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Abstract: The main motivation behind this paper is the question ‘What is the factorization of 

(𝑥𝑛 + 𝑦𝑛) when n is an even positive integer ?’ which was and is frequently asked on the Internet by 

many high school and university students and, to my knowledge, even the specialized textbooks and 

research articles have not yet answered the question, and with time the question itself transformed 

into a problem that needs to be solved. In the present article, the question is positively answered and 

the problem is solved through the detailed study of the factorization that leads directly to an apparently 

new type of indefinite irrational integrals.   
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1. Introduction 

 

The title of this article is a question repeatedly asked on the Net by many high school and university 

students and it seems none got any satisfactory answer to the question which now transformed into a 

problem that needs attention and needs to be solved. 

To my great surprise, until now, even the very specialized textbooks [1-10] and research articles have 

not tackled this problem. 

Pedagogically and mathematically speaking, factorization simply means transforming an algebraic 

expression, usually a polynomial, into product of linear factors. For example, the factorization of the 

expression (𝑥3 − 2𝑥2 − 5𝑥 + 6) is (𝑥 − 1)(𝑥 + 2)(𝑥 − 3). Without doubt, the factorization as a 

mathematical tool has always played an important role in algebra, analysis, number theory, numerical 

analysis and so on. For instance, how can we evaluate the following indefinite integral 

                                                                       ∫
𝑑𝑥

𝑥3−2𝑥2−5𝑥+6
 ,                                                            (1) 

without performing factorization? Or how can we solve the first-order non-linear ODE  

                                                                       2𝑧𝑧′ −
1+𝑧4

1+𝑥4
= 0,                                                         (2) 

without doing factorization? Frankly, we cannot since in these cases, the factorization is absolutely 

inevitable.  
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It has long been known that, sometimes, it is quite impossible to factorize polynomial into linear 

factors employing only rational numbers, but it may be possible to factorize an algebraic expression 

containing terms with degree n into a product containing terms with degree m less than n. For 

example, the expression  (𝑥6 − 𝑥4 + 2√3𝑥3 − √3𝑥 + 3) can, with some difficulty, be factorized as 

(𝑥3 + √3)(𝑥3 − 𝑥 + √3). The expression in each bracket cannot be further factorized using only 

rational numbers. In this sense, we usually say that these factors are irreducible over the rational 

numbers. However, since the set of irrational numbers is largest and dense than the set of rational 

numbers, there are a lot of important expressions that are irreducible over rational number, but which 

can be factorized if one, of course, allows irrational numbers or real numbers. 

Since  ℕ  ℤ  ℚ  ℝ  ℂ  (where ℕ is the set of non-negative integers, i.e., “natural numbers”, and 

algebraically ℕ = ℤ+ that is why ℕ  ℤ) hence over the real numbers every polynomial can be 

factorized into a product of linear factors and/or quadratic factors, and over the complex numbers 

every polynomial can be completely factorized into linear factors. 

 

In passing, from the factorization of the expression (𝑥𝑛 − 1)
 exclusively performed over the integer 

numbers occurred an interesting type of polynomials called ‘cyclotomic polynomials’ which were 

also studied by many mathematicians. For example, (𝑥4 − 1) = (𝑥 − 1)(𝑥3 + 𝑥2 + 𝑥 + 1), the 

polynomial (𝑥3 + 𝑥2 + 𝑥 + 1) is an illustrative example of a cyclotomic polynomial. In fact, the 

questions of factoring and developing methods of factoring, at a more advanced level, were an active 

part of an extensive work of renowned mathematicians such as Euler, Gauss, Galois, Abel, … etc. 

 

2. Factorization of  (𝑥𝑛 − 𝑦𝑛) 

The factorization of the expression 

 

                                            𝑓𝑛(𝑥, 𝑦) = (𝑥𝑛 − 𝑦𝑛) ,       ∀𝑥, 𝑦 ∈ ℝ,   𝑛 ∈ ℕ.                               (3) 

                                     

We have the well-known result 

 

                                 (𝑥𝑛 − 𝑦𝑛) = (𝑥 − 𝑦)(𝑥𝑛−1 + 𝑥𝑛−2𝑦 + 𝑥𝑛−3𝑦2 +  ∙∙∙  +𝑦𝑛−1),                     (4) 

 

or in compact form 

                           

