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Abstract. We introduce and develop the logic of existence of solution to

problems. We use this theory to answer the question of Florentin Smarandache

in logic. We answer this question in the negative.

1. Introduction

The endeavour of finding solutions to problems or at least knowing that a prob-
lem is solvable appears to be very compelling. It has various related class of prob-
lems that remains unsolved till date. Perhaps the best known of all is the P versus
NP problem in computer science. In [1] Florentin Smarandache ask the deceptively
simple question

Question 1.1. Is it true that for any question there is at least an answer? Recipro-
cally, is any assertion the result of at least a question?

We develop a much more consolidated theory of problems and their solution
spaces to study the structure and the inner workings of problems, whose solutions
may or may not exist. By studying this structure into details, we obtain a negative
answer to the question posed

Theorem 1.2. There exists a problem with no solution.

It turns out that this result holds for irreducible problems, a certain class of
problems we will study in the sequel. This result is obtained via a certain infi-
nite argument under the assumption of a positive answer to the major question,
to obtain a certain infinite sub-covers of problem spaces whose indices becomes
infinitesimally small and never running into extinction.

2. Problems and solution spaces

In this section we introduce and develop the notion of problem and their corre-
sponding solution spaces.

Definition 2.1. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all problems to be solved to provide
solution X to problem Y the problem space induced by providing solution X to
problem Y . We denote this space with PY (X). If K is any subspace of the space
PY (X), then we denote this relation with K ⊆ PY (X). If the space K is a subspace
of the space PY (X) with K 6= PY (X), then we write K ⊂ PY (X). We say problem
V is a sub-problem of problem Y if a solution to problem Y furnishes a solution to
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problem V . If V is a sub-problem of the problem Y , then we write V ≤ Y . If V is
a sub-problem of the problem Y and V 6= Y , then we write V < Y and we call V
a proper sub-problem of Y .

Definition 2.2. Let PY (X) be the problem space induced by providing the solution
X to problem Y . Then we call the number of problems in the space (size) the
complexity of the space and denote by C[PY (X)] the complexity of the space.
We make the assignment Z ∈ PY (X) if problem Z is also a problem in this space.

Definition 2.3. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all solutions to problems obtained as a
result of providing the solution X to problem Y the solution space induced by
providing solution X to problem Y . We denote this space with SY (X). If K is any
subspace of the space SY (X), then we denote this relation with K ⊂ SY (X). We
make the assignment T ∈ SY (X) if solution T is also a solution in this space.

Proposition 2.1. Let SY (X) be the solution space induced by providing solution
X to problem Y . Then X ∈ SY (X).

Proof. This follows by virtue of Definition 2.3. �

Definition 2.4. Let SY (X) be the solution space induced by providing the solution
X to problem Y . Then we call the number of solutions in the space (size) the index
of the space and denote by I[SY (X)] the index of this space.

Definition 2.5. Let SY (X) be the solution space induced by providing the solution
X to problem Y . Then by the entropy of the space, we mean the expression

E [S] =
1

I[SY (X)]
.

In the sequel we formalize the notion that the problem space induced by providing
a solution to a problem should - by necessity - contain this solution. The argument
is an iteration of a never diminishing entropy of larger and larger solution spaces.
We launch formally the following arguments.

Theorem 2.6. Let PY (X) be the induced problem space of providing solution X
to problem Y . Then Y ∈ PY (X).

Proof. Let us suppose to the contrary that for any problem space Y 6∈ PY (X).
Since Y is a solved problem, it must belong to some problem space, say PV (U). In
particular we have the containment

Y ∈ PV (U).

