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Abstract

Solving a cubic polynomial using a formula is possible; a formula

exists. In this article we connect various dots from a pre-calculus

course and attempt to show how the formula could be discovered.

Along the way we make a TI-84 CE menu driven program that al-

lows for experiments, confirmations of speculations, and eventually a

working program that solves all cubic polynomials.

Introduction

Blitzer’s Algebra and Trigonometry [1] gives the formula for one root of
x3 +mx = n at the beginning of Section 3.4: Zeros of Polynomial Functions.
We’ll confirm that the formula works for a few cases using a TI-84 CE (TI-83
family) program, see Figure 1.

Where did the formula come from? Can we derive it using no more than
the contents of this algebra book? Using the chapter on polynomials, we can
infer that one root of all cubics will be real; that’s the intermediate value
theorem (3.2). It is easily understood as all cubics will have negative values
that map to negative values and positive values that map to positive values.
As these functions are continuous these properties imply that the function’s
graph crosses the x-axis and hence that it has at least one real root. Finding
that one real root should be enough: using synthetic division of polynomials
(3.3), we can divide the original cubic by (x − r), r the one found real (or
actually any) root and obtain as the quotient a quadratic. The quadratic
formula (1.5) can solve this quadratic and give us the remaining two roots.
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Figure 1: 1) Enter coefficients for general cubic; 2) evaluate at a specified X;
3) confirm Blitzer’s formula; 4) show 3 roots per Cardan.

We do need a result not in the book: an identity. But the identity we need
is close to one the book does have (P5): A3 +B3 = (A +B)(A2 −AB +B2).
The book’s identity can be glossed as a way to factor some cubic polynomials,
our theme: for example, x3+23 = (x+2)(x2−2x+4). We extend this identity
to the sum of three cubics and combine it with the cube roots of unity (7.5)
to give an identity that factors, hence solves a depressed cubic (one lacking a
x2 term). This identity is in Chrystal [2] and other books and it is referenced
(obliquely) in Wikipedia’s article on cubics. Our derivation might be new;
this latter reference puts it in the context of a discrete Fourier transform and
Chrystal makes it a problem; see Wikipedia’s Lagrange’s method in their
article on cubics. We just use a few inferences from the factored form of a
cubic to its coefficient form, nothing too fancy for a high school student: we
think it is about at the level of deriving the quadratic formula, a little hard.

Other references of interest are Tignol’s Galois Theory of Algebraic Equa-

tions and Herstein’s Topics in Algebra [3, 4]. The first gives an historical
evolution of solving the cubic and puts in a broader context of Galois theory.
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Herstein presents a highly condensed, fast formulae for all three roots to a
general cubic, page 251. He builds into his formulae the transformations that
depress a general cubic. We’ll touch on transformations in our last section.

Formula confirmation

Figure 2: Option 3 of the CUBICS program with M=1 and N=30 gives a
root of 3 which is correct.

Before going forward, Blitzer specifies that
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is one root of x3 + mx = n. Taking m = 1 and n = 30, we should find a root
of 3.

Using our laboratory program we confirm the formula works for this case.
The pertinent lines of code are 013 to 017, Figure 1. Figure 2 gives the
confirmation. We’ve got one of three roots.

An important cubic

The easiest cubic equation that has three calculable roots is x3 − 1 = 0.
Its roots are ω, ω2, ω3 = 1 where ω = (cos 120 + i sin 120). As powers rotate
points by multiples of 120, we get 3∗120 = 360, 6∗120 = 2·360 per DeMoivre’s
theorem (7.5), implying each is a root of unity. We can also translate these
complex numbers into radical forms by solving x3+(−1)3 = (x−1)(x2+x+1)
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using the quadratic formula and an earlier identity:
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We gain some experience by confirming these results with a little algebra:
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We note that
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We’ll use this later. The two values ω and ω2 are stored as O and S; see
code lines 001 and 002 of Figure 1.

A real identity

There is a relationship between the root form (left hand side of (3)) and the
coefficient form (right hand side of (3)) of a cubic: p3(x) =

(x−r1)(x−r2)(x−r3) = x3−(r1+r2+r3)x
2+(r1r2+r1r3+r2r3)x−r1r2r3. (3)

As p3(r1) = p3(r2) = p3(r3) = 0, we can derive an identity by summing the
following three equations
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A complex identity

We can use (4) with (2) to arrive at

− r1r2 − r1r3 − r2r3 = (ω + ω2)r1r2 + (ω + ω2)r1r3 + (ω + ω2)r2r3. (5)

Adding r2
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3
to the right hand side of (5) and multiplying by r1+r2+r3

gives the complex identity:
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It might be the easiet derivation to just note

(r1 + ωr2 + ω2r3)(r1 + ω2r2 + ωr3)

= r2
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3
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by just doing the multiplication and remembering that ω3 = 1.

Exploration

Figure 3: Using option 1) and 2) the CUBICS program confirms roots.