                      (𝑥𝑛 − 𝑦𝑛) = (𝑥 − 𝑦) ∑ 𝑥𝑛−𝑘−1𝑦𝑘 =𝑛−1
𝑘=0 (𝑥 − 𝑦) ∑ 𝑥𝑛−𝑘𝑦𝑘−1𝑛

𝑘=1 .                   (5) 

 

The first ten factorizations 

 

𝑓1(𝑥, 𝑦) = (𝑥 − 𝑦) 

 

𝑓2(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥 + 𝑦)
 

 

𝑓3(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)
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𝑓4(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥3 + 𝑥2𝑦 + 𝑥𝑦2 + 𝑦3)
 

 

𝑓5(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥4 + 𝑥3𝑦 + 𝑥2𝑦2 + 𝑥𝑦3 + 𝑦4) 

 

          𝑓6(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥5 + 𝑥4𝑦 + 𝑥3𝑦2 + 𝑥2𝑦3 + 𝑥𝑦4 + 𝑦5)                                                   

 

        
𝑓7(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥6 + 𝑥5𝑦 + 𝑥4𝑦2 + 𝑥3𝑦3 + 𝑥2𝑦4 + 𝑥𝑦5 + 𝑦6)

 
      

       
𝑓8(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥7 + 𝑥6𝑦 + 𝑥5𝑦2 + 𝑥4𝑦3 + 𝑥3𝑦4 + 𝑥2𝑦5 + 𝑥𝑦6 + 𝑦7) 

 

        
𝑓9(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥8 + 𝑥7𝑦 + 𝑥6𝑦2 + 𝑥5𝑦3 + 𝑥4𝑦4 + 𝑥3𝑦5 + 𝑥2𝑦6 + 𝑥𝑦7 + 𝑦8)

  
 

      
𝑓10(𝑥, 𝑦) = (𝑥 − 𝑦)(𝑥9 + 𝑥8𝑦 + 𝑥7𝑦2 + 𝑥6𝑦3 + 𝑥5𝑦4 + 𝑥4𝑦5 + 𝑥3𝑦6 + 𝑥2𝑦7 + 𝑥𝑦8 + 𝑦9)

 
 

As we can see, the factorization is valid when n is an odd or even positive integer, i.e., 𝑛 = 2𝑘 or 

 𝑛 = 2𝑘 + 1  and 𝑘 ∈ ℕ  

 

2.1. Example 

Now, let us illustrate the role and importance of the factorization (4) or (5) of the expression (3). To 

this end, we evaluate the following indefinite integral  

                                                       𝐼𝑛 = ∫
𝑥𝑛

𝑥−1
𝑑𝑥,      ∀𝑥 ∈ ℝ\{1},   𝑛 ∈ ℕ.                                     (6) 

Notice that 𝑥𝑛 = (𝑥𝑛 − 1) + 1 hence after substitution into (6) we get 

 

                                                                𝐼𝑛 = ∫
𝑑𝑥

𝑥−1
+ ∫

𝑥𝑛−1

𝑥−1
𝑑𝑥.                                                     (7) 

If we put 𝑦 = 1 into (5), we obtain 

 

                                                                  
𝑥𝑛−1

𝑥−1
= ∑ 𝑥𝑛−𝑘−1𝑛−1

𝑘=0  .                                                      (8) 

 

Substituting (8) into (7) yields after integration 

 

                                                                  𝐼𝑛 = ln|𝑥 − 1| + ∑
𝑥𝑛−𝑘

𝑛−𝑘

𝑛−1
𝑘=0 + 𝑐.                                             (9) 

3. Factorization of (𝑥𝑛 + 𝑦𝑛)
 

 

The well-known and commonly used factorization of the expression 

 

                                                 
𝑔𝑛(𝑥, 𝑦) = (𝑥𝑛 + 𝑦𝑛) ,       ∀𝑥, 𝑦 ∈ ℝ,   𝑛 ∈ ℕ ,                            (10)                               

                              
is in general of the form      

    

                                    (𝑥𝑛 + 𝑦𝑛) = (𝑥 + 𝑦)(𝑥𝑛−1 − 𝑥𝑛−2𝑦 + 𝑥𝑛−3𝑦2 −  ∙∙∙  +𝑦𝑛−1),                (11) 
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or in compact form 

 

