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This paper considers a new class of discrete event systems under partial observations. The problem is presented within the 
background of a manufacturing process where workpieces are loaded and transported, and this process is controlled with 
the partial information collected by sensors. The model extracted is novel because the observation of an event does not  
only depend on an event itself, but also the state where the system stays. Two standard problems are discussed in this  
paper: supervisor existence problem and supervisor synthesis problem.  With a natural revision of observable languages, a 
necessary and sufficient condition is given for the existence of a supervisor.   For supervisor synthesis problem, two 
algorithms are developed: one algorithm is to check the properties of a control specification given by a regular language,  
and the other one is to synthesize a supervisor if the properties hold. Within the background of manufacturing systems, an 
example is illustrated to show how the algorithms are applied to practical computing. 
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1. Introduction

A discrete event system (DES) is commonly described 
by a state transition model such as a automaton, and it is 
controlled by disabling certain events that cause undesired 
state transitions [1,2,3]. If some events are not completely 
observable, control of a system is implemented by using 
partial information of the state transitions. As a result, an 
observation problem has been formed since 1980s [2, 3]. 
Different from linear models, the observation problem of 
DES is not a dual problem of its controllability study, and 
it has become an independent branch in the framework of 
supervisory control theory.  

From  the  perspective  of  mathematics,  observation  of 
events is usually specified by a mapping function which is 
defined on the event set of DES, and two event sequences 
look the same if they are the same after mapped to another 
set of symbols.  This  function characterizes the ability on 
how much information the system provides to the outside, 
especially to the supervisor to be synthesized. In several 
branch fields related to the observation problem, such as 
the decentralized control [3,4], optimal control [5,6] and 
control of concurrent systems [7], the observation function 
follows the original form in [1,2], where the object  and 
outcome of observation are both events and the outcome 
exclusively depends on the observed object. 
  In this paper the original form of an observation function 
is extended, where the object and outcome of observation 
are both events, but the outcome is not only dependent on 
the object, but also the state where the system stays. As a 
result, the observability of an event is changeable as the 

system states change form one to another, and it is called 
state-dependent observability. 
  To intuitively explain the state-dependent observability 
we present an example in manufacturing systems. In this 
example a container is to carry workpieces and a pressure 
sensor is placed at bottom of the container. The sensor can 
distinguish whether the container is empty or not, but it 
cannot differentiate how many workpieces are loaded. If 
we want to develop a controller to supervise the process of 
loading/unloading, one question is how much information 
we can obtain through the sensor. Based on the capability 
of  the  sensor,  if  the  container  is  empty,  the  action  of 
loading can be observed. If there are workpieces loaded, 
the action of loading will not be observed by the pressure 
sensor (See Figure 1). In other words, for the same action 
of loading, it is observable as the system stays at one state 
(the container  is  empty),  while become unobservable at 
other states (the container is loaded). Such observability is 
thus state-dependent. 

Figure. 1. A container with workpieces

The above loading/unloading workshop is a typical cell 
in a flexible manufacturing system, and it will be further 
extended in the later sections to be a computing example. 

Pressure Sensor



The rest of this paper is organized as follows. Section 2 
reviews the preliminaries and notations of DES and a new 
model of partially observable system is defined with state-
dependent observability. Section 3 studies the supervisor 
existence problem and derives a necessary and sufficient 
condition with respect to a given specification. Section 4 
focuses  on  the  supervisor  synthesis  problem  and  two 
algorithms are introduced. Section 6 illustrates  examples, 
and concluding remarks are presented in Section 7. 

2.  Preliminaries and Notation

A. Discrete Event Systems and Supervisory Control 
    In the original framework by Ramadge and Wonham, a 
discrete-event system is characterized by a deterministic 
automaton.  The system is event-driven, and  the state of a 
system transits as events happen.  The math description is 

G=Q ,Σ , δ ,q0

where Q  is the state set, Σ  is the event set, and the state 
transition function is  δ :Q×ΣQ .  q0∈Q  is the initial 
state. In general, δ  is a partial function, i.e.,  δ q , σ   is 
defined only on a subset of  Σ  for each  q∈Q . In this 
paper we will write  δ q , σ !  if  δ q ,σ   is defined, and 
¬δ q,σ !  if it is not. 

