 49

4.3.2 Compare with CUDA GPU implementation of multi-factor Mer-

ton model . 50

4.3.3 Compare with an outstanding GPU implementation of the multi-

factor Merton model . 51

5 Conclusion and future work 52

Appendices

A Legal and Ethical Considerations 56

vi

Chapter 1

Introduction

Credit risk analysis and management have become one of the most important topics

within a plethora of financial and lending institutions in recent years. Credit risk

represents the risk of losses arising from some unexpected credit incidents such as

the default of a counterparty, which often leads to incidents which have unwanted

negative effects. When modelling credit risks, the key difficulties arise from the fact

that default incidents are very unusual and that they always happen suddenly. How-

ever, when such incident occurs, it often leads to huge losses and disrupts the normal

operations of financial institutions.

Concentration risks are referred to as a special type of credit risks, defined as the

potential loss occurs from disproportionate loan distribution to single borrowers or

regional sectors

Historical experience has already shown that the concentration risk in asset port-

folios is one of the main reasons of bank distress. Furthermore, the huge amount

of regulations imposed by supervisory authorities to regulate the concentration risks

also illustrates the importance of diversifying loan portfolios for both nations and

industries. Therefore, the measurement of potential concentration risks within a

portfolio is very important.

In general, existing methods for measuring the concentration risks can be roughly

divided into two groups [1]. The first group consists of asset-value models, in which

the default of a corporation is modelled by the relationship between its assets and its

liabilities at the end of a given period. Default risk in models of this type relies heav-

1

ily on asset value’s stochastic evolution, and default happens when the value of the

variable that describes the asset value decreases below a specific value representing

the liabilities threshold.

The second category is reduced-form models, which do not model the relationship

between firm liabilities and firm asset value as what asset-value models did. In

contrast, it models the process of defaults directly, instead of conducting a random

evolution asset value process and model the default of a firm indirectly. In this type

of models, a firm’s probability of default is typically modeled as a distribution that

depends on some economic covariables. However, compared to asset-value mod-

els, the reduced-form models are proved [2][3] to be a poor match for the observed

real-world levels. Therefore, we select the asset-value models as the prototype of the

concentration risk measurement method used in this work. Specifically, our study

focuses mainly on one of the most famous and widely-used asset-value model - the

multi-factor Merton model.

There are varieties of asset-Value models have already been developed by some

prior researches, such as the KMV model[4] and the CreditMetrics model[5], both

software-based and running on general CPUs. Therefore, these tools are typically

serially-executed and lack parallel computing. This is especially troublesome in sit-

uations where the asset value process needs to be simulated for many scenarios. Be-

cause by doing so, it typically produces a high computational complexity due to the

large dimensionality of counterparty information and therefore is time-consuming.

Therefore, a high-performance implementation that focus on optimizing the execu-

tion speed of these models is needed to be developed to leverage the capabilities of

asset-value models completely. Field Programmable Gate Array (FPGA)-based hard-

ware methods has shown promising performance in terms of energy saving, and

increasing the computing speed of the asset-value models [6].

To conclude, the aim of this project is to address the major challenge in concen-

tration risk measurement: the time-consuming problem. The description of how we

address such challenge is presented in Section 3. The evaluation of how well this

challenge is met by our method is presented in Section 4.

Overall, in order to address the above challenge, this work proposes an FPGA-based

acceleration approach to speed up the execution of the multi-factor Merton model

so that the potential concentration risks of a portfolio can be measured more quickly.

To the best of the authors’ knowledge, this is the first work that proposes FPGA

implementation for the multi-factor Merton model. The purpose of this study is to

make up the gap in this area and to develop an FPGA-based accelerator with high

accuracy and fast processing speed.

The main contributions of this work are summarised as follows:

• We present a comprehensive set of basic manual optimisation methods for Intel

FPGA SDK for OpenCL and discuss how each of them affects the performance

of our FPGA implementation. By doing so, we hope to provide some insights

to researchers who have similar studies as ours (Section 3.1 - 3.3);

• We quantitatively analysed the impact of using fixed-point and floating-point

representation on the speed and accuracy of our FPGA implementation. In

addition, we have also pointed out how to further improve the running speed

of an FPGA implementation when a fixed-point representation is used (Section

3.4);

• We proposed an FPGA-based accelerator for the multi-factor Merton model

to speed up the model execution. We show that compared to a basic C++

implementation running on a single core Intel i5-4210 CPU, the proposed FPGA

implementation can achieve an acceleration of up to 22 times, with a precision

loss of less than 10−8 (Section 3.5);

• We conducted a series of comprehensive evaluations on the accuracy and speed

of our FPGA implementation. Besides, we have also compared our implemen-

tation with some previous similar designs. By doing so, we have identified

some of the shortcomings of our implementation, and presented how can we

improve our implementation in future work (Section 4);

Chapter 2

Background and related work

2.1 Background

Maintaining the stability of central counterparties(CCP) has become increasingly

important in recent years due to the significant increase in central clearing. Among

them, the management and modelling of the concentration risks are a core concern

within the risk management processes at central counterparties as these risks can

become systemic if a CCP is large enough. The concentration risk can be defined as

the potential loss during the running of the CCP, because of an insufficient diversifi-

cation of the CCP’s collateral pool.

Recently, asset-value models obtained positive success in measuring the concentra-

tion risks. This type of models uses a geometric Brownian motion to simulate an

obligor’s asset value process. The default of the obligor in the model happens when

its asset value at maturity time is lower than its liabilities.

The multi-factor Merton model [7] is one of the most popular asset-value models for

concentration risk measurement. The multi-factor Merton model tries to interpret

the asset of an obligor in terms of some potential economic variables so that these

economic factors can explain some large portfolio losses. Besides, factor models’

computational effort can be easily regulated by the number of economic variables

included in the model. Being one of the asset-value models, in multi-factor Merton

model, an obligor’s default or survival is also made by comparing the obligor’s asset

value at maturity time to a certain default threshold.

4

Being one of the asset-value models, the multi-factor Merton model leads to a re-

liable risk analysis result. However, as mentioned in Section one, this kind of models

are typically computationally intensive, which usually requires massive quantities of

computational resources. Fortunately, these types of models usually have parallelism

in many computational blocks and therefore it has a basis for parallelization by some

hardware frameworks like FPGAs.

2.2 Related work

There is plenty of literature accelerating the multi-factor Merton model. Béresand

and Bris [8] proposed a novel approach to speed up the execution of the multi-factor

Merton model using importance sampling and GPUs. The accelerator uses a Gaus-

sian mixture model to conduct importance sampling, and therefore avoid conducting

time-consuming Monte Carlo simulations. They have found that the model run on

an NVIDIA Kepler K20 accelerator is faster than run on the Intel Sandy Bridge E5-

2470 CPU for a factor of 19 to 287, depending on the structure of the portfolio.

In a similar study, Zhang and Oosterlee [9] has proved that when the CPUs and

GPUs are used concurrently to accelerate the model operation, different workloads

partitions between CPU and GPU will affect the final acceleration effect. They have

shown for European options that the highest speedup can be achieved if most of the

basic mathematical operations, such as big metric multiplications, are performed di-

rectly on the GPU. By doing so, the bottleneck of limited bandwidth between CPU

and GPU can be greatly avoided.

Besides, FPGAs based hardware acceleration is also often used to improve the run-

ning speed of asset-value models. Being one of the research group acting on FPGA

accelerators, Tian and Benkrid [10] .implemented an FPGA-based option pricing

accelerator on an asset-value model and achieves a speedup of 340 times over a

software implementation running on an Intel Pentium IV CPU. Their later work that

take use of Quasi Monte Carlo pricing strategy achieves 10 times speedup over an

NVIDIA 8800GTX GPU and 500 times speedup over an Intel Xeon CPU[11].

A study given by Delivorias[12] also gives a similar result. They compared the accel-

eration effect of the Heston model simulation on both GPU and FPGA clusters. The

Heston model is also one of the typical asset-value models. The experiment result

shows that: the FPGA version of the model run on Maxeler is 1.75 times faster than

the GPU accelerator with 2x Tesla M2090.

In view of all that has been discussed above, it was finally decided to build an FPGA

hardware design of the multi-factor Merton model in this project. The reasons why

FPGAs is preferred over CPU and GPU are as follows. First of all, FPGAs presents

a hardware implementation of the original algorithm whereas CPUs and GPUs ac-

celerators are generally software-based. Due to its natural, the hardware is always

faster than software. Furthermore, it has already been proved that using FPGA con-

sumes less energy. A study given by Schryver et al. [13] shows that when doing

a single-level Monte-Carlo simulation, a Tesla C2050 GPU achieves a 5.5x speedup

by consuming 30% of the total energy. Whereas a Virtex-5 FPGA achieved the same

throughput by only consuming 4% of the total energy.

2.3 Multi-factor Merton model

2.3.1 Model structure

As mentioned before, the multi-factor Merton model is used in this project to mea-

sure the concentration risk in credit portfolios. This section mainly introduces the

structure of this model.

