
Supervisory Control of Discrete Event Systems with State-dependent Observability

Peng Wang, Xiang-Yun Wang and Kai-Yuan Cai

School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics
Department of Electrical and Computer Engineering, University of Connecticut

This paper considers a new class of discrete event systems under partial observations. The problem is presented within the
background of a manufacturing process where workpieces are loaded and transported, and this process is controlled with
the partial information collected by sensors. The model extracted is novel because the observation of an event does not
only depend on an event itself, but also the state where the system stays. Two standard problems are discussed in this
paper: supervisor existence problem and supervisor synthesis problem. With a natural revision of observable languages, a
necessary and sufficient condition is given for the existence of a supervisor. For supervisor synthesis problem, two
algorithms are developed: one algorithm is to check the properties of a control specification given by a regular language,
and the other one is to synthesize a supervisor if the properties hold. Within the background of manufacturing systems, an
example is illustrated to show how the algorithms are applied to practical computing.

Keywords: Discrete event systems, supervisory control, state-dependent observability

1. Introduction

A discrete event system (DES) is commonly described
by a state transition model such as a automaton, and it is
controlled by disabling certain events that cause undesired
state transitions [1,2,3]. If some events are not completely
observable, control of a system is implemented by using
partial information of the state transitions. As a result, an
observation problem has been formed since 1980s [2, 3].
Different from linear models, the observation problem of
DES is not a dual problem of its controllability study, and
it has become an independent branch in the framework of
supervisory control theory.

From the perspective of mathematics, observation of
events is usually specified by a mapping function which is
defined on the event set of DES, and two event sequences
look the same if they are the same after mapped to another
set of symbols. This function characterizes the ability on
how much information the system provides to the outside,
especially to the supervisor to be synthesized. In several
branch fields related to the observation problem, such as
the decentralized control [3,4], optimal control [5,6] and
control of concurrent systems [7], the observation function
follows the original form in [1,2], where the object and
outcome of observation are both events and the outcome
exclusively depends on the observed object.
 In this paper the original form of an observation function
is extended, where the object and outcome of observation
are both events, but the outcome is not only dependent on
the object, but also the state where the system stays. As a
result, the observability of an event is changeable as the

system states change form one to another, and it is called
state-dependent observability.
 To intuitively explain the state-dependent observability
we present an example in manufacturing systems. In this
example a container is to carry workpieces and a pressure
sensor is placed at bottom of the container. The sensor can
distinguish whether the container is empty or not, but it
cannot differentiate how many workpieces are loaded. If
we want to develop a controller to supervise the process of
loading/unloading, one question is how much information
we can obtain through the sensor. Based on the capability
of the sensor, if the container is empty, the action of
loading can be observed. If there are workpieces loaded,
the action of loading will not be observed by the pressure
sensor (See Figure 1). In other words, for the same action
of loading, it is observable as the system stays at one state
(the container is empty), while become unobservable at
other states (the container is loaded). Such observability is
thus state-dependent.

Figure. 1. A container with workpieces

The above loading/unloading workshop is a typical cell
in a flexible manufacturing system, and it will be further
extended in the later sections to be a computing example.

Pressure Sensor

The rest of this paper is organized as follows. Section 2
reviews the preliminaries and notations of DES and a new
model of partially observable system is defined with state-
dependent observability. Section 3 studies the supervisor
existence problem and derives a necessary and sufficient
condition with respect to a given specification. Section 4
focuses on the supervisor synthesis problem and two
algorithms are introduced. Section 6 illustrates examples,
and concluding remarks are presented in Section 7.

2. Preliminaries and Notation

A. Discrete Event Systems and Supervisory Control
 In the original framework by Ramadge and Wonham, a
discrete-event system is characterized by a deterministic
automaton. The system is event-driven, and the state of a
system transits as events happen. The math description is

G=Q ,Σ , δ ,q0

where Q is the state set, Σ is the event set, and the state
transition function is δ :Q×ΣQ . q0∈Q is the initial
state. In general, δ is a partial function, i.e., δ q , σ is
defined only on a subset of Σ for each q∈Q . In this
paper we will write δ q , σ ! if δ q ,σ is defined, and
¬δ q,σ ! if it is not.

