An Empirical Convergence Phenomenon related to Riemann Hypothesis
 Jouni S. Puuronen
 20.11.2022

Abstract

We stumble upon an empirical convergence phenomenon that is maybe related to Berry-Keating conjecture and the proof of Riemann hypothesis.

We assume that we have some sequence $0<x_{1}<x_{2}<x_{3}<\cdots$ fixed, and use it to carry out the following construction: We define a multiplication operator

$$
M_{x}=\left(\begin{array}{cccc}
x_{1} & 0 & 0 & \cdots \\
0 & x_{2} & 0 & \cdots \\
0 & 0 & x_{3} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and a derivative operator

$$
D_{x}=\left(\begin{array}{cccc}
\frac{1}{x_{1}-x_{2}} & \frac{1}{x_{2}-x_{1}} & 0 & \cdots \\
0 & \frac{1}{x_{2}-x_{3}} & \frac{1}{x_{3}-x_{2}} & \cdots \\
0 & 0 & \frac{1}{x_{3}-x_{4}} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and then use these to define a Hermitian operator H by the formula

$$
H=\frac{1}{2}\left(M_{x}\left(-i D_{x}\right)+\left(-i D_{x}\right)^{\dagger} M_{x}^{\dagger}\right)
$$

This H turns out to be

$$
H=-\frac{i}{2}\left(\begin{array}{ccccc}
0 & \frac{x_{1}}{x_{2}-x_{1}} & 0 & 0 & \cdots \\
\frac{x_{1}}{x_{1}-x_{2}} & 0 & \frac{x_{2}}{x_{3}-x_{2}} & 0 & \cdots \\
0 & \frac{x_{2}}{x_{2}-x_{3}} & 0 & \frac{x_{3}}{x_{4}-x_{3}} & \cdots \\
0 & 0 & \frac{x_{3}}{x_{3}-x_{4}} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

We write down an eigenvalue equation

$$
H\left(\begin{array}{c}
f_{1}(z) \\
f_{2}(z) \\
f_{3}(z) \\
\vdots
\end{array}\right)=z\left(\begin{array}{c}
f_{1}(z) \\
f_{2}(z) \\
f_{3}(z) \\
\vdots
\end{array}\right)
$$

where $z \in \mathbb{C}$ is some complex variable. If the function sequence $f_{1}, f_{2}, f_{3}, \ldots$ satisfies the formulas

$$
\begin{aligned}
f_{1}(z) & =z \\
f_{2}(z) & =2 i \frac{x_{2}-x_{1}}{x_{1}} z^{2} \\
f_{n+1}(z) & =\frac{x_{n+1}-x_{n}}{x_{n}}\left(2 i z f_{n}(z)+\frac{x_{n-1}}{x_{n}-x_{n-1}} f_{n-1}(z)\right) \quad \text { for } n \in\{2,3,4, \ldots\},
\end{aligned}
$$

the eigenvalue equation is satisfied too.
In a sense all complex numbers $z \in \mathbb{C}$ are eigenvalues of H, since the recursion formula obviously always generates some vector $\left(f_{1}(z), f_{2}(z), f_{3}(z)\right.$, ...) for any z. Let's decide that we are only interested in vectors that have the property $\lim _{n \rightarrow \infty} f_{n}(z)=0$. Then it is no longer obvious which complex numbers z qualify as the eigenvalues of H. We are interested in the question that how does the choice of sequence $x_{1}<x_{2}<x_{3}<\cdots$ affect the possible eigenvalues of H.

Next step is that we write a computer program that works so that it takes some sequence $x_{1}<x_{2}<x_{3}<\cdots$ as input, and as ouput the program shows the zeros of the functions $f_{1}, f_{2}, f_{3}, \ldots$

Since the functions $f_{1}, f_{2}, f_{3}, \ldots$ are polynomials, they are also analytic, and it will make sense for our program to render the arguments $\arg \left(f_{n}(z)\right)$. We render them so that red color means that the argument is close to 0 , green means that argument is close to $\frac{2 \pi}{3}$, and blue means that the argument is close to $-\frac{2 \pi}{3}$. The zeros will be in locations where the three colors meet. If $f_{n}(z)=0$ with some $n \in\{2,3,4, \ldots\}$, then z is an eigenvalue of a $(n-$ 1) $\times(n-1)$ Hermitian matrix, and is therefore real. This means that it makes sense to write our program so that it only shows some area close to the real axis.

Figure 1 shows what happens when we substitute some arbitrary choice to the sequence $x_{1}<x_{2}<x_{3}<\cdots$. There are a lot of zeros, but they don't seem to converge to any values. Figure 2 shows what happens when we substitute prime numbers to the sequence $x_{1}<x_{2}<x_{3}<\cdots$. This time the zeros appear to converge to some values, and it looks like that there exist numbers $z_{1}, z_{2}, z_{3}, \ldots$ that have the property $\lim _{n \rightarrow \infty} f_{n}\left(z_{k}\right)=0$. It is not obvious why using prime numbers like this should make the zeros converge like this, so this is a very interesting empirical observation. Whether the numbers $z_{1}, z_{2}, z_{3}, \ldots$ really exist or not is now a conjecture. We know that Riemann zeta function is related to prime numbers, and according to BerryKeating conjecture the operator $\frac{1}{2}\left(M_{x}\left(-i D_{x}\right)+\left(-i D_{x}\right)^{\dagger} M_{x}^{\dagger}\right)$ is related to Riemann hypothesis, so it looks like that we stumbled upon an empirical convergence phenomenon that is maybe related to the proof of Riemann hypothesis.

Figure 1: Arguments of the functions $f_{1}, f_{2}, f_{3}, \ldots$ near the real axis, when we use a sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)=(1,2,3,4,5, \ldots)$. Zeros of f_{n+1} are usually in different positions than the zeros of f_{n}, so the zeros do not seem to converge anywhere. Other arbitrary choices for $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ usually produce other similar arbitrary looking patterns of zeros.

Figure 2: Arguments of the functions $f_{1}, f_{2}, f_{3}, \ldots$ near the real axis, when we use the sequence $\left(x_{1}, x_{2}, x_{3}, \ldots\right)=(2,3,5,7,11,13,17, \ldots)$. In many places the zeros of f_{n+1} are in almost the same positions as the zeros of f_{n}, so the zeros appear to converge to some values.