Consider a portfolio of N risky borrowers. Let V (n)
t to be the asset value of bor-

rower n at time t (before the maturity time). Each borrower has a default threshold

such that borrower n defaults if V (n)
t lowers than this threshold at maturity time.

Therefore, in this model, V (n)
t can be regarded as a latent variable that driving the

event of default.

Let rn to be the nth borrower’s asset-value log returns, where T stands for the matu-

rity time.

rn = log(V n
T /V

n
0) (2.1)

rn is assumed to depend linearly on K systematic risk factors (X1, X2, ..., XK) as well

as on an idiosyncratic term εn. Both the systematic risk factors and the idiosyncratic

term are standard normally distributed. In addition, εn is independent from the

systematic risk factors XK . Then, the asset value log-returns rn can be rewrote in

the following form:

rn = βn ∗ Yn +
√

1− β2
n ∗ εn (2.2)

Yn denotes the borrower’s composite factor, βn measures the correlation between rn
and Yn, εn denotes the idiosyncratic term.

Therefore, Yn can be disintegrated into the K independent systematic factors we

mentioned above:

Yn =
K∑
k=1

αn,k ∗Xk (2.3)

Where Xk represents the systematic risk factors (X1, X2, ..., XK) and αn,k explains

borrower n’s dependence on a systematic factor Xk.

Since the composite risk factor Yn and the idiosyncratic term εn are assumed to

be independent, we can derive the following equation from (2.2):

V (rn) = β2
n ∗ V (Yn) + (1− β2

n) ∗ V (εn) (2.4)

Then β2
n ∗ V (Yn) captures borrower n’s systematic risk, and (1 − β2

n) ∗ V (εn) stands

for the idiosyncratic term, which measures the other risk factors that cannot be ex-

plained by the systematic factors.

It is worth noting that, since Xk, rn and εn are assumed to be standard normally

distributed, then in order to make V (Yn) = 1, the coefficient αn,k in equation (2.3)

must verify:
∑K

k=1 α
2
n,k = 1

With previous knowledge we can now measure the concentration risks of a portfolio.

Let PDn to be the one year default probability of borrower n: PDn = P (rn < cn).

Since rn are assumed to be standard normally distributed, cn can be rewrite as:

cn = φ−1(PDn) (2.5)

where φ is the cumulative distribution function.

If we plug equation (2.2) and (2.5) to the default condition rn < cn, we can ob-

tain:

φn <
φ−1(PDn)− βnYn√

1− β2
n

(2.6)

Thus, to conclude, the default probability of borrower n that conditional on the

composite factor Yn, is given by:

PDn(Yn) = φ(
φ−1(PDn)− βnYn√

1− β2
n

) (2.7)

Then, the portfolio loss variable L, which measures the quality of the current credit

portfolio, can be defined as follow.

L =
N∑

n=1

sn ∗ LGDn ∗ 1{rn < φ−1(PDn)} (2.8)

Where sn is the exposure share of borrower n: sn = EADn∑N
n=1 EADn

. EADn is the expo-

sure of each borrower’s loan. LGDn determines the amount of loss when borrower

n default. It is assumed that LGD are independent for different borrowers and for

all other variables in the model. And 1{.} here denotes the indicator function.

2.3.2 Monte Carlo Simulation

Using equation (2.8), we can calculate the loss rate of a certain credit portfolio ac-

cording to the given systematic risk factors. However, in order to more comprehen-

sively assess the quality of this credit portfolio and detect the potential risks within

it, we need to obtain the loss distribution of this credit portfolio. This can be done

by conducting a Monte Carlo simulation based on different systematic risk factors.

Figure 2.1: figure shows the procedure of the Monte Carlo Simulation

As shown in Figure 2.1, the Monte Carlo simulation involves M trials. A random

set of systematic factors is generated in each trial, which is then used by firms to

conduct the asset value process and decide whether the firm is default or not. Then,

the portfolio loss value of each trial is calculated as:

Li =
N∑

n=1

sn ∗ LGDi
n ∗ 1{rn < φ−1(PDn)}i (2.9)

The upper index i indicates the index of a particular Monte Carlo sample. It is worth

noting that, we assume that portfolios are infinitely fine-grained so that the idiosyn-

cratic risk term can be fully removed from the calculation.

Having the distribution of portfolio losses, the quality of a certain portfolio can then

be measured using a metric called ”value at risk (VaR)”, which is often used by firms

of the financial institutions to measure the risk of loss for investments. In our work,

VaR is defined as the p quantile of L = (L1, L2, ..., LM).

Therefore, the M-trial Monte Carlo simulation approximates the value at risk of a

certain portfolio as:

V aR(L) = min{Li : ψ(Li) ≤ (1− p) ∗M}

= L[dMpe]
(2.10)

Where ψ(Li) =
∑M

j=1(L
j > Li) and L[dxe] is the x − th loss in the ascendant sorted

loss sequence L.

2.4 Intel FPGA SDK for OpenCL

This work uses Intel FPGA SDK for OpenCL to develop the FPGA implementation of

the multi-factor Merton model. To make things easier for the reader to understand,

before discussing the structure of our FPGA Accelerator, the internal structure of the

Intel FPGA SDK for OpenCL, as well as its memory structure, is first introduced in

this section.

2.4.1 OpenCL SDK programming model

In this section, we discuss how OpenCL programs are executed. OpenCL programs

consist of one or more kernels, and each kernel represents a function of the OpenCL

program code. The OpenCL SDK provides two different types of kernel: the NDRange

kernel and the Single work-item kernel.

Consider a kernel that calculates the addition of two N-element Vectors. If the kernel

is executed in NDRange mode, an index space is generated accordingly as shown in

Figure 2.2.

Figure 2.2: NDRange kernel index space

Each point of this space represents a single work-item, and each work-item is re-

sponsible for executing the same piece of kernel code. In our example, each work-

item is in charge of handling the addition of two elements. Besides, an unique ID

called global ID is assigned to each work-item, such that different sets of data can be

mapped to different work-items according to this global ID. Each work-group con-

sists of a collection of work-items, and a collection of work-group forms an NDRange

kernel. One of the biggest benefits of this design is that the work-items within the

same work-group can share data through a fast on-chip local memory. Thus, there

is no need to extract the same piece of data repeatedly while running different work

items.

Imagine N = 128, that is, we are trying to add two vectors with length 128. Then

there will be 128 work-items in total, each responsible for adding two single el-

ements. Assume that the 128 work-items are divided into 8 work-groups, each

consists of 16 work-items, and there are three available compute units. Then an

NDRange kernel will execute as follow:

Figure 2.3: The execution of NDRange kernels

Since there are three compute units available, each time three work-groups are al-

lowed to be processed in parallel. Moreover, the compiler also performs work-group

level pipelining automatically. By doing so, it enables several work-groups to be ex-

ecuted concurrently in the same compute unit and the efficiency of all pipelines in

the compute unit can hence be optimised.

Figure 2.4: The execution of Single work-item kernels

The single work-item kernel works in a slightly different way - it has a single work-

group that contains only one work-item. As shown in Figure 2.4, the offline compiler

of OpenCL take use of a pipeline structure to speed up the computation for each

kernel. A new work-item is inserted into the pipeline at each clock cycle, so that

several work-items can be executed in parallel. By doing so, compare with replicat-

ing hardware for each work-item, the pipeline structure is more effective in terms

of hardware resources as all work-items are executed in the same pipeline. Besides,

the pipeline can make the memory bandwidth more efficient, as the input data of

each work-item is loaded sequentially at each clock cycle. Since FPGAs’ maximum

external memory bandwidths are lower than that of GPUs, the pipeline technique is

very important for FPGAs.

In addition to the different run time logic, another major difference between the two

different kinds of kernel is the way they share data. The sharing of data between

work-items in NDRange kernels is done by using a shared local memory as seen in

Figure 2.5. Whereas single work-item kernels share data via a specific feedbacks

channel as shown in Figure 2.6. This single work-item kernel’s special technique of

sharing data is a key factor in its ability to handle data dependencies between work

items.

Figure 2.5: NDRange kernel’s memory sharing strategy

Figure 2.6: Single work-item kernel’s memory sharing strategy

2.4.2 Memory structures

The OpenCL SDK supports four different memory types: private memory, local mem-

ory, global memory and constant memory, as shown in Figure 2.7.

Figure 2.7: Memory structure of the Intel FPGA SDK for OpenCL

Global memory: The global memory is off-chip memory and has a large capacity.

Although global memory storage has the highest access latency amongst the four

memory types, it can still be very efficient. This is because the global memory band-

width can be optimised by utilising LSU embedded caches which can provide coa-

lescent memory access. Therefore, if there are repetitive and low-frequency global

cache accesses, data is best to be stored in LSU caches. Compared with using global

memory directly, a shorter access latency and a higher memory bandwidth can be

achieved.