 Let Σ* denote the set of all finite strings s=σ 1 ... σn of
elements in Σ , including the empty string ε . A subset of
Σ* is a language over Σ . The set of all the prefixes of

strings in a language L is denoted by L , and we say L is
(prefix-)closed if L=L . The language generated by G is

LG ={s∈Σ *∣δ q0 , s !} .
The automaton G is considered as a uncontrolled device

that starts from q0 and executes and generates a sequence
of events permitted by δ . Events happen instantaneously
and asynchronously, and they can be considered as atomic
activities of a device such as “move a workpiece” or “send
a message.” If s=σ 1 ... σn belongs to L(G), it means that
the device is capable of carrying out these activities in the
order of σ 1... σn .

It is sometimes convenient to eliminate states that are
not accessible from q0 . The accessible component of G is
A G =Qa , Σ , δa , q0 . Here Qa is the set of accessible

states, and δa is given by
Qa={q∣∃s∈Σ* , s .t . q=δ q0 , s } ,

δa q , σ ={δ q, σ if q∈Qa and δ q ,σ ∈Qa

undefined otherwise
It is clear that G is accessible if G=A(G).

A control mechanism for G is as follows [1,2]. The
event set Σ is partitioned into two disjoint part. Let Σc
be the set of all controllable events, and Σuc is the set of
all uncontrollable events.

 Σ=Σc∪Σuc and Σc∩Σuc=∅ .
A controllable event can be allowed to occur or prevented
from possible occurring while no such control is possible

for an uncontrollable event. Thus, a control pattern is γ
such that Σuc⊆γ⊆Σ , and all control patterns are

 Γ={γ∈2Σ∣Σuc⊆γ⊆Σ} .
An event σ is said to be enabled by γ if σ∈ γ , or be
disabled by γ if σ∉ γ . A supervisor is defined as a pair
Φ=S ,ψ , where S=X ,Σ , ξ , x 0 is a deterministic

automaton and ψ : X Γ is called a state feedback map
that selects a control pattern ψ x for each state x .

B. State-dependent Observability
As presented in Section 1, in some real situations, Φ

cannot observe all transitions of G or cannot distinguish
between certain transitions. These situations can be
modeled by introducing an observation stage M between
G and Φ specified by an observation or mask function.
The original form of the function was M : ΣΘ∪{ε} [1].
This paper will present a more general definition as below.

Definition 2.1: Let G ,M denote a partially observable
DES where G is a deterministic automaton, and M is the
observation function. In this paper M is defined by

M :Q×ΣΘ∪{ε}
where Θ represents a set of observation outcomes.
 This definition implies that the outcome of observation
depends on both the observed object and the state where
the system stays. For example, M q, σ =β implies that
σ is observed as β at state q. Comparing our definition

with the old one [1,2], we note that our definition makes
an observation process dependent on the system state. In
other words, an event can be observable in one state while
be unobservable in another. For example, M q1,σ =σ
means σ is observable at state q1 while M q2,σ =ε
implies it becomes unobservable at state q2 .
 Furthermore, a sequence of events forms a string, and
thus a string can be observed as its component events are
sequentially observed. That is, M :Q×ΣΘ∪{ε} can be
extended to M :Q×Σ *Θ* by specifying

(1) M q, ε =ε
(2) M q, sσ =M q , s M δ q, s , σ .

 Because a language is a set of strings, an observation
function can also mask a language as each string in the
language is masked, and the resulting language is given by

 M K ={d∈Θ*∣∃s∈K ,s .t . M q 0 , s=d} .
Besides, because such observation process is related to

the system state and the transition function of G is often a
partial function, it is necessary to define M only on part of
Q×Σ . In brief, it is meaningless to define M q,σ if

there is no transition σ at state q. This paper will write
M q , σ ! if M q , σ is defined, and write ¬M q, σ !

if it is not defined. The domain of M is thus specified as
For q∈Q and σ∈Σ , M q , σ ! iff δ q ,σ ! .

To take into account the new function M, the preceding
framework goes through with some minor modification. A

supervisor of G ,M is a pair Φ=S ,ψ , where the
automaton S=X , Θ, ξ , x 0 has the input Θ ; The state
feedback map ψ : X Γ is as before. As Φ is coupled
to G ,M , a supervised discrete event system is given as

Φ/G=A X×Q , Σ ,ξ °M ×δ c , x 0 , q0 .
where the transition function is defined by

 ξ°M ×δ c x ,q ,σ ={
ξ x , M q , σ , δ q , σ
if σ∈ψ x ,M q, σ ! ,δ q,σ !

undefined otherwise

 As for a DES with state-dependent observability, a
supervisor is called complete if

s∈L Φ/G ∧sσ∈LG ∧σ∈ψ ξ x0 , M q0 , s

⇒ sσ∈LΦ/G

This definition implies that automaton in the supervisor
will not control the state transition of G. Rather, it is the
state feedback that controls the plant. The next question is
how to find a required supervisor to meet a specification.
Some specification can be satisfied while others are not. It
is therefore necessary to investigate certain properties of a
specification to discuss whether a supervisor exists.

