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Abstract. The article considers a way to compare large bulks of experimental data with theoretical 

calculations, in which the quality of theoretical models is clearly demonstrated graphically. 

Published theoretical data of the three-fluid dynamic model (3FD) applied to the experimental data 

from heavy-ion collisions at the energy range 
NNs  = 2.7 - 63 GeV are used as example of 

application of the developed methodology. When analyzing the results, the quantum nature of the 

fireball, created at heavy ion collisions, was taken into account. 
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1. Introduction 

Articles devoted to the study of the formation of Quark-Gluon Plasma (QGP) in 

heavy ion collisions contain a huge amount of experimental and theoretical material. 

If some criterion is used to assess the quality of the description of experimental data 

by some theoretical model, then the question arises of systematizing a large set of 

calculated criteria. Usually, one type of observables (for example, particle spectra) is 

analyzed separately from others. This leads to a contradicting interpretation of the 

experimental data. We came to conclusion that need the quantitative characteristics of 

the degree of agreement between theoretical models and experiments, which having a 

large amount of observational material, expressed by a single number for each model 

and for the each energy of heavy-ion collision. An attempt in this direction was made 

in [1], but with the averaging of the quality criteria 
2  of not compatible models, 

which somewhat smeared the final result. 

This article is organized as follows. The second section provides a mathematical 

justification for the proposed method. In the third section, we apply it to published 

theoretical and experimental data with a graphical display of the result that 

unambiguously highlights the best theoretical model, and in fourth section we make 

some assertions. The fifth section contains the conclusion. 

2. Theoretical justification of the method 

Let A is a physical observable. A good criterion for the coincidence of some model 

T1 and experiment is the chi-square 2
: 
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where 2

i  is the square of the experimental error of the physical observable Aexp,i  

measured in the i-th kinematic area, n is the number of data points of physical 

observable A.  Here, each physical observable, measured experimentally Aexp,i or 

calculated theoretically Ath,i, is the result of averaging a series of measurements from 

thousands or millions of events - collisions of nuclei. The entire kinematic area in 

which the observable A is measured is divided into n non-overlapping areas. 

Therefore, the summation in (1) runs over the entire kinematic area of measurements 

of A. Therefore, A is usually presented as a graph of n points or through a table. 

Another criterion, rarely used in practice (but often in the laboratory practice of 

university courses), is the relative difference between the experimental value and 

theoretical prediction: 
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Let the set of physical observables is s1 = {A1, ..., Al}. After applying (1 - 2), sets of 

criteria can be obtained: 
1 1

2 2

1{ ( ) ,..., ( ) }T l TA A   and 
1 11{ ( ) ,..., ( ) }T l TA A  . The next 

two values can be a quantitative expression of the degree of agreement between the 

model T1 and the experimental data set s1: 
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where n(Am) is the number of data points for the physical observable Am.  

Now, in order to compare the T1 model with another set of experimental data s2 of 

physical observables {B1, ..., Bk} (related to other types of particles or physical 

processes), analogue (3) should be calculated: 
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where n(Bm) is now the number of data points for the physical observable Bm. 

Comparing (3) with (4) in order to understand which set of observables the model T1 

describes best of all, a problem arises. If all  
1

2

m T
A  or  
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2

m T
B  (  

1
m T
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1

m T
B ) have approximately the same value, then the sum (3) or (4) will lose some 

terms in the numerator that have the fewest data points. As a result, we lose some 

information about the physical processes under study, and we compare the truncated 

data sets. Moreover, using any weighted averaging, we reduce the set of observables, 

which distorts the analysis. To avoid this truncation of data, a modification has been 

made (1 - 4): 
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In formulas (7-8), we average criteria over the number of observables in each set of 

observables. Such averaging gives possibility for correct calculation of criteria for 

two sets inside one model T1. To obtain criterion of comparison of the model T1 with 

united sets s1 and s2, averaging of criteria over these sets is needed: 
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And for an arbitrary number N of sets of observables, if 
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Since each set of physical observables belongs to its own kinematic area, the 

arithmetic averaging of the criteria gives the final criterion which is uniformly 

distributed over the union of the kinematic areas of all sets of observables. Repeating 

the same analysis (5 – 11) for another model T2 with respect to the same N sets of 

physical observables makes it possible to compare criteria, for example, 
1

2 ( )Ts  and 

2

2 ( )Ts  of different models T1 and T2, that is, to compare the quality of theories in 

describing any amount experimental data. 

3. Application to real experiments and theories 

We take published results of three-fluid dynamic (3FD) model which uses three 

versions of equation of state (EoS) of nuclear matter created in heavy-ion collisions 

[2], [3]:  T1 is a 3FD model with 2-phase EoS, that is with first-order phase transition 

to deconfined state of nuclear matter, T2 is a 3FD with EoS considering smooth 

crossover transition to deconfined state, T3 is a 3FD with purely hadronic EoS. The 

3FD model was applied to the experimental data for central heavy-ion collisions from 

AGS to RHIC energies NNs  = 2.7 GeV  62.4 GeV [4], [5].  