Constant memory: Constant memory locates in global memory, and therefore it is

accessible to all work-groups. However, the compiler always loads it into a fast on-

chip read-only cache at runtime. Therefore, by its nature, the access latency of the

constant memory is much lower than that of the global memory. Thus, The constant

memory is often used for data storage that require high-bandwidth memory access

and is constant across several invocations of a kernel.

Local and private memory: Typically, due to the use of a small-size but high-performance

local cache, local and private memory’s access latency and memory bandwidth is far

more better than that of the global memory. The major difference between private

memory and local memory is their accessibility for different work-items. The local

memory is visible to all work-items within the same work-group, whereas private

variables are stored in private registers, and are accessible only to the work-item

that own this private register.

Chapter 3

FPGA design and implementation

This chapter describes the implementation of our multi-factor Merton model in

FPGA. In our work, we tried to use both NDRange mode and single work-item mode

to implement our model and apply various methods to both modes to improve their

performance. It is worth indicating that there is only one kernel function for each

of the two implementations. Although distributing the model operation process to

multiple kernels can significantly reduce the programming difficulty, the communi-

cation between different kernels has transmission consumption, which will affect

the running speed. Therefore, we only keep one kernel function and let this kernel

reproduce the asset value process of the multi-factor Merton model as we discussed

in Section 2.3.1.

3.1 Basic C++ implementation

This section describes how ordinary C++ code reproduced the Monte Carlo Simu-

lation of the multi-factor Merton model. First of all, suppose we have 1024 obligors

and we need 32000 Monte Carlo simulation to measure the quality of a certain credit

portfolio, and there are 10 systematic factors affecting each firm’s asset value pro-

cess. Then the input and output of the program will be as shown in Table 3.1:

15

Table 3.1: Data specification

Type Variable name Dimension Description Variables in the model

Input

S 1 * 1024
The exposure share of each

obligor
sn in equation 2.8

LGD 1 * 1024
The loss given default of

each obligor
LGDn in equation 2.8

R 32000 * 1024
The asset-value log returns

of each obligor in each scenario
rn in equation 2.8

C 1 * 1024
The default threshold of

each obligor
cn in equation 2.5

Beta 1 * 1024

The correlation between the

asset-value of each obligor

and its corresponding

composite factors

βn in equation 2.2

X 32000 * 10
Systematic factors for

each scenario
αn,k in equation 2.3

Alpha 10 * 1024
Each obligor’s dependence

on each systematic factors
XK in equation 2.3

Output Result 32000 * 1

The portfolio loss of

each Monte Carlo

simulation scenario

L in equation 2.8

In short, the basic C++ implementation performs the following:

Algorithm 1 Multi Factor Merton Model Monte Carlo Simulation

1: for i = 1 to numOfScenario do

2: portfolioLoss = 0.0

3: for j = 1 to numOfOblg do

4: Extract the Sj, LGDj, Cj, βj, αj from the input data.

5: Compute the composite risk factor: Yj =
∑K

k=1 αn,kXk

6: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

7: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

8: end for

9: Result[i] = portfolioLoss

10: end for

The outer loop is responsible for conducting Monte Carlo simulation and recording

the portfolio loss of each simulation. The inner loop iterate through each obligor and

calculates their composite risk factors, then use this composite risk factor to conduct

the evolution of their asset-value, and finally decide whether this obligor default or

nor. This process can be described intuitively using the flow chart below.

Figure 3.1: The computational spatial layout of the model

Moreover, as mentioned before, two different types of kernel are used to imple-

ment the FPGA version of the multi-factor Merton model. The main difference be-

tween them is the different data sharing strategy and the different division of work-

groups/work-items. Since they have the same internal kernel logic , they can share

the same set of hardware structure as presented in Figure 3.2.

Figure 3.2: The hardware logic of both types of kernel

3.2 NDRange Mode

This section discusses our NDRange implementation of the multi-factor Merton model.

The NDRange mode mainly benefits from the parallelization of individual work

items. Therefore, programmers usually need to specify the thread-level parallelism

mechanism explicitly. The following subsections present several different optimisa-

tion techniques under NDRange mode. These optimisation methods are evaluated

separately in each subsection to analyse how each of them affects the performance

of our implementation. The optimal combination of these optimisation techniques

under NDRange mode is provided in Section 3.5. Besides, at the end of each sub-

section, an Arria 10 FPGA board was used to evaluate the performance of each

optimisation technique, with a resource report attached. The execution time of the

corresponding FPGA implementation was also compared to that of running on a

single-core Intel Core i5-4210 CPU. A more comprehensive comparison is provided

in Chapter 4 (i.e. compare the speedup effect of our FPGA implementation to the

software implementation running on a 1/2/4/8 cores CPU).

3.2.1 Basic Implementation

This implementation is the normal NDRange mode kernel function of the multi-

factor Merton model Monte Carlo Simulation with the references from the C++

implementation given in Algorithm 1. The NDRange kernel generates a deeply

pipelined version of the kernel each time so that it can take advantage of the pipelin-

ing parallelism mechanism. Therefore, the outer for loop in Algorithm 1 is removed

so that the C++ implementation can be parallelized. As shown in Algorithm 2, to in-

dex the specific work-item executed by the host, the OpenCL function get global id()

is used to determine the index of the Monte Carlo simulation for the kernel function.

The rest of the code is identical to the C++ implementation.

Algorithm 2 multi-factor Merton model - NDRange Mode basic implementation

1: i = get global id(0);

2: portfolio loss = 0.0

3: for j = 1 to numOfOblg do

4: Extract the Sj, LGDj, Cj, βj, αj from the input data.

5: Compute the composite risk factor: Yj =
∑K

k=1 αn,kXk

6: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

7: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

8: end for

9: Result[i] = portfolioLoss

In the host side, after being initialised, the input data is then transferred to the FPGA

side. Then the NDRange kernel is inserted into the command queue and starts to

execute. Once all the threads running on the kernel finished their tasks, the kernel

terminates and transfers the results back to the host side. Finally, the host side is

responsible for the evaluation of the value at risk of this credit portfolio. An intuitive

explanation of how the host and the FPGA collaborate is presented in Figure 3.3.

In the FPGA side, data transferred from the host side is first preloaded from global

memory to constant memory. Then the kernel extracts data from the constant mem-

ory, uses the local memory to store and transform the runtime data, and write the

results back to global memory in the end.

In our project, kernel computations are performed on constant memory mainly be-

cause it minimises the number of global memory access and reduces the memory la-

tency through all work-groups and therefore improves the memory access efficiency.

According to Zohouri et al.’ s[14] study, due to its nature, constant caches are most

appropriate for high-frequency data lookups that is constant across multiple invoca-

tions of a kernel. Besides, as suggested by the Intel Best Practice guide 2020[15],

if there are any read-only data that is shared by all work-groups, then the data is

better to be allocated in the constant memory. Our kernel precisely conforms to this

case as according to the running process of the model we proposed in Figure 3.1,

most of the input data, including S, LGD, C, etc., are all read-only data that shared

by all work-groups.

To conclude, the basic implementation of the multi-factor Merton model in NDRange

mode follows the procedure below, and its performance is as shown in Table 3.2.

Figure 3.3: NDRange Basic implementation

Table 3.2: Resource utilisation - NDRange Basic Implementation

Parameters/Devices FPGA CPU

Time 12651 ms 16936 ms

Resource utilisation

Logic utilization = 20%

N/A

ALUTs = 11% (91420/854400)

Dedicated logic registers = 10% (170876/1708800)

Memory blocks = 12% (322/2713)

DSP blocks = 4% (60/1518)

3.2.2 Kernel vectorization implementation

The following figure shows the results of an Intel FPGA SDK for OpenCL benchmark

test conducted by Jia et al. in [16]. This diagram describes the relationship be-

tween cache frequency/latency and the number of access ports while using the same

constant cache.

Figure 3.4: Constant cache latency and frequency with different number of ports (Ob-

tained from ”Tuning Stencil codes in OpenCL for FPGAs”,2016)[16]

The latency of the constant cache accessed by a certain number of ports is described

using the bars, and the numbers above each bar presents the corresponding fre-

quency. It can be observed that the performance of the constant memory drops dra-

matically while the number of memory accessing requests is increased. Considering

that in our implementation, the average number of ports access is 12 on average, the

memory access speed of our NDRange implementation will be significantly affected.

Therefore, we decided to use the technique of kernel vectorisation to alleviate this

problem.

Kernel vectorisation allows work items to be executed in a single instruction mul-

tiple data (SIMD) fashion, and therefore it can be used to reduce the number of

ports accessing constant memory, and consequently, the access latency can be re-

duced. The principle of kernel vectorization is as shown in Figure 3.5. Intuitively,

this technique splits the work among all the work-items within the work-group. For

instance, if a kernel is executing a work-group that contains 16 work-items, then a

kernel vectorization with a factor of 2 will reduce the total number of work-items to

8. As a result, the first work item will take over the work of the first and the second

work-item, and so on.