    Let Σ*  denote the set of all finite strings s=σ 1 ... σn  of 
elements in Σ , including the empty string ε . A subset of 
Σ*  is a language over  Σ . The set of all the prefixes of 

strings in a language L is denoted by L , and we say L is 
(prefix-)closed if L=L . The language generated by G is 

LG ={s∈Σ *∣δ q0 , s !} . 
The automaton G is considered as a uncontrolled device 

that starts from q0  and executes and generates a sequence 
of events permitted by δ .  Events happen instantaneously 
and asynchronously, and they can be considered as atomic 
activities of a device such as “move a workpiece” or “send 
a message.”  If s=σ 1 ... σn  belongs to L(G), it means that 
the device is capable of carrying out these activities in the 
order of σ 1... σn .  

It is sometimes convenient to eliminate states that are 
not accessible from q0 . The accessible component of G is 
A G =Qa , Σ , δa , q0 . Here  Qa  is the set of accessible 

states, and δa is given by 
Qa={q∣∃s∈Σ* , s .t . q=δ q0 , s } , 

δa q , σ ={δ q, σ  if q∈Qa and δ q ,σ ∈Qa

undefined otherwise
It is clear that G is accessible if G=A(G). 

A control  mechanism for  G is  as  follows  [1,2].  The 
event set  Σ is partitioned into two disjoint part. Let  Σc  
be the set of all controllable events, and Σuc  is the set of 
all uncontrollable events. 

 Σ=Σc∪Σuc  and Σc∩Σuc=∅ .
A controllable event can be allowed to occur or prevented 
from possible occurring while no such control is possible 

for an uncontrollable event.  Thus, a control pattern is γ  
such that Σuc⊆γ⊆Σ , and all control patterns are

 Γ={γ∈2Σ∣Σuc⊆γ⊆Σ} . 
An event  σ  is said to be enabled by  γ  if  σ∈ γ , or be 
disabled by γ  if σ∉ γ . A supervisor is defined as a pair 
Φ=S ,ψ  ,  where  S=X ,Σ , ξ , x 0  is  a  deterministic 

automaton and  ψ : X  Γ  is called a state feedback map 
that selects a control pattern ψ  x   for each state x . 

B. State-dependent Observability
As presented in Section 1, in some real situations,  Φ  

cannot observe all transitions of G or cannot distinguish 
between  certain  transitions.   These  situations  can  be 
modeled by introducing an observation stage  M between 
G and Φ  specified by an observation or mask function. 
The original form of the function was M : ΣΘ∪{ε} [1]. 
This paper will present a more general definition as below. 
  
Definition 2.1: Let G ,M   denote a partially observable 
DES where G is a deterministic automaton, and M is the 
observation function.  In this paper M is defined by

M :Q×ΣΘ∪{ε}  
where  Θ  represents a set of observation outcomes. 
  This definition implies that the outcome of observation 
depends on both the observed object and the state where 
the system stays. For example, M q, σ =β  implies that 
σ  is observed as β  at state q. Comparing our definition 

with the old one [1,2], we note that our definition makes 
an observation process dependent on the system state.  In 
other words, an event can be observable in one state while 
be unobservable in another.  For example,  M q1,σ =σ  
means  σ  is observable at state  q1  while  M q2,σ =ε  
implies it becomes unobservable at state q2 .   
    Furthermore, a sequence of events forms a string, and 
thus a string can be observed as its component events are 
sequentially observed. That is, M :Q×ΣΘ∪{ε}  can be 
extended to M :Q×Σ *Θ*  by specifying

(1) M q, ε =ε
(2) M q, sσ =M q , s M  δ q, s  , σ  . 

   Because a language is a set of strings, an observation 
function can also mask a language as each string in the 
language is masked, and the resulting language is given by

 M K ={d∈Θ*∣∃s∈K ,s .t . M q 0 , s=d} . 
Besides, because such observation process is related to 

the system state and the transition function of G is often a 
partial function, it is necessary to define M only on part of 
Q×Σ . In brief, it is meaningless to define M q,σ   if 

there is no transition  σ  at state q. This paper will write 
M q , σ !  if M q , σ   is defined, and write ¬M q, σ  !  

if it is not defined. The domain of M is thus specified as
For q∈Q and σ∈Σ , M q , σ !  iff δ q ,σ ! . 