          (𝑥𝑛 + 𝑦𝑛) = (𝑥 + 𝑦) ∑ (−1)𝑘𝑥𝑛−𝑘−1𝑦𝑘 = (𝑥 + 𝑦) ∑ (−1)𝑘+1𝑥𝑛−𝑘𝑦𝑘−1𝑛
𝑘=1

𝑛−1
𝑘=0 .              (12) 

 

 The first five factorizations 

𝑔1(𝑥, 𝑦) = (𝑥 + 𝑦) 

 

𝑔3(𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2)
 

 

           𝑔5(𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥4 − 𝑥3𝑦 + 𝑥2𝑦2 − 𝑥𝑦3 + 𝑦4)                                                               
                                                                                                                                                          

         
𝑔7(𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥6 − 𝑥5𝑦 + 𝑥4𝑦2 − 𝑥3𝑦3 + 𝑥2𝑦4 − 𝑥𝑦5 + 𝑦6)

 

                                                                                 
 

         
𝑔9(𝑥, 𝑦) = (𝑥 + 𝑦)(𝑥8 − 𝑥7𝑦 + 𝑥6𝑦2 − 𝑥5𝑦3 + 𝑥4𝑦4 − 𝑥3𝑦5 + 𝑥2𝑦6 − 𝑥𝑦7 + 𝑦8).

 
 

It is clearly understandable that the factorization (11) or (12) is valid iff n is an odd positive integer, 

and for this reason many students asked the central question, the title of this article. 

3.1. Example 

Like before, let us exemplify the role and significance of the factorization (11) or (12) by solving the 

subsequent second-order linear ODE 

                                                                   𝑧′′ +
2

𝑥
𝑧′ −

𝑥2𝑘

𝑥+1
= 0,                                                     (13)  

           

                                                                   ∀𝑥 ∈ ℝ+\{0},   𝑘 ∈ ℕ.                                

 

Eq.(13) can also be written in compact form as 

 

                                                                       
1

𝑥

𝑑2

𝑑𝑥2
(𝑥𝑧) =

𝑥2𝑘

𝑥+1
 ,                                                      (14) 

and from where we get 

                                                                      
𝑑2

𝑑𝑥2
(𝑥𝑧) =

𝑥2𝑘+1

𝑥+1
 ,                                                       (15) 

 

putting  𝑤 = 𝑥𝑧   and  𝑛 = 2𝑘 + 1, Eq.(15) becomes after substitution 

 

                                                                           
𝑑2𝑤

𝑑𝑥2
=

𝑥𝑛

𝑥+1
 .                                                            (16) 

 

Remark, 𝑥𝑛 = (𝑥𝑛 + 1) − 1 hence Eq.(16) can be written in the form  

 

                                                                     
𝑑2𝑤

𝑑𝑥2 =
𝑥𝑛+1

𝑥+1
−

1

𝑥+1
 ,                                                      (17) 

or equivalently 

                                                               𝑑 (
𝑑𝑤

𝑑𝑥
) = [

𝑥𝑛+1

𝑥+1
−

1

𝑥+1
] 𝑑𝑥.                                               (18) 
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If we put 𝑦 = 1 into (12), we obtain 

                                                     
𝑥𝑛+1

𝑥+1
= ∑ (−1)𝑘𝑥𝑛−𝑘−1𝑛−1

𝑘=0 .                                               (19) 

                                                          

Substituting (19) into (18) yields 

 

                                                    𝑑 (
𝑑𝑤

𝑑𝑥
) = [∑ (−1)𝑘𝑥𝑛−𝑘−1𝑛−1

𝑘=0 −
1

𝑥+1
] 𝑑𝑥.                                   (20) 

 

Performing the first integration to get 

 

                                                      
𝑑𝑤

𝑑𝑥
= ∑ (−1)𝑘 𝑥𝑛−𝑘

𝑛−𝑘

𝑛−1
𝑘=0 − ln(𝑥 + 1) + 𝑐1,                                  (21)                                         

and the second integration gives 

                        𝑤 = ∑ (−1)𝑘 𝑥𝑛−𝑘+1

(𝑛−𝑘)(𝑛−𝑘+1)
𝑛−1
𝑘=0 − (𝑥 + 1)ln(𝑥 + 1) + (𝑥 + 1) + 𝑐1𝑥 + 𝑐2,           (22) 

finally, since 𝑤 = 𝑥𝑧, therefore, the desired solution is of the form 

                       𝑧 = ∑ (−1)𝑘 𝑥𝑛−𝑘

(𝑛−𝑘)(𝑛−𝑘+1)
𝑛−1
𝑘=0 −

(𝑥+1)

𝑥
ln(𝑥 + 1) +

(𝑥+1)

𝑥
+

𝐶2

𝑥
+ 𝑐1 .                        (23) 

 

4. What is the factorization of (𝑥𝑛 + 𝑦𝑛) when n is an even positive integer? 

 

At present, we arrive at the main subject of this article and our aim is not simply answering but also 

investigating, exploring and exploiting the result. 