Figure 3.5: The key idea of kernel vectorization

The Intel FPGA SDK for OpenCL Offline Compiler contains a built-in library that

translates mathematical operations in the kernel, such as addition and subtraction,

to its corresponding SIMD operation. Therefore in our work, kernel vectorization

is easily done by including the num simd work items attribute in the kernel code.

For example, in Figure 3.6 we apply a kernel vectorisation with a factor of four to

the original kernel code that add two vectors. By setting the vectorization factor

to 4, the compiler will be informed to vectorise the kernel four times to allow four

work-items to be executed concurrently. That is, in each iteration, the kernel loads

four elements from both arrays, instead of one element as before. The equivalent

manually vectorisation implementation is shown in Figure 3.7. However, by doing

so, we need to adjust the NDRange size to a quarter of what it used to be, because

each work-item takes over four times as much work after the manual optimisation

is implemented. Therefore, in order to decrease the programming difficulty, we use

OpenCL’s build in kernel vectorization command directly (as shown in Figure 3.6).

Figure 3.6: Kernel Vectorization using OpenCL SDK

Figure 3.7: Kernel Vectorization manually

To conclude, by using the Kernel Vectorization technique, the kernel can access mul-

tiple times as much data as before. This is indicated by the broad arrows in Figure

3.8.

Figure 3.8: NDRange mode - Kernel Vectorization implementation

To execute multiple work-items concurrently, the compiler increase the hardware

utilization to do so. In our Kernel Vectorization implementation, we have utilised

a vectorisation factor of 16, and it can be seen that the resource utilisation has in-

creased as shown in Table 3.3 when compared to the basic implementation’s resource

utilisation presented in Table 3.2. However, we could also observe that compare to

the basic implementation of NDRange modes, vectorise the kernel helps to improve

the performance by up to 200.9%. This indicates that our kernel vectorisation strat-

egy is effective.

Table 3.3: Resource utilization - Kernel Vectorization Implementation

Parameters/Devices FPGA CPU

Time 6295 ms 16936 ms

Resource utilization

Logic utilization = 62%

N/A

ALUTs = 39% (331507/854400)

Dedicated logic registers = 26% (444288/1708800)

Memory blocks = 44% (1191/2713)

DSP blocks = 45% (680/1518)

3.2.3 Multiple compute units implementation

This section discusses the second optimisation technique under the NDRange mode

- increase the number of compute units. In the NDRange mode, work-groups run

on multiple compute units. Each compute unit is implemented as a unique pipeline,

and can execute multiple work-groups at the same time. By default, work-groups

are dispatched automatically by the FPGA hardware scheduler to available compute

units. A compute unit is able to be assigned work-groups as long as it does not

exceeds its maximum capacity. If there are two compute units available, then each

compute unit is responsible for executing half of the work-groups. In case that each

work-group takes the same amount of time to complete its tasks, then in theory, the

total running time can be cut in half if there are enough hardware resources.

For example, if we decide to increase the number of compute units to 4, then the

compiler will create four unique compute units as showed in Figure 3.9;

Figure 3.9: NDRange - Multiple Compute Units implementation

Therefore, we also tried to optimize our FPGA implementation by increasing the

number of compute units per kernel to 12. In our work, this is done by specifying the

number of compute units that the OpenCL FPGA compiler is expected to create using

the num compute units attribute, as shown below. The corresponding performance

is presented in Table 3.4.

Figure 3.10: Pseudo code for multiple compute units implementation

However, through experiment we found that increase the number of compute units

to improve the performance of our FPGA implementation leads to the following two

problems.

• To increase the number of compute units, the compiler adds the necessary re-

courses to do so. It can be seen that compared with the basic implementation,

the improvement of resource usage in Table 3.4 is similar to that of the kernel

vectorization implementation in Table 3.3.

• A higher throughput can be achieved by increasing the number of compute

units. However, as shown in figure 3.9, it do so at the expense of increasing

memory bandwidth(4 loads and 4 store, instead of 1 load and 1 store of the

kernel vectorization implementation).

Because of the above two reasons, from Table 3.4 we can find that when use 12

compute units to optimize the implementation, the kernel running speed was only

improved a little bit compared to the basic NDRange implementation, and its accel-

eration effect is far from that of kernel vecterization.

Table 3.4: Resource utilization - 12 Compute Units Implementation

Parameters/Devices FPGA CPU

Time 11980 ms 16900 ms

Resource utilization

Logic utilization = 73%

N/A

ALUTs = 43% (364828/854400)

Dedicated logic registers = 33% (562196/1708800)

Memory blocks = 63% (1710/2713)

DSP blocks = 47% (713/1518)

3.2.4 Loop unrolling implementation

Since there are a large number of loops in our kernel code, we also tried the loop

unrolling strategy to improve the performance of our loop Iterations. Loop unrolling

is a loop transformation technique that helps to improve the running speed of a pro-

gram. It works by replicating the body of a loop multiple times so that the number of

iterations of a loop can be reduced. Intuitively, the aim is to flatten the loop structure

and execute all iterations of the loop in one feed-forward path.

Loop unrolling optimizes the loop’s performance in two aspects. First of all, it re-

move or reduce iterations. This increases the program’s speed by eliminating the

consumption of loop control instructions. Secondly, there exists a lot of loops that

are not pipelined in the NDRange kernel. If the loops are not pipelined, then the

optimal case will be that it can be completely unrolled so that the loop is removed.

By doing so, for the offline compiler, the loop iterations is equivalent to be fully

pipelined as there is no loop anymore. This can be explained more intuitively using

the figure below, where the above one describes the running process without loop

unrolling, while the bottom one shows the running process with fully loop unrolled.

Figure 3.11: loop rolling vs loop unrolling

From the figure we can observe that, without loop unrolling, loops in a FPGA kernel

is not well pipelined. Whereas unrolling the loop enables the operations inside a

work item to be pipelined, this make the entire pipeline wider so that more tasks

can be executed in parallel.

In our work, loop unrolling is done by adding a #pragma unroll attribute to the

main loop, as shown in the code example below.

Figure 3.12: OpenCL SDK loop unroll 4 times

We implemented two different loop unrolling implementations that used two differ-

ent combinations of the unrolling factor. Algorithm 3 shows our first loop unrolling

implementation. The outer loop was unrolled with 4 times and the inner loop was

fully unrolled. By doing so, from Table 3.5, it can be found that the algorithm has

got a speed up of factor 8 at the expense of increased hardware utilization.

Algorithm 4 shows our second loop unrolling implementation, where the loop unroll

factor of the outer loop was changed to 8. From Table 3.6, it can be observed that

it consumes about 1.5 times the hardware utilization of the basic implementation

to give us about the same improvement in performance which is very ineffective.

Therefore, in our optimised implementation, the first loop unrolling factor combina-

tion is used.

Algorithm 3 multi-factor Merton model - Loop unrolling implementation 1

1: i = get global id(0);

2: portfolioLoss = 0.0

3: # pragama unroll 4

4: for j = 1 to numOfOblg do

5: Extract the Sj, LGDj, Cj, βj, αj from the input data.

6: # pragama unroll

7: Compute the composite risk factor: Yj =
∑K

k=1 αn,kXk

8: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

9: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

10: end for

11: Result[i] = portfolioLoss

Table 3.5: Resource utilization - Loop Unrolling Implementation 1

Parameters/Devices FPGA CPU

Time 2445 ms 16936 ms

Resource utilization

Logic utilization = 35%

N/A

ALUTs = 19% (162324/854400)

Dedicated logic registers = 18% (307583/1708800)

Memory blocks = 30% (811/2713)

DSP blocks = 14% (212/1518)

Algorithm 4 Multi Factor Merton Model - Loop unrolling implementation 2

1: i = get global id(0);

2: portfolioLoss = 0.0

3: # pragama unroll 8

4: for j = 1 to numOfOblg do

5: Extract the Sj, LGDj, Cj, βj, αj from the input data.

6: # pragama unroll

7: Compute the composite risk factor: Yj =
∑K

k=1 αn,kXk

8: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

9: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

10: end for

11: Result[i] = portfolioLoss

Table 3.6: Resource utilization - Loop Unrolling implementation 2

Parameters/Devices FPGA CPU

Time 2510 ms 16936 ms

Resource utilization

Logic utilization = 51%

N/A

ALUTs = 28% (237523/854400)

Dedicated logic registers = 25% (427200/1708800)

Memory blocks = 46% (1245/2713)

DSP blocks = 27% (406/1518)

3.3 Single work-item

The single work-item kernels is equivalent to NDRange kernels with only one work-

group and each work-group contains only one work-item. Ordinary C/C++ pro-

grams is based on sequential models, which execute each element sequentialy, with

no overlap between the execution of the elements, as described in Figure 3.13(left).

Whereas in single work-item kernels, the compiler will infer pipelined execution

across loop iterations and builds all the loops to iterate sequentially through the

pipeline. That is, a work-item is inserted into the pipeline in each clock cycle so

that multiple work-items can be executed in parallel to maximize the utilization of

hardware resources.

Figure 3.13: sequential mode vs loop pipeling

3.3.1 Single work-item basic implementation

The basic implementation of single work-item kernel is very similar to that of the

original C++ implementation, as shown in the pseudo code below.