To take into account the new function M, the preceding 
framework goes through with some minor modification. A 



supervisor of  G ,M   is  a  pair  Φ=S ,ψ  ,  where the 
automaton  S=X , Θ, ξ , x 0  has the input  Θ ; The state 
feedback map ψ : X  Γ  is as before.  As Φ  is coupled 
to G ,M  , a supervised discrete event system is given as

Φ/G=A X×Q , Σ ,ξ °M ×δ c , x 0 , q0 . 
where the transition function is defined by

 ξ°M ×δ c x ,q ,σ ={
ξ  x , M q , σ , δ q , σ 
if σ∈ψ  x ,M q, σ ! ,δ q,σ  !

undefined otherwise

    As  for  a  DES with  state-dependent  observability,  a 
supervisor is called complete if

 
s∈L Φ/G ∧sσ∈LG ∧σ∈ψ  ξ  x0 , M q0 , s 

⇒ sσ∈LΦ/G 

This definition implies that automaton in the supervisor 
will not control the state transition of G.  Rather, it is the 
state feedback that controls the plant.  The next question is 
how to find a required supervisor to meet a specification. 
Some specification can be satisfied while others are not. It 
is therefore necessary to investigate certain properties of a 
specification to discuss whether a supervisor exists.  

3. Existence of Supervisors

This section discusses under what condition there exists 
a  supervisor  for  a  given  specification.  In  the  sense  of 
math, a specification is often given by a formal language. 
According to existing results of a fully observable DES 
[9], a supervisor exists if the specification is given as a 
invariant language. The definition of such a language is

K is Σuc , LG −invariant⇔

s∈K∧σ∈Σ uc∧sσ∈LG  sσ∈ K
As for  a  DES with state-dependent observability,  we 

will further look into the observability of a language.  The 
definition of an observable language is given as below.  

Definition 3.1: Let G ,M   denote a partially observable 
DES  with  M :Q×ΣΘ∪{ε} .  Let  K⊆LG ⊆Σ *  and 
⊂Σ .  language K is M , , LG −observable  if

     s , s'∈K∧σ∈∧sσ∈K∧s ' σ ∈L G    
∧M q 0 , s=M q0 , s '⇒ s ' σ∈K . 

    
    The observability of a language indicates that if two 
event sequences look the same, they must be consistent in 
the sense that no conflict exists for one event continuable 
after one sequence while not continuable after the other. 
By the above definition, the supervisor existence problem 
is studied through a theorem as given below. 

Theorem 3.1: Let G ,M   be a partially observable DES 
with observation function defined by M :Q×ΣΘ∪{ε} . 
There exists a complete supervisor Φ=< S,ψ >  such that 
LΦ/G =K  if  and  only  if  (1)  K⊆LG  ,  (2)  K is 

prefix-closed,  (3)  K is  Σuc , L G  −invariant ,  (4)  K is 

M ,Σ c , L G −observable . 
Proof: (Only if). Suppose we have a complete supervisor 
Φ=< S,ψ >  such that LΦ/G =K , and we are to verify 

the properties of K.  
(1), (2) are trivial. (3) holds since the supervisor can 

only disable controllable events.  
To prove (4),  we are given  s , s'∈K , α∈Σ c  such 

that M q0 , s =M q0 , s '  , sα∈K  and s ' α∈LG  .  By 

s∈K  and sα∈K , we will know that event α  is enabled 
after sequence s occurs, and thus α∈ψ ξ  x 0, M q0 , s  . 

Because  M q0 , s =M  q0 , s '  ,  s and  s' are the same as 
observed by the supervisor, and thus event α  is enabled 
after  s'  occurs, i.e.,  α∈ψ ξ  x 0, M q0 , s '  .  Because 

s ' α∈LG   and Φ  is complete, it is clear that s ' α∈K , 
and thus K is M ,Σ c , L G −observable  by definition. 

(If).  To  prove  the  sufficiency  of  the  theorem  a 
supervisor  Φ=< S,ψ >  is  to  be  synthesized  such  that 
LΦ/G =K .  Based on property (a) and (b) in Lemma 

(See Appendix), a supervisor can be synthesized as below. 
Let  S=X , Θ, ξ , x 0  denote  the  automaton of  the 

supervisor where X=M  K  ; x0=ε ; 

 ξ d ,θ ={ dθ dθ∈M K 
undefined dθ∉M K 

. 

Synthesize state feedback map as 
σ∈ψ d   iff σ∈Σuc∪Σd  . 

Then  a  supervisor  is  synthesized  and  it  satisfies 
property (a) and (b) in the lemma (See Appendix). Thus, 
LΦ/G =K  and Φ=< S,ψ >  is complete. Q.E.D. 