As we have already seen, the factorization (11) or (12) of the expression (10) is not valid when n is 

an even positive integer. However, there is another factorization valid when n is odd or even, and is 

of the form: 

       ℎ𝑛(𝑥, 𝑦) = (𝑥𝑛 + 𝑦𝑛) = (√𝑥𝑛 − √2√(𝑥𝑦)𝑛 + √𝑦𝑛) (√𝑥𝑛 + √2√(𝑥𝑦)𝑛 + √𝑦𝑛),           (24) 

which is valid for the following cases 

i)     if 𝑛 = 2𝑘 + 1;  ∀𝑥, 𝑦 ∈ ℝ+ ;  𝑘 ∈ ℕ.      

ii)    if 𝑛 = 2𝑘;   ∀𝑥, 𝑦 ∈ ℝ+  or  ∀𝑥, 𝑦 ∈ ℝ− ;   𝑘 ∈ ℕ.      

iii)   if 𝑛 = 4𝑘;   ∀𝑥, 𝑦 ∈ ℝ ;  𝑘 ∈ ℕ.       

 

To my knowledge, this detailed result has never been mentioned in the textbooks otherwise the central 

question itself should not be frequently asked by students at all.     

The first ten factorizations 

ℎ1(𝑥, 𝑦) = (√𝑥 − √2√𝑥𝑦 + √𝑦) (√𝑥 + √2√𝑥𝑦 + √𝑦);                                               ∀𝑥, 𝑦 ∈ ℝ+ 

ℎ2(𝑥, 𝑦) = (𝑥 − √2𝑥𝑦 + 𝑦)(𝑥 + √2𝑥𝑦 + 𝑦);                                          ∀𝑥, 𝑦 ∈ ℝ+   or  ∀𝑥, 𝑦 ∈ ℝ− 
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ℎ3(𝑥, 𝑦) = (√𝑥3 − √2√(𝑥𝑦)3 + √𝑦3) (√𝑥3 + √2√(𝑥𝑦)3 + √𝑦3);   
                              

∀𝑥, 𝑦 ∈ ℝ+ 

 

ℎ4(𝑥, 𝑦) = (𝑥2 − √2𝑥𝑦 + 𝑦2)(𝑥2 + √2𝑥𝑦 + 𝑦2);                                                             ∀𝑥, 𝑦 ∈ ℝ 

 

ℎ5(𝑥, 𝑦) = (√𝑥5 − √2√(𝑥𝑦)5 + √𝑦5) (√𝑥5 + √2√(𝑥𝑦)5 + √𝑦5);   
                              

∀𝑥, 𝑦 ∈ ℝ+ 

                                     

ℎ6(𝑥, 𝑦) = (𝑥3 − √2(𝑥𝑦)3 + 𝑦3)(𝑥3 + √2(𝑥𝑦)3 + 𝑦3);                       ∀𝑥, 𝑦 ∈ ℝ+   or  ∀𝑥, 𝑦 ∈ ℝ−                                   

 

ℎ7(𝑥, 𝑦) = (√𝑥7 − √2√(𝑥𝑦)7 + √𝑦7) (√𝑥7 + √2√(𝑥𝑦)7 + √𝑦7);   
                              

∀𝑥, 𝑦 ∈ ℝ+ 

                                     

ℎ8(𝑥, 𝑦) = (𝑥4 − √2(𝑥𝑦)2 + 𝑦4)(𝑥4 + √2(𝑥𝑦)2 + 𝑦4);                        ∀𝑥, 𝑦 ∈ ℝ+   or  ∀𝑥, 𝑦 ∈ ℝ−                                   

 

ℎ9(𝑥, 𝑦) = (√𝑥9 − √2√(𝑥𝑦)9 + √𝑦9) (√𝑥9 + √2√(𝑥𝑦)9 + √𝑦9);   
                              

∀𝑥, 𝑦 ∈ ℝ+ 

                                                                             