3. Existence of Supervisors

This section discusses under what condition there exists
a supervisor for a given specification. In the sense of
math, a specification is often given by a formal language.
According to existing results of a fully observable DES
[9], a supervisor exists if the specification is given as a
invariant language. The definition of such a language is

K is Σuc , LG −invariant⇔

s∈K∧σ∈Σ uc∧sσ∈LG sσ∈ K
As for a DES with state-dependent observability, we

will further look into the observability of a language. The
definition of an observable language is given as below.

Definition 3.1: Let G ,M denote a partially observable
DES with M :Q×ΣΘ∪{ε} . Let K⊆LG ⊆Σ * and
⊂Σ . language K is M , , LG −observable if

 s , s'∈K∧σ∈∧sσ∈K∧s ' σ ∈L G
∧M q 0 , s=M q0 , s '⇒ s ' σ∈K .

 The observability of a language indicates that if two
event sequences look the same, they must be consistent in
the sense that no conflict exists for one event continuable
after one sequence while not continuable after the other.
By the above definition, the supervisor existence problem
is studied through a theorem as given below.

Theorem 3.1: Let G ,M be a partially observable DES
with observation function defined by M :Q×ΣΘ∪{ε} .
There exists a complete supervisor Φ=< S,ψ > such that
LΦ/G =K if and only if (1) K⊆LG , (2) K is

prefix-closed, (3) K is Σuc , L G −invariant , (4) K is

M ,Σ c , L G −observable .
Proof: (Only if). Suppose we have a complete supervisor
Φ=< S,ψ > such that LΦ/G =K , and we are to verify

the properties of K.
(1), (2) are trivial. (3) holds since the supervisor can

only disable controllable events.
To prove (4), we are given s , s'∈K , α∈Σ c such

that M q0 , s =M q0 , s ' , sα∈K and s ' α∈LG . By

s∈K and sα∈K , we will know that event α is enabled
after sequence s occurs, and thus α∈ψ ξ x 0, M q0 , s .

Because M q0 , s =M q0 , s ' , s and s' are the same as
observed by the supervisor, and thus event α is enabled
after s' occurs, i.e., α∈ψ ξ x 0, M q0 , s ' . Because

s ' α∈LG and Φ is complete, it is clear that s ' α∈K ,
and thus K is M ,Σ c , L G −observable by definition.

(If). To prove the sufficiency of the theorem a
supervisor Φ=< S,ψ > is to be synthesized such that
LΦ/G =K . Based on property (a) and (b) in Lemma

(See Appendix), a supervisor can be synthesized as below.
Let S=X , Θ, ξ , x 0 denote the automaton of the

supervisor where X=M K ; x0=ε ;

 ξ d ,θ ={ dθ dθ∈M K
undefined dθ∉M K

.

Synthesize state feedback map as
σ∈ψ d iff σ∈Σuc∪Σd .

Then a supervisor is synthesized and it satisfies
property (a) and (b) in the lemma (See Appendix). Thus,
LΦ/G =K and Φ=< S,ψ > is complete. Q.E.D.

 The theorem above presents a necessary and sufficient
condition for existence of a complete supervisor. Because
the resulting DES under supervision is also an automaton,
the theorem addresses equivalence of formal languages
and automata. Besides, the theorem does not require the
language to be regular, implying that the automaton is not
necessarily finite. However, in practical computing finite
state automata are usually required, and the corresponding
languages are thus regular.

Definition 3.2: Let G ,M denote a partially observable
DES with M :Q×ΣΘ∪{ε} . Let K⊆LG ⊆Σ * , and
language K is M , LG −recognizable if

s∈K∧ s'∈L G∧M q 0, s=M q0 , s ' ⇒s '∈K .

 In the previous framework, a M , LG −recognizable
language implies that it is M , , LG −observable . Is
the proposition still valid for a DES with state-dependent
observability? The following proposition gives an answer.