    The theorem above presents a necessary and sufficient 
condition for existence of a complete supervisor.  Because 
the resulting DES under supervision is also an automaton, 
the  theorem addresses  equivalence  of  formal  languages 
and automata.  Besides, the theorem does not require the 
language to be regular, implying that the automaton is not 
necessarily finite.  However, in practical computing finite 
state automata are usually required, and the corresponding 
languages are thus regular.  

Definition 3.2: Let G ,M   denote a partially observable 
DES with  M :Q×ΣΘ∪{ε} .  Let  K⊆LG ⊆Σ * ,  and 
language K is M , LG −recognizable  if

s∈K∧ s'∈L G∧M q 0, s=M q0 , s ' ⇒s '∈K . 

   In the previous framework, a M , LG −recognizable  
language implies that it is M , , LG −observable . Is 
the proposition still valid for a DES with state-dependent 
observability?  The following proposition gives an answer. 

Proposition 3.1:  Let  G ,M   be a partially observable 



DES with M :Q×ΣΘ∪{ε} . Let K 1, K 2⊆LG   
(1) If K 1, K 2  are M , LG −recognizable , then
      K 1∩K2 , K 1∪K 2  are M , LG −recognizable
(2) If  K 1, K 2  are  M , , LG −observable ,  K 1∩K 2  

is M , , LG −observable , but K1∪K 2  is not 
(3)  If  K 1  is  M , LG −recognizable ,  it  does  NOT 

imply that  K 1  is M , , LG −observable
(4) For a language K, its M ,Σ c , L G −observability  is 

independent of its Σuc , L G  −invariablity .  
 
Proof. (1) and (2) are trivial, and they are similar to the 
traditional results.  As for (3), M q0 , s=M q0 , s '  does 
NOT imply M q0 , sσ =M q0 , s ' σ   because an event σ  
can be observable at  q1=δ q0 , s  while unobservable at 
q2=δ q0 , s ' .  Thus, (3) holds.  For (4), it holds because 
Σc∩Σuc=∅ .  Thus, invariability on Σuc  is not related to 

the observability on Σc .  
By Proposition 2.1, the supremal sublanguage which is 

prefix-closed, invariant, observable and within the given 
specification may not exists.  Such a difficulty also existed 
in the previous framework where the observation function 
was specified by  M : ΣΘ∪{ε} .  In the previous work 
[1],  this  problem  was  solved  by  finding  the  supremal 
recognizable language because recognizable languages are 
closed under union, and if a language is recognizable, it is 
an observable language.  However, this approach cannot 
be followed because of (3) in Proposition 3.1.  Thus, we 
must find a new approach to solve this problem.  

4.  Supervisor Synthesis Problem

After the supervisor existence problem, this section will 
focus on the supervisor synthesis problem. Two specific 
problems are investigated. The first problem is to judge 
whether  there  exists  a  supervisor  for  a  specification  as 
given  by  a  formal  language.   The  next  problem  is  to 
synthesize  a  supervisor  if  there  exists  one  for  the 
specification. Two algorithms are given as solutions to the 
problems. 
  Based on Theorem 3.1, we need to verify the necessary 
properties of a given specification. In practical problems, 
a specification is often given as a set of a state-transition 
rules (See the example in Section 4). The corresponding 
language of a state-transition machine is naturally prefix-
closed.  Also, in this paper a specification is considered to 
control an existing system, but not to extend the behaviors 
of the existing system. Thus, the specification language K 
is a subset of the original language, i.e., K⊆LG  .  As a 
result, a control specification in practical computing often 
meets the first two properties in Theorem 3.11, and the key 

1If needed, K⊆L G   and K= K  can be checked by a method 
in [8]. 

features  to  be  checked  are  the  controllability  and 
observability of the specification language.  
     Furthermore, in particular, this section will consider the 
specification to be a regular language because in practical 
computing only finite state automata are considered, and 
the corresponding languages are regular.  The problem is 
next addressed as below.  

Problem 1:  Let  G ,M   be a partially observable DES 
with observation function defined by M :Q×ΣΘ∪{ε} . 
Consider K as a regular language such that K⊆LG   and 
K=K , test whether K satisfies 

(1) K is Σuc , L G  −invariant ;  

(2) K is M ,Σ c , L G −observable . 