We have applied formulas (6 – 8, 10, 11), concerning the relative criteria,  to the 

following sets of physical observables:   s1 = (Y
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where Y
particle

 is a total yield of given particle, calculated by taking integral from 

particle rapidity distributions dN/dy of  [4], [5]. dY
particle

 is a midrapidity multiplicity 

0y

dN

dy


of given particle taken from Fig.9 of [5]. For all these physical observables, 

number of data points is one: ni = 1. Relative criteria are expressed as a percentage by 

multiplying the calculated values by 100 and the results are shown in Figure 1. 

At first, for charged particles, a separate averaging of relative criteria over each 

isospin group (Q) was done for protons: 
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 . Then sets of criteria for 

light flavor (LF) particles were averaged between themselves: 
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 .  Analogously averaging inside strangeness group (S) was 

done also: 
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relative criteria for light flavor and strangeness are averaged between themselves: 
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 . Three numbers, , ,( )

iQ S LF Ts  (where i=1, 2, 3), 

expressing quality of each version of 3FD model, were obtained for each energy of 

collision. 

 

 

Figure 1. Relative criteria of comparison between three versions of 3FD model and experimental 

data of total and mid-rapidity particle yields as function of the energy of central heavy-ion 

collisions. The formula at the top is demonstrating the method, described in the text. Symbols Q, 

LF, S are denoting the procedure of averaging inside groups of isospin, light flavor and strangeness, 

respectively and final averaging between them (see text). 

The same procedure was done for directed flows v1(y) for protons, antiprotons and 

pions from mid-central heavy-ion collisions at energies NNs  = 2.7  27 GeV, which 

were taken from Fig. 1-3 of [6]. Criteria were calculated by (5 – 11). Both types of 

criteria show similar behavior (Fig. 2). Relative criteria were no longer multiplied by 



6 
 

100. For each collision energy, the following sets of physical observables were taken: 

   1 1 1 2 1 1( ), ( ) , ( ), ( )p ps y y s y y    
   

  .  

4. Discussion 

It can be seen from Fig. 1 that all three versions of 3FD model are in poor agreement 

with experimental data in the central heavy ion collisions energy range of NNs = 5  

9 GeV. This may indicate that in this energy range the equation of state of nuclear 

matter has other parameters than those accepted in the 3FD model. If a phase 

transition of nuclear matter from the hadronic phase to the quark-gluon phase occurs 

somewhere, then at energies below NNs = 5 GeV and higher NNs = 9 GeV. Between 

these energies, nuclear matter is neither in a purely hadronic nor in a quark-gluon 

state. 

 

Figure 2. Criteria for comparison between three versions of the 3FD model and experimental data of 

directed flows of light flavor particles depending on the energy of mid-central heavy ion collisions. 

In [7] it was shown that difference in the measurements of hyperons by two 

experiments NA49 and NA57 is caused by quantum nature of the fireball created in 

heavy ion collisions, that is with probability around 50% occurs creation of fireball 

with ignited QGP state QGP  at NNs = 17.3 GeV in Pb+Pb central collisions, and 

with probability is around 50% we have fireball creation without igniting of QGP 

state, and we write this state in the form  Hadronic . Thus, we have suspicion that 

NA57 measures hyperon yields from mixture of two quantum states of fireball with 

predominance of QGP  state, and NA49 measures hyperon yields from interference 
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of two quantum states of fireball. This results in different measurement values in each 

experiment. Taking into account that each of the three versions of the 3FD model 

does not contradict physical laws, it can be assumed that there are three real scenarios 

for the evolution of the fireball in nature, that is, we have three quantum states of the 

fireball: Hadronic , 2phase , crossover , where the last two represent the 

QGP  state via superposition. As a result, we must represent an arbitrary quantum 

state of fireball through a superposition of these three states, which is shown in Fig. 

3. The amplitudes of these quantum states depend on the energy and centrality of 

heavy ion collisions.  

 

Figure 3. Diagram of the superposition of three quantum states of a fireball formed in collisions of 

heavy ions at relativistic energies. The dots represent lines of other particles evaporating from the 

fireball. 

Probably, at collision energies of heavy ions of NNs = 5  9 GeV, there are other 

quantum states corresponding to the properties of nuclear matter not taken into 

account by the 3FD model, so the quantum states in the diagram in Fig. 3 will be 

different. This diagram in Fig. 3 relates to energies 2.7 < NNs < 5 GeV and NNs  > 9 

GeV. It is fundamental that the amplitudes of competing quantum states and 

representing a first-order phase transition 2phase  and a smooth transition to the 

partonic state crossover of nuclear matter, both of these amplitudes do not vanish 

in the same energy range! 

Large values of the criteria for directed flows in Figs. 2 can be attributed to bad 

statistics, since we have only two types of particles - (anti)protons and charged pions. 

The suspiciously better agreement hadronic version of 3FD model at energies NNs  > 

20 GeV is explained in [8] by an incorrect choice of the parameters of deconfined 

nuclear matter.  
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5. Conclusion 

The shown method of comparing theoretical predictions with a large set of 

experimental data provides a clear opportunity to assess the quality of the theory and 

choose the best theory among many theoretical models. At the same time, when 

exploring a quantum object, we must understand that nature is richer in the 

manifestation of physical phenomena than the human imagination. Competing 

models that assume different evolution of a physical object might be represented in 

nature as different quantum states of an object that are realized under the same 

conditions. 
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