Since X is a solution to problem Y and V has solution U , it follows that X is a
solution obtained as a result of providing solution U to problem V . It follows that
X ∈ SV (U) so that the embedding

SY (X) ⊂ SV (U)

holds, since X ∈ SY (X). Again V 6∈ PV (U) under the assumption, so that V
belongs to some problem space, say PK(L). That is, V ∈ PK(L), a problem space
induced by providing solution L to problem K. Since U is a solution to problem V
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and K has solution L, it must be a problem solved as a result of providing solution
L to problem K. It follows that U ∈ SK(L) and the embedding holds

SY (X) ⊂ SV (U) ⊂ SK(L)

since U ∈ SV (U). By iterating the argument in this manner under the assumption
that G 6∈ PG(F ) for an arbitrary problem space, we obtain the infinite embedding

SY (X) ⊂ SV (U) ⊂ SK(L) ⊂ · · · ⊂ · · · .

It follows from this the following infinite decreasing sequence of the entropy of
solution spaces towards zero

1

I[SY (X)]
>

1

I[SV (U)]
>

1

I[SK(L)]
> · · · > · · ·

which is not possible. This completes the proof of the theorem. �

Definition 2.7. Let Y and V be any two problems. Then we say problem Y is
equivalent to problem V if providing solution to problem Y also provides a solution
to problem V and conversely providing a solution to problem V also provides a
solution to problem Y . We denote the equivalence with V ≡ Y .

Next we expose a simple criterion for creating a subspace of a problem space.

Proposition 2.2. Let X ∈ SV (U) and Y ∈ PV (U). If X is a solution to problem
Y , then

PY (X) ⊂ PV (U).

Proof. Under the requirement Y ∈ PV (U), then Y is a sub-problem to be solved to
provide solution U to problem V . Since X ∈ SV (U), it follows that X is a solution
obtained by providing solution U to problem V . Since X solves Y and Y ∈ PY (X),
it follows that

PY (X) ⊂ PV (U).

�

We use the following criterion to determine the solubility of a problem.

Proposition 2.3. Let V be a problem with solution U . If Y ∈ PV (U), then Y
must have a solution.

Proof. Clearly problem V is solved by U with an induced problem space PV (U).
Since this space consist of all sub-problems to be solved in order to provide solution
U to problem V and Y ∈ PV (U), then Y has a solution. �

3. Reducible and irreducible problems

In this section, we classify problems in a problem space into two main categories.
We study the notion of irreducibility and reducibility of a problem.

Definition 3.1. Let V be a problem. Then we say V is reducible if there exists a
proper sub-problem of V with no proper sub-problem. On the other hand, we say
problem V is irreducible if every proper sub-problem of V has a proper sub-problem.
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It is a well-known problem to determine if every problem has a solution. Using
this classification, we can deduce that there must exist a problem with no solution.
It turns out that irreducible problems satisfies this property.

Theorem 3.2. There exists a problem with no solution.

Proof. Suppose to the contrary that every problem has a solution. It suffices to
argue with only irreducible problems. Now, let V be an irreducible problem with
solution U . Consider the induced problem space PV (U). Then from Theorem 2.6
V ∈ PV (U). Since V is irreducible, we choose a proper sub-problem Y of V with
solution X and construct the problem space PY (X) and solution spaces SY (X).
Then Y ∈ PV (U) and X ∈ SV (U) so that

PY (X) ⊂ PV (U).

Again V is irreducible so that we can choose a proper sub-problem Z of Y with
solution R. Then under the same arguments, we have the chain of sub-covers of
problem spaces

PZ(R) ⊂ PY (X) ⊂ PV (U).

By iterating the argument under the same assumption that every problem has a
solution, we obtain the infinite chain of sub-covers of smaller problem spaces

· · · ⊂ · · · ⊂ PZ(R) ⊂ PY (X) ⊂ PV (U).

This is impossible and this completes the proof. �

We can now state another important criterion for determining the solubility of
a problem, provided we can put it on par with some category of problems.

Proposition 3.1. Let V and Y be any two problems such that V ≡ Y . If V is
irreducible, then Y cannot be solved.

Proof. Let V ≡ Y and suppose Y has a solution. Then it follows that V must also
have a solution, contradicting the requirement that V is irreducible. �

4. Regular and irregular problems

In this section we classify problems according to the structure of their sub-
problems. We study the notion of regular and irregular problem.