ℎ10(𝑥, 𝑦) = (𝑥5 − √2(𝑥𝑦)5 + 𝑦5)(𝑥5 + √2(𝑥𝑦)5 + 𝑦5);                    ∀𝑥, 𝑦 ∈ ℝ+   or  ∀𝑥, 𝑦 ∈ ℝ− 
 

Actually, the factorization (24) is also valid for the following important case, that is, when the 

exponent itself is of the form 𝑛 𝑚⁄ . Hence, ∀𝑥, 𝑦 ∈ ℝ+ ;   𝑛 ∈ ℕ,   𝑚 ∈ ℕ\{0}: 

 

 (𝑥
𝑛

𝑚 + 𝑦
𝑛

𝑚) = (√𝑥𝑛 𝑚⁄ − √2√(𝑥𝑦)𝑛 𝑚⁄ + √𝑦𝑛 𝑚⁄ ) (√𝑥𝑛 𝑚⁄ + √2√(𝑥𝑦)𝑛 𝑚⁄ + √𝑦𝑛 𝑚⁄ ).        (25) 

 

4.1. Example 

 

Now, let us illustrate the role and importance of the factorization (24). Supposing a hypothetical 

physical phenomenon whose evolution depending quantitatively and qualitatively on 𝑥 ∈ [0, 1] and 

𝑛 ∈ ℕ, respectively. This phenomenon is defined by the following second-order non-linear ODE    

 

                                                               
𝑧′2

 − 𝑧𝑧′′

𝑥𝑛 + 1
= −

𝑧2

√𝑥𝑛 − √2√𝑥𝑛 + 1 
 .                                           (26) 

 

Our aim is to find a particular solution with the initial conditions: 

 

𝑧
𝑥=0

= 1,    𝑧′
𝑥=0

=
1

4
 . 

Separation of variables yields 

                                                                 
𝑧𝑧′′− 𝑧′2

𝑧2
=

𝑥𝑛+1

√𝑥𝑛 − √2√𝑥𝑛 + 1 
,                                               (27) 
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furthermore, we have        

                                                                      
𝑧𝑧′′− 𝑧′2

𝑧2 =
𝑑

𝑑𝑥 
(

𝑧′

𝑧
),                                                     (28) 

and from (24) we can write 

                                                        
𝑥𝑛+1

√𝑥𝑛 − √2√𝑥𝑛+1 
= √𝑥𝑛 + √2√𝑥𝑛 + 1.                                      (29) 

                                                     

Substituting (28) and (29) into (27) and separating the variables to get  

 

                                                         

𝑑 (
𝑧′

𝑧
) = [√𝑥𝑛 + √2√𝑥𝑛 + 1] 𝑑𝑥.                                         (30) 

First integration gives  

                                                 
𝑧′

𝑧
=

2

𝑛+2
𝑥(𝑛+2) 2 ⁄ +

4√2

𝑛+4
𝑥(𝑛+4) 4⁄ + 𝑥 + 𝑐1.                                   (31) 

                      

Again, separating and integrating to find the general solution 

 

                                                                     𝑧 = 𝑐2𝑒𝜑𝑛(𝑥) ,                                                              (32)     

where 

                        𝜑𝑛(𝑥) =
4

(𝑛+2)(𝑛+4)
𝑥(𝑛+4) 2 ⁄ +

16√2

(𝑛+4)(𝑛+8)
𝑥(𝑛+8) 4⁄ +

1

2
𝑥2 + 𝑐1𝑥.                          (33) 

                            

Finally, by taking into account the initial conditions, we can deduce the desired particular solution 

  

                                                                     𝑧 = 𝑒𝜑𝑛(𝑥) ,                                                                 (34) 

where  

              𝑐1 =
1

4
, 𝑐2 = 1,   𝜑𝑛(𝑥) =

4

(𝑛+2)(𝑛+4)
𝑥(𝑛+4) 2 ⁄ +

16√2

(𝑛+4)(𝑛+8)
𝑥(𝑛+8) 4⁄ +

1

2
𝑥2 +

1

4
𝑥.         (35) 

  

 4.2. Example 

 

The role and significance of the factorization (25) can be exemplified by solving the following 

second-order non-linear ODE: 

                             2𝑧′′𝑧 (𝛼2𝑧′2
+

1

2
𝑧"𝑧) + 𝛼4𝑧′4

= 𝑥 [
𝐾

√√𝑥  −√2√√𝑥 + 1

]

2

,                                     (36) 

 

                                               ∀𝑥 ∈ ℝ+ ;  𝛼 ∈ [−1, 1];  𝐾 ∈ ℝ . 