Algorithm 5 Single work-item mode - Basic implementation

1: for i = 1 to numOfScenario do

2: portfolioLoss = 0.0

3: for j = 1 to numOfOblg do

4: Extract the Sj, LGDj, Cj, βj, αj from the input data.

5: for k = 1 to numOfFactor do

6: Yj+ = X(i, j) ∗ Alpha(j, k)
7: end for

8: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

9: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

10: end for

11: Result[i] = portfolioLoss

12: end for

The basic implementation above has three sets of nested loops. The outer loop is

responsible for doing Monte-Carlo simulations, the middle loop calculates each

obigor’s loss value, and the inner loop is responsible for calculating the composite

risk factor of each obligor based on the systematic factors x and the dependence

variable α.

Similar to our NDRange mode implementation, the basic implementation of single

work-item kernel will also first transferred the data from the global memory to the

constant memory. This is because the main difference between the single work-item

kernel and the NDRange kernel is the different division of work-groups and

work-items. As the data used by different work-groups in our model is identical,

theoretically, single work-item kernels can adopt the same memory accessing

method as NDRange Kernel models. By doing so, the memory access efficiency can

be improved without affecting the accuracy of the running results.

As we said before, the single work-item mode mainly speed up the kernel through

pipeline parallelization. Therefore, the OpenCL FPGA compiler always generates an

optimization report on how well the single work-item kernel is pipelined, as shown

in Figure 3.14.

Figure 3.14: Single work-item kernel basic implementation performance report

The initiation interval (II) in the report refers to the launch frequency of a loop’s

new iteration. It describes the number of hardware clock cycles the pipeline must

wait for before continuing with the next loop iteration. By referring the report, we

can observe that the compiler successfully infers pipelined execution for the inner

most loop and it shows an optimal loop performance as it has an II value of 1,

which indicates that iterations were launched every cycle. The outer two loops

were also pipelined successfully, but their iterations were launched every two cycles

because they have a inner loop inside them. Overall, the optimization report shows

that the kernel was well pipelined. From Table 3.7, we see that without any

optimization methods, the basic implementation produced a 2x improvement in

running speed compared to that of the C++ basic implementation on the CPU.

Table 3.7: Resource utilization - Single work-item basic implementation

Parameters/Devices FPGA CPU

Time 7392 ms 16936 ms

Resource utilization

Logic utilization = 21%

N/A

ALUTs = 11% (93976/854400)

Dedicated logic registers = 10% (170879/1708800)

Memory blocks = 11% (279/2713)

DSP blocks = 4% (60/1518)

3.3.2 Loop unrolling implementation

Loop unrolling reduces the number of iterations of a loop at the expense of

increasing hardware utilization. Since it is able to increase the throughput of the

kernel and widen the pipeline, loop unrolling usually brings a speed up effect.

Therefore, we have also tried to use loop unrolling to improve the performance of

the single work-item kernel. In this implementation, as we can see from the code in

Algorithm 6, we have unrolled the outer two loops with a factor of 4 and fully

unrolled the inner most loop, like in our optimal loop unrolling implementation

under NDRange mode.

Algorithm 6 Single work-item kernel loop unrolling implementation
1: #pragma unroll 4

2: for i = 1 to numOfScenario do

3: portfolioLoss = 0.0

4: #pragma unroll 4

5: for j = 1 to numOfOblg do

6: Extract the Sj, LGDj, Cj, βj, αj from the input data.

7: #pragma unroll

8: for k = 1 to numOfFactor do

9: Yj+ = X(i, j) ∗ Alpha(j, k)
10: end for

11: ncdf = cdf((Cj − Yj ∗ βj)/(sqrt(1− β2
j)))

12: portfolioLoss+ = Sj ∗ LGDj ∗ (Ui,j < ncdf)

13: end for

14: Result[i] = portfolioLoss

15: end for

From the optimization report in Figure 3.15, we can see that after using loop

unrolling, both three loops are well pipelined, the initiation intervals are also

within a reasonable range. This indicates that the use of the loop unrolling

technique does not affect single work-item kernel’s parallel pipelining structure.

From Table 3.8, we can see that the performance has increased significantly

benefits from the use of loop unrolling.

Figure 3.15: Single work-item loop unrolling performance report

Table 3.8: Resource utilization - Single work-item loop unrolling implementation

Parameters/Devices FPGA CPU

Time 1592 ms 16936 ms

Resource utilization

Logic utilization = 85%

N/A

ALUTs = 41% (347740/854400)

Dedicated logic registers = 31% (529714/1708800)

Memory blocks = 71% (1902/2713)

DSP blocks = 42% (637/1518)

3.4 Fixed point vs Floating point

The input of the kernel that running the multi-factor Merton model consists of

floating point numbers, which results in a huge consumption of hardware

resources. However, in Intel FPGA SDK for OpenCL, fixed-point operations typically

require less hardware resources than the equivalent floating-point operation. This

indicates that we could save more hardware resources by using fixed-point data

representations. Therefore, we have also tried to use fixed-point representation to

improve the performance of our implementation

The fixed-point representation’s bit length of the fractional parts and integer parts

can be determined according to the sample data intensity range and a minimum

fractional accuracy. The intensity range of the multi-factor Merton model’s input

data is quite straightforward to be determined. According to the requirements of

the model, the input data of the model can generally be stored in 8-bit variables.

However, the simulation procedure requires the input data to be summed,

multiplied and scaled. Therefore, in order to avoid arithmetic overflow, it will be

better to use a longer bit lengths. In order to figure out the most appropriate bit

length of the fixed-point representation, an analysis of the input and intermediate

data value intensities was performed. As a result, it was finally decided to adopt

17-bits fixed-point data representation: 4 bits for integer part and 13 bits for

fractional part.

Since the Intel FPGA SDK for OpenCL does not support fixed-point representation,

the conversion is done manually on the host side using the following equations:

fixed point input = floating point input ∗ (1 << fractional bits) (3.1)

floating point output = fixed point output/(1 << fractional bits) (3.2)

The two tables below shows the influence of using fixed point on our optimised

FPGA implementation (which is our best-performing implementations, this will be

discussed in Section3.5). It can be observed that, as we expected, using fixed point

number saves a lot of hardware resources, especially the resources of digital signal

processing (DSP) blocks. Besides, it can be seen that compared to the floating point

implementation, using fixed-point further increase the speed up effect for 15%.

This indicates that using fixed-point data is a efficient way to improve the running

speed of our FPGA implementation.

Table 3.9: Resource utilization - NDRange kernel with fixed-point

Parameters/Devices FPGA CPU

Time 769 ms 16936 ms

Resource utilization

Logic utilization = 65%

N/A

ALUTs = 40% (341760/854400)

Dedicated logic registers = 26% (444285/1708800)

Memory blocks = 46% (1245/2713)

DSP blocks = 44% (665/1518)

Table 3.10: Resource utilization - NDRange kernel with floating-point

Parameters/Devices FPGA CPU

Time 884 ms 16936 ms

Resource utilization

Logic utilization = 67%

N/A

ALUTs = 42% (358843/854400)

Dedicated logic registers = 29% (495352/1708800)

Memory blocks = 48% (1296/2713)

DSP blocks = 56% (850/1518)

3.5 Optimised implementation

The performance of different optimisation techniques we discussed in previous

sections is summarised in the table below.

Table 3.11: Performance comparison between different optimization techniques

Kernel Implementation Execution time Speed up

NDRange

Basic implementation (fixed point) 12651ms 1.34x

Kernel vectorization (fixed point) 6295ms 2.69x

Multiple compute units (fixed point) 11980ms 1.41x

Loop unrolling 1 (fixed point) 2445ms 6.93x

Loop unrolling 2 (fixed point) 2510ms 6.75x

Optimised implementation (fixed point) 769ms 22.02x

Optimised implementation (floating point) 884ms 19.16x

Single work-item
Basic implementation (fixed point) 7392ms 2.29x

Loop unrolling (fixed point) 1592ms 10.64x

Of all the optimization methods we have tried in the previous sections, including

combinations of various optimization methods, experimentally we found that the

method with the greatest improvement in speed was the NDRange kernel with loop

unrolling and kernel vecterization, which is called optimised implementation in the

table above. The pseudo code of of this implementation is given in the figure below.

Figure 3.16: Optimised FPGA implementation

Within a single work-item kernel, there is a minimum distance of one clock cycle

between two contiguous loop iterations. We can take advantage of this distance to

transfer the data directly from the first loop iteration to the second iteration.

Therefore, in single work-item kernels, it is possible to fully resolve iteration

dependencies so that the initiation intervals can all be reduced to 1. However, as

can be seen from Figure 3.15, the outermost loop in the code of single work-item

kernel has an initiation interval that is greater than 1 because the loop

dependencies inside it are not fully resolved. Therefore in our project , the single

work-item kernel performed worse than the NDRange kernel because it did not

fully exploit the power of pipeline execution.