Definition 4.1. Let V be a problem and {Yi}i≥1 be the sequence of all the sub-
problems of V . Then we say V is regular if

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ V.

We say it is irregular if there exists sub-problems Yj and Yk of V such that Yj 6≤ Yk

and Yk 6≤ Yj .

De facto, regular problem can easily be solved as opposed to irregular problems,
where a solution to one sub-problem cannot in anyway be modified and advanced
to obtain a solution to other sub-problems. This makes the theory much more
tractable with reducible problems.
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4.1. Maximal and minimal sub-problems.

Definition 4.2. Let V be a problem and Y a proper sub-problem of V . Then we
say Y is the maximal sub-problem of V if all other proper sub-problems of V are
sub-problems of Y . We say it is the minimal sub-problem of V if it is a sub-problem
of all other sub-problems of V .

Next we relate the notion of minimal sub-problem to the notion of reducibility.

Proposition 4.1. Let V be a problem. If there exists a minimal sub-problem of V ,
then V must be reducible.

Proof. Let Y be the minimal sub-problem of problem V . Then Y has no proper
sub-problem. This implies that V must be reducible. �

In a similar fashion we relate the notion of maximal sub-problem with the notion
of regularity.

Theorem 4.3. Let V be a problem. If every sub-problem of V has a maximal
proper sub-problem, then V must be regular.

Proof. Let Y be the maximal proper sub-problem of V , since V ≤ V . Then we
have the relation Y < V and every other proper sub-problem of V must be a sub-
problem of Y . Since every sub-problem of V has a maximal sub-problem, we let Z
be the maximal proper sub-problem of Y then Z < Y and every other proper sub-
problems of Y are sub-problems of Z. Since the proper sub-problems of V excluding
Y are proper sub-problems of Y and the remaining excluding Z are sub-problems
of Z, we obtain the chain of sub-problems

· · · < Z < Y < V

and thus chain contains all the sub-problems of V . This proves that V must be a
regular problem. �

5. Connected and disconnected problem spaces

In this section we study the existence of solutions to problems by deriving an
information about the status of related and analogous problems.

Definition 5.1. Let V be a problem with solution U and Y a problem with solution
X. Then we say the induced problem spaces PV (U) and PY (X) are connected if
and only if

PV (U) ∩ PY (X) 6= ∅.
We say the connection is high if

|PV (U) ∩ PY (X)|
|PV (U)|

≥ 1

2
and

|PV (U) ∩ PY (X)|
|PY (X)|

≥ 1

2
.

Otherwise, we say the connection is low. On the other hand, we say the problem
spaces are disconnected if and only if

PV (U) ∩ PY (X) = ∅.

Proposition 5.1. Let Y be a problem with solution X. If V is also a problem with
a maximal proper sub-problem Z such that Z ∈ PY (X) and V is regular, then V
must be solvable and the induced problem space must be connected to PY (X).
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Proof. Since problem Y has solution X, each problem in the space PY (X) has also
been solved. The requirement Z ∈ PY (X) implies that problem Z has been solved.
Since V is regular, we have the chain of all sub-problems of V as

· · · ≤ Y3 ≤ Y2 ≤ Y1 ≤ Z

since Z is the maximal sub-problem of V . Since Z is solved, it follows that all the
sub-problems of V is solved and V must have a solution, say T , with induced
problem space PV (T ). The latter claim follows by noting that Z ∈ PV (T ) ∩
PY (X). �

6. Further Remarks

The theory as developed is just the preliminary and the first phase of the theory
to study problems and their generative solutions. The notion of the time complexity
of problems and their sub-problems is a notion to be explored in our next phase
of this project, motivated in part by the P versus NP problem. We suspect the
following assertions to be true

Conjecture 6.1. Let V be a problem. If V has a minimal and a maximal sub-
problem, then V must be a regular problem.

Conjecture 6.2. Let V be a problem with solution U and Y a problem with
solution X. If V be regular and the spaces PV (U) and PY (X) are highly connected,
then Y must also be regular.
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