
An Empirical Convergence Phenomenon related to

Riemann Hypothesis
Jouni S. Puuronen

20.11.2022

Abstract

We stumble upon an empirical convergence phenomenon that is maybe
related to Berry-Keating conjecture and the proof of Riemann hypothesis.

We assume that we have some sequence 0 < x1 < x2 < x3 < · · · fixed,
and use it to carry out the following construction: We define a multiplication
operator

Mx =


x1 0 0 · · ·
0 x2 0 · · ·
0 0 x3 · · ·
...

...
...

. . .


and a derivative operator

Dx =


1

x1−x2
1

x2−x1 0 · · ·
0 1

x2−x3
1

x3−x2 · · ·
0 0 1

x3−x4 · · ·
...

...
...

. . .

 ,

and then use these to define a Hermitian operator H by the formula

H =
1

2

(
Mx(−iDx) + (−iDx)†M †x

)
.

This H turns out to be

H = − i

2


0 x1

x2−x1 0 0 · · ·
x1

x1−x2 0 x2
x3−x2 0 · · ·

0 x2
x2−x3 0 x3

x4−x3 · · ·
0 0 x3

x3−x4 0 · · ·
...

...
...

...
. . .

 .

We write down an eigenvalue equation

H


f1(z)
f2(z)
f3(z)

...

 = z


f1(z)
f2(z)
f3(z)

...

 ,
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where z ∈ C is some complex variable. If the function sequence f1, f2, f3, . . .
satisfies the formulas

f1(z) = z

f2(z) = 2i
x2 − x1

x1
z2

fn+1(z) =
xn+1 − xn

xn

(
2izfn(z) +

xn−1
xn − xn−1

fn−1(z)
)

for n ∈ {2, 3, 4, . . .},

the eigenvalue equation is satisfied too.
In a sense all complex numbers z ∈ C are eigenvalues of H, since the re-

cursion formula obviously always generates some vector (f1(z), f2(z), f3(z),
. . .) for any z. Let’s decide that we are only interested in vectors that have
the property lim

n→∞
fn(z) = 0. Then it is no longer obvious which complex

numbers z qualify as the eigenvalues of H. We are interested in the question
that how does the choice of sequence x1 < x2 < x3 < · · · affect the possible
eigenvalues of H.

Next step is that we write a computer program that works so that it
takes some sequence x1 < x2 < x3 < · · · as input, and as ouput the program
shows the zeros of the functions f1, f2, f3, . . ..

Since the functions f1, f2, f3, . . . are polynomials, they are also analytic,
and it will make sense for our program to render the arguments arg(fn(z)).
We render them so that red color means that the argument is close to 0,
green means that argument is close to 2π

3 , and blue means that the argument
is close to −2π

3 . The zeros will be in locations where the three colors meet.
If fn(z) = 0 with some n ∈ {2, 3, 4, . . .}, then z is an eigenvalue of a (n −
1) × (n − 1) Hermitian matrix, and is therefore real. This means that it
makes sense to write our program so that it only shows some area close to
the real axis.

Figure 1 shows what happens when we substitute some arbitrary choice
to the sequence x1 < x2 < x3 < · · · . There are a lot of zeros, but they don’t
seem to converge to any values. Figure 2 shows what happens when we
substitute prime numbers to the sequence x1 < x2 < x3 < · · · . This time
the zeros appear to converge to some values, and it looks like that there
exist numbers z1, z2, z3, . . . that have the property lim

n→∞
fn(zk) = 0. It is not

obvious why using prime numbers like this should make the zeros converge
like this, so this is a very interesting empirical observation. Whether the
numbers z1, z2, z3, . . . really exist or not is now a conjecture. We know that
Riemann zeta function is related to prime numbers, and according to Berry-
Keating conjecture the operator 1

2(Mx(−iDx) + (−iDx)†M †x) is related to
Riemann hypothesis, so it looks like that we stumbled upon an empirical
convergence phenomenon that is maybe related to the proof of Riemann
hypothesis.
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Figure 1: Arguments of the functions f1, f2, f3, . . . near the real axis, when we use
a sequence (x1, x2, x3, . . .) = (1, 2, 3, 4, 5, . . .). Zeros of fn+1 are usually in different
positions than the zeros of fn, so the zeros do not seem to converge anywhere.
Other arbitrary choices for (x1, x2, x3, . . .) usually produce other similar arbitrary
looking patterns of zeros.
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Figure 2: Arguments of the functions f1, f2, f3, . . . near the real axis, when we use
the sequence (x1, x2, x3, . . .) = (2, 3, 5, 7, 11, 13, 17, . . .). In many places the zeros
of fn+1 are in almost the same positions as the zeros of fn, so the zeros appear to
converge to some values.
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