Theoretically, If the single work-item kernel design is optimised with sufficient

effort, it must overperform, or at least equal to the equivalent NDRange kernel

design. However, within a limited time, we wish to cover more types of

optimisations, such as algorithmic optimisations and precision optimisations.

Although single work-item designs can lead to higher performance, they take a

huge effort to optimise manually. Therefore in this project, we ended up with a

good NDrange design and leaving the tedious single work-item kernel optimisation

for future work.

Moreover, based on the optimised implementation of the NDRange kernel, we also

used the following programming techniques to optimise the speed.

First of all, we avoid branches on global memory addresses. As suggested by Intel

best practice guide 2020[15], for cases where in a kernel, the external memory

address that is accessed from branches, instead of extracting data directly from the

external memory as a criterion for branching, it is best if we pre-stored the results

in temporary variables and use the temporary variable instead. By doing so, we can

prevent the compiler from dynamic addressing at runtime and potentially allow

coalesce memory accesses when loop unrolling is applied. Therefore, in the code of

the FPGA side, we have moved all constant memory accesses out of branches and

storing their value in some temporary variables. Then these temporary variables

are used in the branch so to improve the performance of the model.

Secondly, we minimised the number of constant memory accesses. In our project,

the performance of the implementation is improved by reducing accesses to the

slower global memory and instead, storing all input data in the constant memory

which has a faster accessing speed. As mentioned earlier, in NDRange Kernel, we

can reduce the number of access ports of constant memory by using kernel

vectorisation. In addition, we could also manually reduced the number of accesses

to constant caches by using temporary registers.

Figure 3.17: Unoptimised code Figure 3.18: Optimised code

Figure 3.17 shows a code snippet in which a constant buffer is used to accumulate

the loss of each obligor. As can be seen from the code, a write port is required to

the constant buffer for each iteration. However, by moving the constant cache

access outside of the loop and replacing it with a temporary variable as can be seen

in Figure 3.18, the read port is removed, and therefore the overall performance can

thus be improved.

Another case of reducing the number of constant buffers accessing is depicted in

Figure 3.19. Since the program needs to access the same element in the same

constant buffer repeatedly, in each iteration, the element is first extracted into a

temporary register Beta, and then let the temporary register participate in the

subsequent operations.

Figure 3.19: Reducing the number of constant buffer accessing

Chapter 4

Evaluation

This chapter evaluates the optimised FPGA implementation for the multi-factor

Merton model introduced in section 3.5 from three aspects: the accuracy of the

result, the speed improvement and the comparison with other literature, which are

carried out in Section 4.1, 4.2 and 4.3 respectively.

4.1 Accuracy evaluation

The accuracy of our FPGA implementation is evaluated from two aspects, carried

out in section 4.1.1 and 4.1.2 respectively. For the FPGA implementation, we use

the Intel(R) FPGA SDK for OpenCL(TM), version 19.4.0 build 64 Pro Edition. For

the test data, 100 groups of data(1024 obligor, 32000 scenario, 10 systematic

factors for each group) are generated randomly according to the requirement of the

model data presented by Almqvist[17].

It is worth indicating that, the accuracy evaluation in section 4.1 is done by using

the FPGA Emulator provided by Intel FPGA SDK for OpenCL, instead of a real FPGA

Board. The FPGA emulator enables programmers to emulate the functionality of

the kernel and figure out the problems of their design without executing it on an

actual FPGA board. According to Intel best practice guide 2020[15], the running

results generated by FPGA emulator are the same as those generated using an

actual FPGA Board, so people usually use an emulator to verify the correctness of

the program before trying to run on an FPGA Board. Therefore, considering that

FPGA boards are expensive resources and the evaluation in this section only

includes the measurement of the results correctness without any evaluation in

42

terms of speed/energy consumption, we use the FPGA Emulator to evaluate our

implementation.

It is also worth noting that, the data we generate already contains some extreme

cases, that is, the data generated with some extreme distributions. By doing so, we

want to demonstrate that our implementation would still work in extreme

situations.

4.1.1 Result distribution analysis

The test set consists of 100 sets of randomly generated data that met the

requirement of the model. As discussed in Section 2.3.1, each set of data is entered

into the model, and a vector with a length of 32000 is generated accordingly. Each

element of this vector represents the result of a Monte Carlo simulation run with

this its corresponding input data, and therefore there are 32,000 scenarios in total .

In section 2.3.2, we have discussed that the quality of a certain portfolio is typically

measured by the ”value at risk” metric. Intuitively, in our model, the value at risk is

measured by sorting the credit portfolio loss of 32,000 scenarios in ascending order

and extracting the loss value at the corresponding confidence level. For example, if

we want to measure the value at risk of our 32,000 simulations with confidence

level P = 0.1, then we need to sort the results in ascending order and take the

3200th data as a result.

In this section, we measured the value at risk of all results at the confidence level of

P = 0.2, 0.4, 0.6 and 0.8, respectively. The corresponding box plot distribution is as

shown in the figure below. The y-axis represents the value at risk of the result at a

certain confidence level.

Figure 4.1: Loss distribution when p =

0.2

Figure 4.2: Loss distribution when p =

0.4

Figure 4.3: Loss distribution when p =

0.6

Figure 4.4: Loss distribution when p =

0.8

As can be seen from the figure, at the same confidence level, although there are a

few outliers, most of the data is concentrated, and the fluctuation is generally less

than 0.01. This indicates that the simulation converges reasonably well. This is

promising because this is consistent with the real world: the distribution of the loss

rate should not change too much, even if the overall environment change slightly.

Because the quality of a credit portfolio should not be affected too much by slight

changes of systematic factor values.

4.1.2 Result accuracy analysis

In this subsection, the results produced by our model are compared with the

standard results to evaluate the accuracy of our model. As discussed in Section 3.4,

our model uses two different types of data: single precision floating-point

representation and fixed-point representation. Compared with the double-precision

data representation used in the golden reference, single precision floating points

and fixed points representation tend to be faster because they take up less space

and provide wider memory bandwidth. However, this comes at the expense of

precision losses.

Therefore, the test environment is set up to compare the results of our single

precision floating-point and fixed-point implementation with the double-precision

result generated by the standard Python code, which is considered to be the golden

reference and available publicly to download. In this evaluation, We manually

import the 100 sets of input data generated previously into the standard code and

produce the corresponding 100 sets of standard output. The standard output is

then compared with the results produced by our implementations. The following

diagram quantitatively analyses the precision loss of the running results of all test

data using different data representation. The x-axis represents different intervals

precision loss, and the y-axis represents the number of test results falling within the

corresponding precision loss interval. The precision loss of each test set was

measured by the average loss of 32000 Monte Carlo simulations.

Figure 4.5: Fixed-point precision loss Figure 4.6: Floating-point precision

loss

From the figure we can observe that, on average, the precision loss for the single

precision floating-point result is on the order of 10−8, while the error for the

fixed-point result is on the order of 10−5. The precision loss of both types of data

representations did not fluctuate significantly between different test sets. Two

conclusions can be drawn from the figure:

• The experimental results are in line with our expectations. Compared with

single precision floating point, fixed-point representations have a more

serious precision loss.

• According to Morgan’s study [5], when measuring the credit risk of a credit

portfolio, the precision loss should not exceed 10−8. The result shows that the

precision loss of our single precision floating-point result is within this error

tolerance.

To conclude, based on the experimental results in sections 4.1.1 and 4.1.2, it can be

proved our FPGA implementation can produce reasonable result. This is because

the running results produce a reasonable distribution, and the precision loss of our

implementation is within an acceptable range when using the single precision

floating-point representation. Even though the precision loss of fixed-point

representation exceeds the safe threshold, we can easily reduce the precision loss

by increasing the bit length of the fixed-point representation, but this will increase

hardware utilisation as well.

4.2 Performance Comparison Between CPU and

FPGA Implementations

In this section, we compare the performance between CPU and FPGA

implementations. The FPGA implementation is the optimised implementation we

proposed in Section 3.5. The CPU implementation includes the

C++implementation that we implemented ourselves and the Python

implementation that is regarded as the golden reference. Same as before, for test

data, the number of scenarios, the number of obligors and the number of

systematic factors are determined as 32000, 1024, 10, respectively. For CPU based

processing, we used Intel i5 4210 single/double/4/8 core CPUs to execute our

C++ implementation. It is worth noting that the host side of our FPGA

implementation uses the same CPU with a single core. For FPGA-based processing,

we use the Arria 10 devices that built on TSMC’s 20 nm process technology. For the

FPGA implementation, we use the Intel FPGA SDK for OpenCL, Version 19.4.0.64.

The evaluation metric used in this section is the processing time, which is the time

for executing the multi-factor Merton model at one time step. In the FPGA

implementation, the processing time includes the time of data transfer between the

host side and FPGA side. The figure below presents the processing time of 10

different executions of our optimised FPGA implementation.