 

I wish to leave this example as an open problem to the interested readers and I ask them to solve 

Eq.(36)  for the interesting case when 𝛼 = ±1  and 𝐾 = 1.

  

It is worthwhile to note that it is almost impossible or at least very difficult to integrate Eqs.(26) and 

(36) without using the factorizations (24) and (25), respectively. Hence, in this sense, some apparently 

new type of indefinite irrational integrals is originated as a direct consequence of (24) and (25). 
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5. Apparently new type of indefinite irrational integrals 

 

    I.           𝐼𝑛 = ∫
𝑑𝑥 

√𝑥𝑛   −  √2√𝑥𝑛  + 1
  

 

   II.          𝐼𝑛 = ∫
𝑑𝑥 

√𝑥𝑛  +  √2√𝑥𝑛  + 1
  

 

  III.         𝐼𝑛 = ∫
𝑥𝑛 

√𝑥𝑛  −  √2√𝑥𝑛  + 1
 𝑑𝑥 

 

  IV.        𝐼𝑛 = ∫
𝑥𝑛 

√𝑥𝑛  +  √2√𝑥𝑛  + 1
 𝑑𝑥 

   

   V.        𝐼𝑛 = ∫
𝑥𝑛 +  1

√𝑥𝑛  −  √2√𝑥𝑛  + 1
 𝑑𝑥 

 

  VI.        𝐼𝑛 = ∫
𝑥𝑛 +  1

√𝑥𝑛  +  √2√𝑥𝑛  + 1
 𝑑𝑥 

 

 VII.        𝐼𝑛 = ∫
√𝑥𝑛  + √2√𝑥𝑛 +1

√𝑥𝑛  − √2√𝑥𝑛 +1
𝑑𝑥 

 

VIII.       𝐼𝑛 = ∫
√𝑥𝑛  − √2√𝑥𝑛 +1

√𝑥𝑛 + √2√𝑥𝑛 +1
𝑑𝑥 

 

   IX.       𝐼𝑛 = ∫
𝑑𝑥

√𝑥𝑛 𝑚⁄    −  √2√𝑥𝑛 𝑚⁄   + 1

  

 

  X.        𝐼𝑛 = ∫
𝑑𝑥

√𝑥𝑛 𝑚⁄   +  √2√𝑥𝑛 𝑚⁄   + 1

  

 

  XI.       𝐼𝑛 = ∫
𝑥𝑛 

√𝑥𝑛 𝑚⁄   −  √2√𝑥𝑛 𝑚⁄   + 1

 𝑑𝑥 

 

 XII.      𝐼𝑛 = ∫
𝑥𝑛 

√𝑥𝑛 𝑚⁄   +  √2√𝑥𝑛 𝑚⁄   + 1

 𝑑𝑥 

 

XIII.     𝐼𝑛 = ∫
𝑥𝑛 +  1

√𝑥𝑛 𝑚⁄   −  √2√𝑥𝑛 𝑚⁄   + 1

 𝑑𝑥 

  

XIV.     𝐼𝑛 = ∫
𝑥𝑛 +  1

√𝑥𝑛 𝑚⁄   +  √2√𝑥𝑛 𝑚⁄   + 1

 𝑑𝑥 
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XV.      𝐼𝑛 = ∫
√𝑥𝑛 𝑚⁄   − √2√𝑥𝑛 𝑚⁄  +1

√𝑥𝑛 𝑚⁄   + √2√𝑥𝑛 𝑚⁄  +1

𝑑𝑥  

 

XVI.    𝐼𝑛 = ∫
√𝑥𝑛 𝑚⁄   + √2√𝑥𝑛 𝑚⁄  +1

√𝑥𝑛 𝑚⁄   − √2√𝑥𝑛 𝑚⁄  +1

𝑑𝑥 

 

 

6. Conclusion 

 

In this paper, the frequently asked question “What is the factorization of )( nn yx   when n is an even 

positive integer?” by high school and university students on the Net has been answered,  generalized 

and extended to the fractional exponents. Basing on this generalization and extension, an apparently 

new type of indefinite irrational integrals has been originated.       
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