Proposition 3.1: Let G ,M be a partially observable

DES with M :Q×ΣΘ∪{ε} . Let K 1, K 2⊆LG
(1) If K 1, K 2 are M , LG −recognizable , then
 K 1∩K2 , K 1∪K 2 are M , LG −recognizable
(2) If K 1, K 2 are M , , LG −observable , K 1∩K 2

is M , , LG −observable , but K1∪K 2 is not
(3) If K 1 is M , LG −recognizable , it does NOT

imply that K 1 is M , , LG −observable
(4) For a language K, its M ,Σ c , L G −observability is

independent of its Σuc , L G −invariablity .

Proof. (1) and (2) are trivial, and they are similar to the
traditional results. As for (3), M q0 , s=M q0 , s ' does
NOT imply M q0 , sσ =M q0 , s ' σ because an event σ
can be observable at q1=δ q0 , s while unobservable at
q2=δ q0 , s ' . Thus, (3) holds. For (4), it holds because
Σc∩Σuc=∅ . Thus, invariability on Σuc is not related to

the observability on Σc .
By Proposition 2.1, the supremal sublanguage which is

prefix-closed, invariant, observable and within the given
specification may not exists. Such a difficulty also existed
in the previous framework where the observation function
was specified by M : ΣΘ∪{ε} . In the previous work
[1], this problem was solved by finding the supremal
recognizable language because recognizable languages are
closed under union, and if a language is recognizable, it is
an observable language. However, this approach cannot
be followed because of (3) in Proposition 3.1. Thus, we
must find a new approach to solve this problem.

4. Supervisor Synthesis Problem

After the supervisor existence problem, this section will
focus on the supervisor synthesis problem. Two specific
problems are investigated. The first problem is to judge
whether there exists a supervisor for a specification as
given by a formal language. The next problem is to
synthesize a supervisor if there exists one for the
specification. Two algorithms are given as solutions to the
problems.
 Based on Theorem 3.1, we need to verify the necessary
properties of a given specification. In practical problems,
a specification is often given as a set of a state-transition
rules (See the example in Section 4). The corresponding
language of a state-transition machine is naturally prefix-
closed. Also, in this paper a specification is considered to
control an existing system, but not to extend the behaviors
of the existing system. Thus, the specification language K
is a subset of the original language, i.e., K⊆LG . As a
result, a control specification in practical computing often
meets the first two properties in Theorem 3.11, and the key

1If needed, K⊆L G and K= K can be checked by a method
in [8].

features to be checked are the controllability and
observability of the specification language.
 Furthermore, in particular, this section will consider the
specification to be a regular language because in practical
computing only finite state automata are considered, and
the corresponding languages are regular. The problem is
next addressed as below.

Problem 1: Let G ,M be a partially observable DES
with observation function defined by M :Q×ΣΘ∪{ε} .
Consider K as a regular language such that K⊆LG and
K=K , test whether K satisfies

(1) K is Σuc , L G −invariant ;

(2) K is M ,Σ c , L G −observable .

Algorithm 1:
Step 1:
 Let K be a regular language such that K⊆LG and
K=K , synthesize a finite deterministic automaton
T=Y ,Σ , η , y 0 such that LT =K and T refines G.

Thus, there exists a unique function h :Y Q such that
for any s∈K , h°η y 0, s=δ q0 , s holds [1].
 Let X denote the set of all nonempty subsets of Y and
define the automaton S=A X , Θ ,ξ , x0 where

x0={η y0 , s ∣M h y 0 , s =ε , s∈Σ*} ,

ξ x ,θ ={
{ η y , s ∣ y∈x ,M h y , s=θ , s∈Σ *}

if it is nonempty
undefined otherwise

.

Construct G=A T×S×G

 = A Y ×X×Q , Σ , δ , y 0 , x 0 , q0

where

δ y 0 , x 0 , q0, s ={
<η y0 , s , ξ x 0 ,M q0 , s , δ q0 , s >

if all defined
undefined otherwise

Step 2: Check invariability of K.
 Let Y ×X×Q a denote the state set of G . Check

each < y , x , q>∈Y ×X×Q a and each σ∈Σ such that

δ q ,σ ! and ¬δ < y , x , q> , σ ! , if σ∈Σc , then K is

Σuc , LG − invariant ; otherwise K is not.
Step 3: Check observability of K.