Algorithm 1: 
Step 1: 
    Let  K be a regular language such that  K⊆LG   and 
K=K ,  synthesize  a  finite  deterministic  automaton 
T=Y ,Σ , η , y 0  such  that  LT =K  and  T  refines  G. 

Thus, there exists a unique function  h :Y Q  such that 
for any s∈K , h°η  y 0, s=δ q0 , s  holds [1]. 
     Let X denote the set of all nonempty subsets of Y and 
define the automaton S=A X , Θ ,ξ , x0  where

x0={η y0 , s ∣M h  y 0 , s =ε , s∈Σ*} ,

ξ  x ,θ ={
{ η y , s ∣ y∈x ,M h  y , s=θ , s∈Σ *}

if it is nonempty
undefined otherwise

. 

Construct G=A T×S×G 

     = A Y ×X×Q , Σ , δ , y 0 , x 0 , q0

where

δ y 0 , x 0 , q0, s ={
<η  y0 , s , ξ  x 0 ,M q0 , s , δ q0 , s >

if all defined
undefined otherwise

 

Step 2: Check invariability of K. 
    Let  Y ×X×Q a  denote the state set of  G .  Check 

each  < y , x , q>∈Y ×X×Q a  and each  σ∈Σ  such that 

δ q ,σ !  and  ¬δ < y , x , q> , σ ! , if  σ∈Σc , then  K is 

Σuc , LG − invariant ; otherwise K is not. 
Step 3: Check observability of K. 

Let  Y ×X×Q a  be the state set of  G .  Check each 

σ∈Σc  and < y ' , x ' , q ' > , < y , x , q>∈Y×X×Q a  , such 
that x=x ' , δ q ,σ !  and δ q ' , σ ! , if 

¬δ < y , x , q> , σ !  implies  ¬δ < y ' , x ' , q ' > , σ !
then K is M , Σ c , L G −observable ; otherwise K is not. 

To prove Algorithm 1, propositions are given as below. 
Proposition 4.1: By Step 1 and Step 2 in Algorithm 1, 

K is Σuc , L G  −invariant⇔



∀< y , x , q>∈Y ×X×Q a ∀σ∈Σ   

¬δ < y , x , q> , σ !∧δ q,σ  !σ∈Σ c 

Proof: By the definition of G  we have L G =K  and 
G  refines G [1]. Then the proposition is restated as

K is Σuc , LG − invariant⇔

∀ s∈K ∀ σ∈Σ  sσ∉K∧sσ∈LG σ∈Σc  . 
    The right side of the above statement is equivalent to

∀ s∈K ∀ σ∈Σ σ∈Σ uc∧sσ∈LG  sσ∈K  , 
Thus, the proposition holds by the definition of invariant 
language. Q.E.D. 

Proposition 4.2: By Step 1 and Step 3 in Algorithm 1, we 
have K is M ,Σ c , LG −observable⇔

∀< y , x ,q> ,< y' , x ' , q ' >∈Y×X×Q a∀σ∈Σ c 

 δ q, σ  !∧δ q' , σ !∧x=x' ∧¬δ < y , x , q > , σ !
¬δ < y' , x ' , q ' > , σ ! 

Proof: By L G =K  and G  refines G, the proposition is 
restated as follows.  For ∀ s∈K ∀ s '∈K ∀σ∈Σ c 

K is M ,Σ c , LG −observable⇔

sσ∉K∧sσ∈L G ∧M q0 , s =M q0 , s '  s ' σ ∉K
Consider the right side is equivalent to
 s ' σ∈K∧sσ∈L G ∧M q0 , s =M q0 , s '  sσ∈K  , 

Then the proposition holds by the definition of 
M ,Σ c , L G −observable  language. Q.E.D. 

Based on (4) in Proposition 3.1, invariability on Σuc  is 
independent of the observability on Σc .  Thus, Step 2 and 
Step 3 of Algorithm 1 are also independent, and they can 
be swapped in sequence if needed.  

Problem 2: Let  G , M   be a partially observable DES 
with observation function defined by M :Q×ΣΘ∪{ε} . 
The specification is a regular language K which satisfies 
(1) K⊆LG  , 
(2) K is prefix-closed,  
(3) K is Σuc , LG − invariant , 

(4) K is M ,Σ c , L G −observable . 
Synthesize a complete supervisor such that LΦ/G =K . 