Figure 4.7: Processing time of our optimal FPGA implementation

As can be seen from the figure, the processing time of different test cases is roughly

the same, and there are no extreme cases. This indicates that the performance of

our implementation is stable. The table below gives a comparison of the processing

time of different implementations. The result is measured as the average execution

time of 10 executions for FPGA implementation, and 100 executions for Python and

C++ implementation. The table also provides the speedup effect of all

implementations relative to the one core C++ implementation.

Table 4.1: The comparison of the performance between software implementation and

FPGA implementation

Device Implementation Processing time Speed Up

FPGA
17 bits fixed-point 769 ms 22

Single precision floating-point 884 ms 19.2

CPU

Python 1 core 43069 ms -

C++ 1 core 16936 ms 1.0

C++ 2 cores 8913 ms 1.9

C++ 4 cores 4838 ms 3.5

C++ 8 cores 2454 ms 6.8

From the table we can observe that, the golden reference that programmed in

Python is significantly slower than our equivalent C++ implementation. This is due

to the nature of the programming language, which is exactly what we would

expect. By observing the processing time of our C++ implementation, we can find

that with the increasing number of CPU cores, the running speed has been

significantly improved. However, there was a counter-intuitive phenomenon: the

speed up effect and the number of CPU cores are not increased by the same

proportion. For example, the execution time is not eight-fold for an 8-cores CPU.

The reason is that when there are multiple processors running at the same time, the

consumption of managing parallel tasks slows down the model execution.

On the other hand, the proposed FPGA hardware implementation performs well. Its

fixed-point and floating-point versions are 22 and 19 times faster than the basic one

core C++ implementation, respectively. Compare with the 8 cores C++

implementation, which is the fastest software implementation we have, the two

data types of the proposed FPGA implementation still achieves an acceleration of

3.2 and 2.8 times, respectively.

Moreover, from the table we can also find that compared with using single precision

floating-point representations, using fixed-point representations can improve the

running speed of the model. In our experiment, when using the same hardware

implementation, using fix-point brings us a speedup effect of 1.15 times. Of course,

as mentioned in

the previous section, this leads to an increase of the precision loss, from 10−8 to 10−5.

4.3 Result analyze

In this part, our work is compared to some prior designs. To the best of our

knowledge, no FPGA implementation based on the multi-factor Merton model has

been presented before, so we are not able to find literature that matches with our

research. Instead, three representative, similar studies were selected to compare

with our implementation.

4.3.1 Compare with Intel FPGA implementation of single factor

Merton model

Although no one has researched on the FPGA implementation of the multi-factor

Merton model before, a few companies such as Intel [18] are offering FPGA-based

accelerators for computing the Black-Scholes Merton model and Monte-Carlo

simulation for pricing options. The Black-Scholes Merton model is a simplified

version of the multi-factor Merton model, and the two models are identical in many

aspects.

Similar to our implementation, Intel also uses Monte Carlo simulations to simulate

many possible paths of asset value process, and then derive an expected value for

the payoff. In addition to the different structure of the model, the major difference

between our implementation and Intel’s is the way the data is transmitted. In Intel’s

FPGA Implementation of the Merton model, the data required for model calculation

is generated on the FPGA side by Mersenne Twister Random Number Generator,

and these data are then transmitted to the kernel to conduct model calculation. In

our implementation, however, data is generated on the host side and then passed to

the FPGA side. This puts a lot of pressure on memory bandwidth compared to

Intel’s approach and increases the program running time due to the data

transmitting between CPUs and FPGAs. As a result, Intel’s implementation achieves

the following performance.

Table 4.2: The performance of Intel OpenCL single factor Merton model FPGA imple-

mentation

Device Implementation Speed Up

FPGA
18 bits fixed-point 146

Single precision floating-point 41

CPU C++ 1 core 1

Compared to the performance of the optimised implementation presented in Table

4.1, we can conclude the following two points: first of all, Intel’s FPGA

implementation can achieve a higher speedup effect. This is mainly because it

generates input data directly on the FPGA side, which greatly reduces the

transmission overhead between the device side and host side, consequently, the

running speed is increased.

In addition, we can also find that Intel’s fixed-point implementation is much faster

than its floating-point implementations: compared with the corresponding

floating-point implementation, Intel’s fixed-point implementation achieved a speed

increase of 300% while our fixed-point implementation only achieved a speed

increase of about 15%. A possible reason for this could be that Intel incorporates a

masking operation in their source code so that the offline compiler can reduce the

hardware resources needed for fixed-point calculations. That is, Intel’s fixed-point

implementation retain a minimum data resolution that is necessary for model

operation, whereas our implementation retains a full resolution.

For instance, if a 17-bit fixed-point representation is used in our model, then a

32-bit data type is required to store the data as OpenCL SDK only supports 8, 16, 32

and 64 bits data type. In this case, if we need to calculate the addition of two 17-bit

fixed-point variables, then the hardware responsible for the addition of the extra 15

bits is wasted. To avoid wasting this unnecessary hardware resources, Intel’s

implementation uses bitmasks to inform the compiler to disregard the unnecessary

bits during compilation time. Whereas our fixed-point implementation did not use

this technology so we waste some hardware resources. Therefore in our project,

using fixed-point does not improve our implementation as much as Intel does.

Overall, it provides us with a good idea about the future work by comparing our

implementation to Intel’s Merton model FPGA implementation.

4.3.2 Compare with CUDA GPU implementation of multi-factor

Merton model

Li et al. .[19] is a research group that conducts similar research with us and is in a

semi-cooperative nature. The major difference between our two research groups is

that our main objective is to optimise the running speed of the multi-factor Merton

model using FPGAs, while Li et al. mainly make use of GPUs to speed up the

execution of the same model. Since the programming language, CPU and input

data size used by our two research groups are different, for the fair comparison, we

directly compare the speedup effect achieved by our two groups’ best

implementation.

Running on a GeForce GTX 1650 Ti GPU, Li et al. ’s GPU-based implementation can

improve the running speed of the C++ one core implementation by 22-23 times

while ensuring accurate results, whereas we can speed up the same C++

implementation by 22 times while maintaining the same precision. Our

implementation presents a comparable performance as Li’s, but this is not the ideal

situation. In Intel’s research we discussed in the previous section, their FPGA

implementation of the single factor Merton model is 5 times faster than the

equivalent GPU implementation. This indicates that we still have room for

improvement in our FPGA implementation.

4.3.3 Compare with an outstanding GPU implementation of the

multi-factor Merton model

Prior to the work of Li et al., there were some mature studies that used GPU to

accelerate the execution of the multi-factor Merton Model. One of the most

representative one is the study given by Béresand and Bris [8]. They used two main

methods to speed up the execution of the model: one is to use GPU to speed up the

model computing, and the other is to use importance sampling to reduce the

complexity of the model operation. By using importance sampling, the number of

samples in important regions that may facilitate the calculation of portfolio loss

could be increased, while the number of samples in unimportant regions can be

greatly reduced, thus speeding up the calculation of the model.

As a result, running on a NVIDIA Kepler K20 GPU, their implementation speed up

the multi-factor Merton model against the basic implementation by 19 x to 287 x

times depending on the portfolio structure. In terms of the speeding up effect of the

model, the GPU implementation proposed by Beresand and Bris significantly

outperforms than that of our implementation. The main difference between the

two implementations is that we do not use importance sampling to reduce the

computational complexity of the model. However, experiments have shown that

using importance sampling is a good way to accelerate the model execution.

Therefore in the future work, it is also a good direction to try importance sampling

in our implementation.

Chapter 5

Conclusion and future work

Due to the potentially devastating power of concentration risks, its management

has become increasingly important in recent years in financial institutions. The

multi-factor Merton model is a powerful tool for measuring and managing

concentration risks. However, due to the requirement of a huge amount of Monte

Carlo simulations, the execution of this model is usually very time-consuming. In

this research, we propose an FPGA-based approach for the multi-factor Merton

model, which is able to speed up the execution of the model and produce accurate

results. Main contributions of this work involves:

• A comprehensive list of manual optimisation techniques for Intel OpenCL

FPGA has been presented. Through experiments, we found that among all

these optimization techniques, the NDRange kernel with loop unrolling and

kernel vectorisation technique has the greatest acceleration effect on our

model. However, theoretically, the single work-item kernel should improve

the running speed of the model by more than or at least equal to the

NDRange kernel. Therefore, in the future work, we will keep optimizing the

design of the single work-item kernel to obtain a better performance.

• We found that compared with floating-point representations, using fixed-point

numbers leads to a faster model execution speed and a higher precision loss.

In our project, fixed-point representation increased the execution speed of the

model by an additional 15% but also lead to a less accurate result compared

to the floating point representation. However, we have also pointed out that

the execution speed of fixed-point representations can be further improved by

using the bitmask technique.

52

• We proposed an high-performance FPGA implementation for the multi-factor

Merton model. Compared with the original C++ software implementation of

the multi-factor Merton model on a one core Intel i5-4210 CPU, the proposed

FPGA implementation achieves a speedup of 22 times. Compared with the

same C++ implementation running on an 8 cores Intel i5-4210 CPU, our

FPGA implementation achieves a speedup effect of 3.2 times. In addition, the

precision loss of our proposed FPGA implementation fluctuates in a range of

10−8 to 10−5 depending on different types of data representations, which

satisfies the requirement of concentration risk measurement.