Let Y ×X×Q a be the state set of G . Check each

σ∈Σc and < y ' , x ' , q ' > , < y , x , q>∈Y×X×Q a , such
that x=x ' , δ q ,σ ! and δ q ' , σ ! , if

¬δ < y , x , q> , σ ! implies ¬δ < y ' , x ' , q ' > , σ !
then K is M , Σ c , L G −observable ; otherwise K is not.

To prove Algorithm 1, propositions are given as below.
Proposition 4.1: By Step 1 and Step 2 in Algorithm 1,

K is Σuc , L G −invariant⇔

∀< y , x , q>∈Y ×X×Q a ∀σ∈Σ

¬δ < y , x , q> , σ !∧δ q,σ !σ∈Σ c

Proof: By the definition of G we have L G =K and
G refines G [1]. Then the proposition is restated as

K is Σuc , LG − invariant⇔

∀ s∈K ∀ σ∈Σ sσ∉K∧sσ∈LG σ∈Σc .
 The right side of the above statement is equivalent to

∀ s∈K ∀ σ∈Σ σ∈Σ uc∧sσ∈LG sσ∈K ,
Thus, the proposition holds by the definition of invariant
language. Q.E.D.

Proposition 4.2: By Step 1 and Step 3 in Algorithm 1, we
have K is M ,Σ c , LG −observable⇔

∀< y , x ,q> ,< y' , x ' , q ' >∈Y×X×Q a∀σ∈Σ c

 δ q, σ !∧δ q' , σ !∧x=x' ∧¬δ < y , x , q > , σ !
¬δ < y' , x ' , q ' > , σ !

Proof: By L G =K and G refines G, the proposition is
restated as follows. For ∀ s∈K ∀ s '∈K ∀σ∈Σ c

K is M ,Σ c , LG −observable⇔

sσ∉K∧sσ∈L G ∧M q0 , s =M q0 , s ' s ' σ ∉K
Consider the right side is equivalent to
 s ' σ∈K∧sσ∈L G ∧M q0 , s =M q0 , s ' sσ∈K ,

Then the proposition holds by the definition of
M ,Σ c , L G −observable language. Q.E.D.

Based on (4) in Proposition 3.1, invariability on Σuc is
independent of the observability on Σc . Thus, Step 2 and
Step 3 of Algorithm 1 are also independent, and they can
be swapped in sequence if needed.

Problem 2: Let G , M be a partially observable DES
with observation function defined by M :Q×ΣΘ∪{ε} .
The specification is a regular language K which satisfies
(1) K⊆LG ,
(2) K is prefix-closed,
(3) K is Σuc , LG − invariant ,

(4) K is M ,Σ c , L G −observable .
Synthesize a complete supervisor such that LΦ/G =K .

 The proof of Theorem 3.1 has presented a method to
synthesize a required supervisor, but the supervisor as
synthesized is always an infinite one (the automaton has
infinite state set). Thus, the method cannot be applied to
practical problems, and it is necessary to find an approach
such that a finite supervisor can be synthesized, especially
for the specification as given by a regular language.

Algorithm 2:
Step1: Synthesize automaton S.

Since K is prefix-closed, construct T=Y , Σ ,η , y 0

such that LT =K and T refines G [1]. Then there exists
a unique function h :Y Q such that for arbitrary s∈K ,
h°η y 0, s=δ q0 , s holds [1]. Let X denotes the set of

all nonempty subsets of Y and define an automaton
S=A X ,Θ ,ξ , x0 where

x0={η y0 , s ∣M h y 0 , s =ε ,s∈Σ *} ,

ξ x ,θ ={
{ η y , s ∣ y∈x ,M h y , s=θ , s∈Σ *}

if it is nonempty
undefined otherwise

.

Step2: Synthesize state feedback map ψ .
For x∈X , f x is defined by
f x={σ∈Σc∣∃ y∈x , s . t . η y ,σ !} . Then the

feedback map is defined by σ∈ψ x iff σ∈ f x∪Σuc .

The correctness of Algorithm 2 can be checked based
on the lemma and propositions in Appendix. If needed, the
resulting supervisor can be further reduced in its state set
by a method in [9].
 Further, if K is a regular language, then Y can be a finite
set, and thus X is finite through Step 1 in Algorithm 2. As
a result, for a specification as given by a regular language,
the supervisor can be synthesized in a finite form.