   The proof of Theorem 3.1 has presented a method to 
synthesize  a  required  supervisor,  but  the  supervisor  as 
synthesized is always an infinite one (the automaton has 
infinite state set). Thus, the method cannot be applied to 
practical problems, and it is necessary to find an approach 
such that a finite supervisor can be synthesized, especially 
for the specification as given by a regular language. 

Algorithm 2: 
Step1: Synthesize automaton S. 

Since K is prefix-closed, construct T=Y , Σ ,η , y 0  

such that LT =K  and T refines G [1]. Then there exists 
a unique function h :Y Q  such that for arbitrary s∈K , 
h°η  y 0, s=δ q0 , s  holds [1]. Let  X denotes the set of 

all  nonempty  subsets  of  Y and  define  an  automaton 
S=A X ,Θ ,ξ , x0  where

x0={η y0 , s ∣M h  y 0 , s =ε ,s∈Σ *} ,

ξ  x ,θ ={
{ η y , s ∣ y∈x ,M h  y , s=θ , s∈Σ *}

if it is nonempty
undefined otherwise

. 

Step2: Synthesize state feedback map ψ . 
For x∈X , f  x  is defined by 
f  x={σ∈Σc∣∃ y∈x , s . t . η  y ,σ !} .  Then  the 

feedback map is defined by σ∈ψ  x  iff σ∈ f x∪Σuc . 

The correctness of Algorithm 2 can be checked based 
on the lemma and propositions in Appendix. If needed, the 
resulting supervisor can be further reduced in its state set 
by a method in [9]. 
    Further, if K is a regular language, then Y can be a finite 
set, and thus X is finite through Step 1 in Algorithm 2. As 
a result, for a specification as given by a regular language, 
the supervisor can be synthesized in a finite form.  

To summarize the work of this section, usual procedures 
for synthesizing supervisors are given based on the two 
algorithms introduced above. First we use Algorithms 1 to 
check whether there exists a required supervisor for the 
given control specification; if there exists one, Algorithm 
2 is applied to synthesize it. 

5.  Illustrative Examples

Examples are illustrated in this section to show how to 
apply the algorithms to practical computing problems. A 
transport system is considered as a model to be supervised 
within the background of manufacturing systems. 
    As presented in Section 1, a container with workpieces 
can be characterized as a event-driven system with state-
dependent observability. In this section such a container is 
placed on transport line so that it moves between a loading 
site and an unloading site. A machine will put workpieces 
into the container at the loading site, and another machine 
remove them at the unloading site. The entire system is 
illustrate in Figure 2. 



Figure. 2. Transport system and its environment

The physical system is abstracted to a block diagram as 
shown in Figure  3.  Here the pressure  sensor masks off 
some information, and thus the supervisor will implement 
control  based  on  the  partial  information  that  the  senor 
provides. The environment, which the system reacts to, is 
conducted by the behaviors of the loading machine and 
unloading machine2,  and it generates the discrete events 
that drive the transport system to respond. Thus, the action 
of loading and unloading are uncontrollable events to the 
transport line, but are partially observable to the system. 
In  contrast,  how to  transport  the  container  between the 
two sites are behaviors inside the system, and they can be 
observed and controlled by the supervisor.  

Figure. 3. Block diagram of the system components.  

Let {L , U }  denote the location set of the container, 
where  L and  U represent the loading and unloading site, 
respectively. Let  {0,1,2}  denote the storage index of the 
container,  where  the  integers  represent  the  number  of 
workpieces inside the container. Let  G=Q , Σ ,δ , q0 ,Q   
denote the system. As a result, the state set of G is given 
by Q={L ,U }×{0,1,2 } . The event set of the system G is 
Σ={load ,unload ,go ,come } ,  and  the  meaning  of  such 

symbols are listed as below.  

Table 1. Event Explanation

Load Load workpieces into the container

Unload UnLoad workpieces from the container

Go Go to the unloading site

Come Come to the loading site

Σc={go , come}  are the internal events within the system, 

2 Here we refer to the concepts of systems and environments in 
the reactive systems theory [10]. 

and  Σuc={load ,unload}  are the external events that are 
generated by the environment. The transition function is 
defined as shown in Figure 4. And the initial state is L0.

Figure. 4. State transition diagram of the original system

Let location , storage   denote an arbitrary state of 
G. By the feature of the pressure sensor, the observation 
function M is defined by Table 1. 