Future work includes trying out several possible ways to optimise our

implementation further. First of all, the data could be generated on the FPGA side

so to reduce the data transmission consumption between the FPGA side and the

host side. Secondly, some model-level optimisation methods, such as importance

sampling, can be used to reduce the complexity of the model operation and thus

improve its running speed. In addition, it is also important to use some hardware

optimisation techniques such as bitmasks to optimise the speed of fixed-point

operation.

Bibliography

[1] Timmins C, Schlenker W. Reduced-Form Versus Structural Modeling in

Environmental and Resource Economics. Annual Review of Resource

Economics. 2009 10;1:351–380. pages 1

[2] yu F. Default Correlation in Reduced-Form Models. Journal of Investment

Management. 2005 04;3. pages 2

[3] Merton R. In: On the Pricing of Corporate Debt: The Risk Structure of

Interest Rates; 2019. p. 79–102. pages 2

[4] Anderson-Cook C. Quantitative Risk Management: Concepts, Techniques, and

Tools. Journal of the American Statistical Association. 2006

12;101:1731–1732. pages 2

[5] Morgan J, Grenfell D. The Benchmark for Understanding Credit Risk. 2020

08;. pages 2, 45

[6] Gokhale M, Cohen J, Yoo A, Miller W, Jacob A, Ulmer C, et al. Hardware

Technologies for High-Performance Data-Intensive Computing. Computer.

2008 05;41:60 – 68. pages 2

[7] Lütkebohmert-Holtz E. Concentration Risk in Credit Portfolios; 2009. pages 4

[8] Béreš M, Brǐs R. In: Acceleration of multi-factor Merton model Monte Carlo

simulation via Importance Sampling and GPU parallelization: Proceedings of

the 1st International Conference on Applied Mathematics in Engineering and

Reliability (Ho Chi Minh City, Vietnam, 4-6 May 2016); 2016. p. 107–118.

pages 5, 51

[9] Zhang B, Oosterlee C. Acceleration of Option Pricing Technique on Graphics

Processing Units. Concurrency and Computation Practice and Experience.

2014 06;26. pages 5

54

[10] Tian X, Benkrid K. Design and implementation of a high performance

financial Monte-Carlo simulation engine on an FPGA supercomputer; 2009. p.

81 – 88. pages 5

[11] Tian X, Benkrid K. High-performance quasi-Monte Carlo financial simulation:

FPGA vs. GPP vs. GPU. TRETS. 2010 11;3:26. pages 5

[12] Delivorias C. Case Studies in Acceleration of Heston’s Stochastic Volatility

Financial Engineering Model: GPU, Cloud and FPGA Implementations; 2012. .

pages 5

[13] De Schryver C, Shcherbakov I, Kienle F, Wehn N, Marxen H, Kostiuk A, et al.

An Energy Efficient FPGA Accelerator for Monte Carlo Option Pricing with the

Heston Model; 2011. p. 468–474. pages 6

[14] Zohouri HR, Maruyamay N, Smith A, Matsuda M, Matsuoka S. Evaluating and

Optimizing OpenCL Kernels for High Performance Computing with FPGAs;

2016. p. 409–420. pages 20

[15] Intel. Intel R© FPGA SDK for OpenCLTM Pro Edition Best Practices Guide;.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/hb/opencl-sdk/aocl-best-practices-guide.pdf Accessed

Aug 8, 2020. [EB/OL]. pages 20, 40, 42

[16] Jia Q, Zhou H. Tuning Stencil codes in OpenCL for FPGAs; 2016. p. 249–256.

pages 21

[17] Almqvist M. Master Thesis - Active Management of Non-Granular Loan

Portfolios. 2015 4;. pages 42

[18] Intel. Monte Carlo Black-Scholes Asian Options Pricing Design Example;.

https://www.intel.com/content/www/us/en/programmable/support/

support-resources/design-examples/design-software/opencl/

black-scholes.html Accessed Aug 8, 2020. [EB/OL]. pages 49

[19] Li L. Acceleration of the Multi-Factor Merton Model through GPU

parallelisation. 2020 09;p. 53. pages 50

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/black-scholes.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/black-scholes.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/black-scholes.html

Appendix A

Legal and Ethical Considerations

The goal of this project is to develop an FPGA implementation of the multi-factor

Merton model, which is able to measure the potential concentration risk in credit

portfolios. we are not aware of any possible negative impacts this project would

have. The table on the next page shows a completed ethics checklist. To conclude,

there are no legal or professional issues involved in this project.

Our project is software-based and does not involve any experiments on humans or

animals. Besides, all of the data used in this project is generated randomly

according to some predefined rules, and therefore we does not violate any GDPR or

other data privacy regulations.

We use Intel OpenCL SDK in our project, which has a free academic license. The

other libraries used in our project are all open sources and therefore this project

does not contains license issues.

56

Table A.1: Ethics checklist

Yes No

Section 1: HUMAN EMBRYOS/FOETUSES

Does your project involve Human Embryonic Stem Cells? X

Does your project involve the use of human embryos? X

Does your project involve the use of human foetal tissues / cells? X

Section 2: HUMANS

Does your project involve human participants? X

Section 3: HUMAN CELLS / TISSUES

Does your project involve human cells or tissues? (Other than from “Hu-

man Embryos/Foetuses” i.e. Section 1)?

X

Section 4: PROTECTION OF PERSONAL DATA

Does your project involve personal data collection and/or processing? X

Does it involve the collection and/or processing of sensitive personal data

(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or philo-

sophical conviction)?

X

Does it involve processing of genetic information? X

Does it involve tracking or observation of participants? It should be noted

that this issue is not limited to surveillance or localization data. It also

applies to Wan data such as IP address, MACs, cookies etc.

X

Does your project involve further processing of previously collected per-

sonal data (secondary use)? For example Does your project involve merg-

ing existing data sets?

X

Section 5: ANIMALS

Does your project involve animals? X

Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries? X

If your project involves low and/or lower-middle income countries, are

any benefit-sharing actions planned?

X

Could the situation in the country put the individuals taking part in the

project at risk?

X

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause harm to the

environment, animals or plants?

X

Does your project deal with endangered fauna and/or flora /protected

areas?

X

Does your project involve the use of elements that may cause harm to

humans, including project staff?

X

Does your project involve other harmful materials or equipment, e.g. high-

powered laser systems?

X

Section 8: DUAL USE

Does your project have the potential for military applications? X

Does your project have an exclusive civilian application focus? X

Will your project use or produce goods or information that will require

export licenses in accordance with legislation on dual use items?

X

Does your project affect current standards in military ethics – e.g., global

ban on weapons of mass destruction, issues of proportionality, discrimina-

tion of combatants and accountability in drone and autonomous robotics

developments, incendiary or laser weapons?

X

Section 9: MISUSE

Does your project have the potential for malevolent/criminal/terrorist

abuse?

X

Does your project involve information on/or the use of biological-,

chemical-, nuclear/radiological-security sensitive materials and explo-

sives, and means of their delivery?

X

Does your project involve the development of technologies or the creation

of information that could have severe negative impacts on human rights

standards (e.g. privacy, stigmatization, discrimination), if misapplied?

X

Does your project have the potential for terrorist or criminal abuse e.g.

infrastructural vulnerability studies, cybersecurity related project?

X

textbfSECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright

licensing implications?

X

Will your project use or produce goods or information for which there are

data protection, or other legal implications?

X

SECTION 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consideration? X

	1 Introduction
	2 Background and related work
	2.1 Background
	2.2 Related work
	2.3 Multi-factor Merton model
	2.3.1 Model structure
	2.3.2 Monte Carlo Simulation

	2.4 Intel FPGA SDK for OpenCL
	2.4.1 OpenCL SDK programming model
	2.4.2 Memory structures

	3 FPGA design and implementation
	3.1 Basic C++ implementation
	3.2 NDRange Mode
	3.2.1 Basic Implementation
	3.2.2 Kernel vectorization implementation
	3.2.3 Multiple compute units implementation
	3.2.4 Loop unrolling implementation

	3.3 Single work-item
	3.3.1 Single work-item basic implementation
	3.3.2 Loop unrolling implementation

	3.4 Fixed point vs Floating point
	3.5 Optimised implementation

	4 Evaluation
	4.1 Accuracy evaluation
	4.1.1 Result distribution analysis
	4.1.2 Result accuracy analysis

	4.2 Performance Comparison Between CPU and FPGA Implementations
	4.3 Result analyze
	4.3.1 Compare with Intel FPGA implementation of single factor Merton model
	4.3.2 Compare with CUDA GPU implementation of multi-factor Merton model
	4.3.3 Compare with an outstanding GPU implementation of the multi-factor Merton model

	5 Conclusion and future work
	A Legal and Ethical Considerations