To summarize the work of this section, usual procedures
for synthesizing supervisors are given based on the two
algorithms introduced above. First we use Algorithms 1 to
check whether there exists a required supervisor for the
given control specification; if there exists one, Algorithm
2 is applied to synthesize it.

5. Illustrative Examples

Examples are illustrated in this section to show how to
apply the algorithms to practical computing problems. A
transport system is considered as a model to be supervised
within the background of manufacturing systems.
 As presented in Section 1, a container with workpieces
can be characterized as a event-driven system with state-
dependent observability. In this section such a container is
placed on transport line so that it moves between a loading
site and an unloading site. A machine will put workpieces
into the container at the loading site, and another machine
remove them at the unloading site. The entire system is
illustrate in Figure 2.

Figure. 2. Transport system and its environment

The physical system is abstracted to a block diagram as
shown in Figure 3. Here the pressure sensor masks off
some information, and thus the supervisor will implement
control based on the partial information that the senor
provides. The environment, which the system reacts to, is
conducted by the behaviors of the loading machine and
unloading machine2, and it generates the discrete events
that drive the transport system to respond. Thus, the action
of loading and unloading are uncontrollable events to the
transport line, but are partially observable to the system.
In contrast, how to transport the container between the
two sites are behaviors inside the system, and they can be
observed and controlled by the supervisor.

Figure. 3. Block diagram of the system components.

Let {L , U } denote the location set of the container,
where L and U represent the loading and unloading site,
respectively. Let {0,1,2} denote the storage index of the
container, where the integers represent the number of
workpieces inside the container. Let G=Q , Σ ,δ , q0 ,Q
denote the system. As a result, the state set of G is given
by Q={L ,U }×{0,1,2 } . The event set of the system G is
Σ={load ,unload ,go ,come } , and the meaning of such

symbols are listed as below.

Table 1. Event Explanation

Load Load workpieces into the container

Unload UnLoad workpieces from the container

Go Go to the unloading site

Come Come to the loading site

Σc={go , come} are the internal events within the system,

2 Here we refer to the concepts of systems and environments in
the reactive systems theory [10].

and Σuc={load ,unload} are the external events that are
generated by the environment. The transition function is
defined as shown in Figure 4. And the initial state is L0.

Figure. 4. State transition diagram of the original system

Let location , storage denote an arbitrary state of
G. By the feature of the pressure sensor, the observation
function M is defined by Table 1.

Table 2. Observation Function of Machine Actions

Loading Site Unloading Site

Storage = 0 Observable None

Storage = 1 Unobservable (ε) Observable

Storage > 1 Unobservable (ε) Unobservable (ε)

It is noted that event load is observable in state L0
while unobservable in L1, and event unload is observable
in U1 while unobservable in U2. The partially observable
DES is thus modeled with state-dependent observability.

Example 1: As to maximize efficiency of the transport
system, the system is required to be controlled as below.
When the container is fully loaded, it will be moved to the
unloading site; and when the container is unloaded to be
empty, it will return to the loading site. This gives the
specification as shown in Figure 5.

Figure. 5. Specification of Example 1

 Since the specification is given in the state-transition
form, T=Y , Σ , η , y 0 , Y is obtained as shown in Figure
5. Let the specification language be K=LT . Then it is
clear that K⊆LG and K is prefix-closed. Therefore,

Algorithm 1 can be applied to check the controllability
and observability of language K.

Construct S from T by Step 1 in Algorithm 1, and S
is presented as shown in Table 3, and G is further given
in Table 4. Here the finite automaton is represented by its
transition matrix. For example, the transition matrix of G
is a finite square matrix Δ , whose columns and rows are
both indexed by the state set of G . The entries Δ q1,q2
is an event, which means the system state transits from
q1 to q2 when the event occurs. By following Step2 and

Step 3 in Algorithm 1, it can be checked by G that K is
Σuc , L G −invariant . However, the gray cell in the

Table 4 shows that K is not M ,Σ c , LG −observable .
Thus, there does not exist a supervisor to satisfy the given
specification.

Example 2: The control specification is then revised as
illustrated in Figure 7.

Figure 7. Specification of Example 2

Figure 7 presents T where the specification language
is K=LT . By the same steps, S is obtained as shown

in Table 3, and G is given by Table 5. Compared Table 5
with Table 4, it is noted that event “Go” is enabled at the
state L1,(L1,L2),L1. Thus, it is checked by Algorithm 1
that specification K is both Σuc , L G −invariant and
M ,Σ c , LG −observable , and thus Algorithm 2 can be

applied to synthesize the supervisor. The automaton in the
supervisor is directly obtained by S, and the feedback map
is synthesized in Table 5. The supervisor is finally given
as shown in Figure 8.