Table 2. Observation Function of Machine Actions

Loading Site Unloading Site

Storage = 0 Observable None

Storage = 1 Unobservable ( ε ) Observable

Storage > 1 Unobservable ( ε ) Unobservable ( ε )

It is noted that event  load is observable in state  L0 
while unobservable in L1, and event unload is observable 
in U1 while unobservable in U2. The partially observable 
DES is thus modeled with state-dependent observability. 

Example 1:  As to maximize efficiency of  the transport 
system, the system is required to be controlled as below. 
When the container is fully loaded, it will be moved to the 
unloading site; and when the container is unloaded to be 
empty,  it  will  return  to  the  loading  site.  This  gives  the 
specification as shown in Figure 5. 

Figure. 5. Specification of Example 1

    Since the specification is given in the state-transition 
form, T=Y , Σ , η , y 0 , Y   is obtained as shown in Figure 
5. Let the specification language be K=LT  . Then it is 
clear  that  K⊆LG   and  K is  prefix-closed.  Therefore, 



Algorithm 1 can be applied to  check the controllability 
and observability of language K.  

Construct S from T by Step 1 in Algorithm 1, and  S 
is presented as shown in Table 3, and G  is further given 
in Table 4.  Here the finite automaton is represented by its 
transition matrix. For example, the transition matrix of G  
is a finite square matrix Δ , whose columns and rows are 
both indexed by the state set of G . The entries Δ q1,q2  
is  an event,  which means the system state transits from 
q1  to q2  when the event occurs. By following Step2 and 

Step 3 in Algorithm 1, it can be checked by G  that K is 
Σuc , L G  −invariant .   However,  the gray cell  in  the 

Table 4 shows that K is not  M ,Σ c , LG −observable . 
Thus, there does not exist a supervisor to satisfy the given 
specification. 

Example 2:  The control  specification is then revised as 
illustrated in Figure 7. 

Figure 7. Specification of Example 2

Figure 7 presents T where the specification language 
is K=LT  . By the same steps, S is obtained as shown 

in Table 3, and G  is given by Table 5.  Compared Table 5 
with Table 4, it is noted that event “Go” is enabled at the 
state L1,(L1,L2),L1. Thus, it  is checked by Algorithm 1 
that  specification  K is  both  Σuc , L G  −invariant  and 
M ,Σ c , LG −observable , and thus Algorithm 2 can be 

applied to synthesize the supervisor. The automaton in  the 
supervisor is directly obtained by S, and the feedback map 
is synthesized in Table 5.  The supervisor is finally given 
as shown in Figure 8. 

Figure. 8. Supervisor

It is shown from Table 6 that the supervisor synthesized 
can be realized by a policy of if-and-then rules. Such a 
control policy can easily be implemented in practice. 

Table 6. The control policy as synthesized in Example 2. 
If  the state is: then disabled:

L0 Go
U1,U2 Come

Table 3. Automaton S in Example 1 and 2. 

L0 L1,L2 U1,U2 U0
L0 Load

L1,L2 Go
U1,U2 Unload

U0 Come

Table 4. Transition Matrix of G  in Example 1

L0, 
(L0), 

L0

L1,
(L1,L2),

L1

L2,
(L1,L2),

L2

U2,
(U1,U2),

U2

U1,
(U1,U2),

U1

U0,
(U0),
U0

L0, (L0), L0 Load ╳ Go
L1,(L1,L2),L1 Load ╳ Go
L2,(L1,L2),L2 Go
U2,(U1,U2),U2 ╳ Come Unload
U1,(U1,U2),U1 ╳ Come Unload

U0,(U0),U0 Come



Table 5. Transition Matrix of G  in Example 2

L0, 
(L0), 

L0

L1,
(L1,L2),

L1

L2,
(L1,L2),

L2

U2,
(U1,U2),

U2

U1,
(U1,U2),

U1

U0,
(U0),
U0

Disabled

L0, (L0), L0 Load ╳ Go Go
L1,(L1,L2),L1 Load Go None
L2,(L1,L2),L2 Go None
U2,(U1,U2),U2 ╳ Come Unload Come
U1,(U1,U2),U1 ╳ Come Unload Come

U0,(U0),U0 Come None

6.  Conclusions 

This paper presents a new model of discrete-event 
systems with state-dependent observability, and our study 
aims to be of help to system verification and redesign. 