We can gloss the identity (6) as the factoring of a depressed cubic; just
make r1 = x for

x3 − 3xr2r3 + r3

2
+ r3

3
= (x + r2 + r3)(x + ωr2 + ω2r3)(x + ω2r2 + ωr3). (7)
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Figure 4: Caption for cubics-cardan-forMinus18and35

Let’s experiment. Let r2 = 2, and r3 = 3 in (6) then (7) becomes

x3 − 18x + 35 = (x + 5)
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We can confirm that −5, 1/2(5+i
√

3), 1/2(5−i
√

3) are roots using options
from our calculator program, Figure 3.

Buoyed by this likely success, let’s find the other roots by using (7) in
our program: that’s the code lines 021 through 026. Bingo: Figure 4.

The TI-84 did the complex arithmetic, but it dropped the symbolic, exact
solutions. Maple keeps the exact form for such calculations. Figure 5 shows
this.

Figure 5: Given any one root r of a cubic, we can divide by x − r and then
solve the quotient quadratic.
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Depressed cubic formula

We can infer from this example that the central puzzle to solving a cubic
given in the form x3 + cx + d is to find r2 and r3 given that c = −3r2r3 and
d = r3

2
+ r3

3
. If we are able to to do this we can use (7) and read off the roots:

R1 = −r2 − r3, R2 = −ωr2 − ω2r3, and R3 = −ω2r2 − ωr3.
Here is the “aha” moment: we can find two numbers knowing the prod-

uct and sum of the numbers using a quadratic equation; and, as a bonus,
quadratic solutions are complex conjugates. Solving the quadratic x2 + dx−
(c/3)3 does it. If the roots are q1 and q2, then 3

√
q1 = r2 and 3

√
q2 = r3. For

our example x3 − 18x + 35, −3r2r3 = −18, so r2r3 = 6, that cubed is the
quadratic’s constant term and d = r3
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3
. The quadratic associated with

x3 − 18x + 35 is x2 − 35x + 216. The quadratic formula yields
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√
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2
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√
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2
= 27 = r2

3
.

Some algebraic manipulations of these ideas yields Blitzer’s formula for
the depressed cubic equation: x3 + mx−n = 0. Here goes: m = −3r2r3 and
−n = r3

2
+r3

3
. So the quadratic associated with this cubic is x2+nx−(m/3)3.

The quadratic formula gives
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Taking the cube root of each and the negative of the sum gives (1).
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General cubic formula

Given p3(x) = x3 + bx2 + cx + d can we eliminate the x2 term by a transfor-
mation [1, Section 2.5], solve the resulting depressed cubic d3(x), and then
solve the original p3(x)? We will then be in a position to formulate a general
solution and implement it as a calculator program. As a test case, let’s take

p3(x) = (x− 1)(x − (2 − 2i))(x + (2 − 2i)) = x3 − 5x2 + 12x − 8. (8)

Left and right horizontal shifts just move a graph left and right. So in
theory, if as a result of a horizontal shift we eliminate the x2 term, we should
be able to shift roots found back. Consider

p3(x + h) = (x + h)3 + b(x + h)2 + c(x + h) + d

= x3 + 3x2h + 3xh2 + h3 + b(x2 + 2hx + h2) + cx + ch + d

3hx2 + bx2 + other terms = (3h + b)x2 + other terms.

Setting 3h + b = 0, we get h = −b/3 eliminates the x2 term. We can crunch
the new d3(x) polynomial using Maple, Figure 6.

Figure 6: Maple can perform the transformation that eliminates the x2 term.

We determine one root of x3 + 11/3x + 74/27 is x = −2/3 using Option
3 with M = 11/3 and N = −74/27, Figure 7 at the top. Using synthetic
division (or Maple) a division yields the quadratic x2 − 2/3x +37/9 and this
has roots 1/3 ± 2i via the quadratic formula (Maple, again). But we can
get all three (in theory) using Option 1 and entering the coefficients A = 1,
B = 0, C = 11/3, D = 74/27 and then Option 4. Viola: Figure 7 shows all
three roots. When 5/3 is added to these roots we have a confirmation of (8);
we get the correct roots.
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Figure 7: Option 3 gives the single root −2/3, and Option 4 gives all three
roots.
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Conclusion

What could possibly go wrong? What are the roots of x3−12x+10? There is
some fine print to these cubic equations. Chrystal, page 549 touches on neg-
ative discriminants of the quadratic we derive from a given cubic renders the
omega math we’ve been using useless for purposes of numerical calculation.

Figure 8: Graph for the cubic x3−12x+10 indicating it has three real roots.

Figure 9: Option 4 gives three complex roots – not even close!

Chrystal’s book was originally written in the 1800’s, so maybe this statement
is a little dated. But the calculator seems to falter with this example. We
are supposed to get three real roots as a graph of this cubic indicates Figure
8 and we get three complex roots, Figure 9.

In the sequel to this article, we will attempt to resolve these issues. Hint:
polar coordinates!
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