Figure. 8. Supervisor

It is shown from Table 6 that the supervisor synthesized
can be realized by a policy of if-and-then rules. Such a
control policy can easily be implemented in practice.

Table 6. The control policy as synthesized in Example 2.
If the state is: then disabled:

L0 Go
U1,U2 Come

Table 3. Automaton S in Example 1 and 2.

L0 L1,L2 U1,U2 U0
L0 Load

L1,L2 Go
U1,U2 Unload

U0 Come

Table 4. Transition Matrix of G in Example 1

L0,
(L0),

L0

L1,
(L1,L2),

L1

L2,
(L1,L2),

L2

U2,
(U1,U2),

U2

U1,
(U1,U2),

U1

U0,
(U0),
U0

L0, (L0), L0 Load ╳ Go
L1,(L1,L2),L1 Load ╳ Go
L2,(L1,L2),L2 Go
U2,(U1,U2),U2 ╳ Come Unload
U1,(U1,U2),U1 ╳ Come Unload

U0,(U0),U0 Come

Table 5. Transition Matrix of G in Example 2

L0,
(L0),

L0

L1,
(L1,L2),

L1

L2,
(L1,L2),

L2

U2,
(U1,U2),

U2

U1,
(U1,U2),

U1

U0,
(U0),
U0

Disabled

L0, (L0), L0 Load ╳ Go Go
L1,(L1,L2),L1 Load Go None
L2,(L1,L2),L2 Go None
U2,(U1,U2),U2 ╳ Come Unload Come
U1,(U1,U2),U1 ╳ Come Unload Come

U0,(U0),U0 Come None

6. Conclusions

This paper presents a new model of discrete-event
systems with state-dependent observability, and our study
aims to be of help to system verification and redesign.

A new observation function is first presented to be
state-dependent. Next, given a control specification as a
formal language, a necessary and sufficient condition is
derived for the existence of the supervisor, and it refers to
closure, invariability and observability of the specification
language. The supervisor synthesis problem is solved by
two algorithms. One algorithm is to verify the properties
of the specification language, and the other one is to
synthesize the required supervisor if there exists one. Our
work is mainly an extension of the preceding framework
by Lin and Wonham.

Several follow-up research topics can be approached
in future. One topic is to advance our method for a more
complex system such as a multi-computer system within a
network [11]. Besides, another possible topic is to explore
implementing our algorithms by using the state-flow in
MATLAB [12] so that a system can be synthesized in a
computationally efficient manner.

Appendix

Lemma: Let G ,M be a partially observable DES with
observation function defined by M :Q×ΣΘ∪{ε} . Let
K represent a language such that (1) K⊆LG , (2) K is
prefix-closed, (3) K is Σuc , L G −invariant , (4) K is

M ,Σ c , LG −observable . For d∈Θ* , Let

 Σd ={σ∈Σc∣∃s∈K , s . t . M q0 , s =d , sσ∈K } .
If the supervisor Φ=< S,ψ > satisfies
(a) ξ x0 , d is defined iff d∈M K ,

(b) σ∈ψ ξ x0 , d iff σ∈Σuc∪Σd .
Then LΦ/G =K and Φ=< S,ψ > is complete.

Proof: First we prove K⊆LΦ/G by induction of ∣s∣ .
For ∣s∣=0 , namely, s=ε , we have
 s=ε∈K ⇒s=ε∈L Φ/G .

For ∣s∣= j , suppose s∈K⇒ s∈L Φ /G holds. Let
∣σ∣=1 and sσ∈K , and four items are derived as below.