A new observation function is first presented to be 
state-dependent.  Next, given a control specification as a 
formal language, a  necessary and sufficient  condition is 
derived for the existence of the supervisor, and it refers to 
closure, invariability and observability of the specification 
language. The supervisor synthesis problem is solved by 
two algorithms.  One algorithm is to verify the properties 
of  the  specification  language,  and  the  other  one  is  to 
synthesize the required supervisor if there exists one.  Our 
work is mainly an extension of the preceding framework 
by Lin and Wonham.  

Several follow-up research topics can be approached 
in future. One topic is to advance our method for a more 
complex system such as a multi-computer system within a 
network [11].  Besides, another possible topic is to explore 
implementing our algorithms by using the  state-flow in 
MATLAB [12] so that a system can be synthesized in a 
computationally efficient manner.  

Appendix 

Lemma: Let G ,M   be a partially observable DES with 
observation function defined by M :Q×ΣΘ∪{ε} . Let 
K represent a language such that (1) K⊆LG  , (2) K is 
prefix-closed, (3)  K is  Σuc , L G  −invariant , (4)  K is 

M ,Σ c , LG −observable . For d∈Θ* , Let

 Σd ={σ∈Σc∣∃s∈K , s . t . M q0 , s =d , sσ∈K } . 
If the supervisor Φ=< S,ψ >  satisfies 
(a) ξ  x0 , d   is defined iff d∈M K  , 

(b) σ∈ψ  ξ  x0 , d   iff σ∈Σuc∪Σd  . 
Then LΦ/G =K  and Φ=< S,ψ >  is complete. 

Proof: First we prove K⊆LΦ/G   by induction of ∣s∣ .
For ∣s∣=0 , namely, s=ε , we have
 s=ε∈K ⇒s=ε∈L Φ/G  . 

For ∣s∣= j , suppose s∈K⇒ s∈L Φ /G   holds. Let 
∣σ∣=1  and sσ∈K , and four items are derived as below. 

(1) K⊆LG   and sσ∈K  implies sσ∈L G  . 
(2) s∈L Φ/G   holds by the induction hypothesis. 
(3)  Because  sσ∈K ,  ξ  x0 , M q0 , sσ   is  defined 

by property (a). 
(4)  Suppose  M q0 , s =d .  If  σ∈Σc ,  there exists 

s∈K  such that sσ∈K  and M q0 , s =d , and therefore 

σ∈Σd   holds. If  σ∈Σuc ,  σ∈Σuc∪Σd   holds. Thus 

we have σ∈ψ  ξ  x0 , d   by property (b). 
(1)-(4) as above together imply that  sσ∈L Φ /G  , 

and K⊆LΦ/G   is thus proved. 
Next, we prove K⊇LΦ/G   by induction. 
For ∣s∣=0 , s=ε∈L Φ /G  ⇒ s=ε∈K  holds. 
For  ∣s∣= j ,  suppose that  s∈L Φ/G ⇒s∈K .  Let 

∣σ∣=1  and sσ∈L Φ /G  .  Then sσ∈K  is to be proved. 
For  M q0 , s =d ,  s∈L Φ/G   and  sσ∈L Φ /G   

together imply that  σ∈ψ  ξ  x0 , d   holds, and therefore 

σ∈Σuc∪Σd   by property (b). If  σ∈Σuc , then  sσ∈K  

because K is Σuc , LG − invariant . If σ∈Σd  ,  there 

exists s '∈K  such that  M q0 , s ' =d  and s ' σ∈K , and 

then sσ∈K  since K is M , Σc , L G −observable . 
Because  LΦ/G =K , it is checked from property 

(a) that the supervisor Φ=< S,ψ >  is complete. Q.E.D. 

Proposition 1: Synthesize S=A X ,Θ ,ξ , x0  by Step 1 of 
Algorithm 2. For d∈Θ* , 

 ξ  x0, d ={
{ η y0, s ∣M h  y 0, s=d , s∈Σ* }

if it is nonempty
undefined otherwise

. 

Proof: Trivial. 
    By  M K ={d∈Θ*∣∃s∈K , s . t . M q0 , s =d}  and 

LT =K ,  the  proposition  indicates  that  ξ  x0 , d   is 
defined if and only if  d∈M K  . Thus, S as synthesized 
by Step 1 satisfies property (a). 



Proposition 2: For x∈X , Σ x   is defined by 
 Σ x ={σ∣σ ∈Σ c , ∃ y∈x , s . t . η  y ,σ ! } , 

If ξ  x0 , d =x , then Σ x =Σ d   holds. 
Proof: Trivial. It is clear that map ψ  meets property (b). 
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