(1) K⊆LG and sσ∈K implies sσ∈L G .
(2) s∈L Φ/G holds by the induction hypothesis.
(3) Because sσ∈K , ξ x0 , M q0 , sσ is defined

by property (a).
(4) Suppose M q0 , s =d . If σ∈Σc , there exists

s∈K such that sσ∈K and M q0 , s =d , and therefore

σ∈Σd holds. If σ∈Σuc , σ∈Σuc∪Σd holds. Thus

we have σ∈ψ ξ x0 , d by property (b).
(1)-(4) as above together imply that sσ∈L Φ /G ,

and K⊆LΦ/G is thus proved.
Next, we prove K⊇LΦ/G by induction.
For ∣s∣=0 , s=ε∈L Φ /G ⇒ s=ε∈K holds.
For ∣s∣= j , suppose that s∈L Φ/G ⇒s∈K . Let

∣σ∣=1 and sσ∈L Φ /G . Then sσ∈K is to be proved.
For M q0 , s =d , s∈L Φ/G and sσ∈L Φ /G

together imply that σ∈ψ ξ x0 , d holds, and therefore

σ∈Σuc∪Σd by property (b). If σ∈Σuc , then sσ∈K

because K is Σuc , LG − invariant . If σ∈Σd , there

exists s '∈K such that M q0 , s ' =d and s ' σ∈K , and

then sσ∈K since K is M , Σc , L G −observable .
Because LΦ/G =K , it is checked from property

(a) that the supervisor Φ=< S,ψ > is complete. Q.E.D.

Proposition 1: Synthesize S=A X ,Θ ,ξ , x0 by Step 1 of
Algorithm 2. For d∈Θ* ,

 ξ x0, d ={
{ η y0, s ∣M h y 0, s=d , s∈Σ* }

if it is nonempty
undefined otherwise

.

Proof: Trivial.
 By M K ={d∈Θ*∣∃s∈K , s . t . M q0 , s =d} and

LT =K , the proposition indicates that ξ x0 , d is
defined if and only if d∈M K . Thus, S as synthesized
by Step 1 satisfies property (a).

Proposition 2: For x∈X , Σ x is defined by
 Σ x ={σ∣σ ∈Σ c , ∃ y∈x , s . t . η y ,σ ! } ,

If ξ x0 , d =x , then Σ x =Σ d holds.
Proof: Trivial. It is clear that map ψ meets property (b).

References

[1] F. Lin and W.M. Wonham, “On Observability of
Discrete-Event systems”, Information Sciences,
vol. 44, 1988, pp. 173-198.

[2] R. Cieslak, C. Desclaux, A. S. Fawaz and P.
Varaiys, “Supervisory Control of Discrete-Event
Processes with Partial Observation,” IEEE
Transactions on Automatic Control, vol. 33, no.
3, 1988, pp. 249-260.

[3] W. M. Wonham, “Supervisory Control of
Discrete-Event Systems”, ECE 1636F/1637S
2007-08, Updated 2011.07.01, Dept. of Electrical
& Computer Engineering, University of Toronto.

[4] F. Lin, W. M. Wonham, “Decentralized Control
and Coordination of Discrete-Event Systems with
Partial Observation”, IEEE Transactions On
Automatic Control, vol. 35, no. 12, 1990, pp.
1330-1337.

[5] H. Marchant, O. Boivineaub, S. Lafortune, “On
Optimal Control of a Class of Partially Observed
Discrete Event System”, Automatica, vol. 38,
2002, pp. 1935-1942.

[6] R. Kumar, V. Garg, “Optimal Supervisory
Control of Discrete Event Dynamical Systems”,
SIAM Journal of Control and Optimization, vol.
33, 1995, pp. 419-439.

[7] S. Takai, T. Ushio , “Supervisory Control of a
Class of Concurrent Discrete Event Systems
Under Partial Observation ,” Discrete Event
Dynamic Systems: Theory and Applications, Vol.
15, 2005, pp. 7–32.

[8] P. Wang and K. Y. Cai, “Supervisory control of
discrete event systems with state-dependent
controllability,”International Journal of Systems
Science, vol. 40, No. 4, 2009, pp. 357-366. 2009.

[9] R. Su, W. M. Wonham , “Supervisor Reduction
for Discrete-Event Systems ,” Discrete Event
Dynamic Systems: Theory and Applications, Vol.
14, 2004, pp. 31-53.

[10] D. Harel and M. Politi, “Modeling Reactive
Systems With Statecharts: The STATEMATE
Approach”, New York, McGraw-Hill, 1998.

[11] Cai, K. Y., Cangussu, J. W., DeCarlo R. A.,
Mathur, A. P. An Overview of Software
Cybernetics. Proceedings of the 11th Annual
International Workshop on Software Technology
and Engineering Practice, IEEE Computer
Society Press. 2004, pp. 77-86.

[12] “Stateflow User Guide, For state diagram
modeling,” Math Works, Inc., 2001.

	School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics
	Department of Electrical and Computer Engineering, University of Connecticut
	References

