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Abstract: Coronavirus, also known as COVID-19, has spread to several countries around the 

world. It was announced as a pandemic disease by The World Health Organization (WHO) in 2020 

for its devastating impact on humans. With the advancements in computer science algorithms, the 

detection of this type of virus in the early stages is urgently needed for the fast recovery of patients. 

In this paper, a study of neutrosophic set significance on deep transfer learning models over a limited 

COVID-19 chest x-ray dataset will be presented. The study relies on neutrosophic set theory, as it 

shows a huge potential for solving many computers problems related to the detection, and the 

classification domains. The neutrosophic set in this study is used for converting the medical images 

from the grayscale spatial domain to the neutrosophic domain. The neutrosophic domain consists of 

three types of images and they are, the True (T) images, the Indeterminacy (I) images, and the Falsity 

(F) images. The dataset used in this research has been collected from different sources as there is no

benchmark dataset for COVID-19 chest X-ray until the writing of this research. The dataset consists

of four classes and they are COVID-19, Normal, Pneumonia bacterial, and Pneumonia virus. The

selected deep learning models for investigation are Alexnet, Googlenet, and Restnet18. Those models

are selected as they have a small number of layers on their architectures. To test the performance of

the conversion to the neutrosophic domain, 36 experimental trails have been conducted and

presented. A combination of training and testing strategies have been applied into dataset by splitting

it to (90%-10%, 80%-20%, and 70%-30%) accordingly. According to the experimental results, the

Indeterminacy (I) neutrosophic domain achieves the highest accuracy possible in the testing accuracy

and performance metrics such as Precision, Recall, and F1 Score. The study concludes that using the

neutrosophic set with deep learning models may be an encouraging transition to achieve higher

testing accuracy, especially with limited datasets such as COVID-19 chest x-ray dataset which is

investigated throughout this study.
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1. Introduction

Severe acute respiratory syndrome-related coronavirus (SARSr-CoV) is a kind of B-coronavirus 

that infects bats and some other mammals. In 2002–2004 SARSr-CoV flare-up was an epidemic 

covering severe acute respiratory syndrome (SARS). The Canton in South China was infected with 

B-coronavirus that lead to SARSr-CoV. SARSr-CoV was a kind of coronavirus as a family of the B-

coronavirus (B- CoV) subgroup and was title as SARSr-CoV [1]. The subclasses of the coronaviruses

family are A-coronavirus (A-CoV), B-coronavirus (B-CoV), C-coronavirus (C-CoV), and D-

coronavirus (D-CoV) coronavirus [2]. Historically, SARSr-CoV, across 29 countries in the world,
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infected over 8000 humans and at least 750 died. The 2019–2020 coronavirus epidemic is an ongoing 

scourge of coronavirus malady 2019 (COVID-19) created by severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) [3]. The International Committee of Viruses and World health 

organization (WHO) official names the B-coronavirus of 2019 as SARS-CoV-2 and the malady as 

COVID-19 in the International Classification of Diseases (ICD) [4–6]. However, SARS-CoV-2 infected 

more than two million of humans with more than 200000 deaths, across 230 states, until the date of 

this lettering. It elucidates that the propagate rate of SARS-CoV-2 is greater than SRAS-CoV [7,8]. The 

SARS-CoV-2 transmission has been assured by the World Health Organization (WHO) with evidence 

of human-to-human conveyance from different cases outside China, namely in Vietnam [9], Italy [10], 

Germany [11], US [12]. On 26 April 2020, SARS-CoV-2 confirmed more than 2,920,660 cases, 829,075 

recovered cases, and 203,622 death cases [13]. 

The theory of neutrosophic logic was proposed by Smarandache in 1995. Afterward, it has been 

unified and generalized by its founder in 1999 [14]. Since that date, neutrosophic logic has been used 

in many computer science fields including pattern recognition [15], image segmentation, and 

processing [16] and more. It contributes to solving many research and practical real-life problems in 

a lot of domains such as medicine [17], economics [18], space satellite[19], and agriculture…etc. 

Neutrosophy leads to a whole family of novel mathematical theories with an overview of not only 

classical but also fuzzy counterparts [20]. The term neutro-sophy means knowledge of neutral 

thought and this neutral represents the main difference between fuzzy and intuitionistic fuzzy logic 

and set [21,22]. Neutrosophic set has the required potentials of being a general framework for 

uncertainty analysis in data sets[21] and especially with images in the field of Artificial Intelligence 

and deep learning. 

Deep Learning (DL) is a type of Artificial Intelligence (AI) concerned with methods inspired by 

the functions of people's brain [23]. For the time being, DL is quickly becoming an important method 

in image/video detection and diagnosis. DL used in medical x-ray/computed tomography diagnoses. 

DL upgrade medical diagnosis system (MDS) to realize great results, and implementing applicable 

real-time medical diagnosis system [24,25]. Convolutional Neural Network (ConvNet or CNN) is a 

mathematical type of DL architectures used originally to recognize and diagnose images. CNN's have 

masterful unusual success for medicinal image/video diagnoses and detection. In 2012, [26,27] 

introduced how ConvNets can boost many image/vision databases such as Modified National 

Institute of Standards and Technology database (MNIST) [28], Arabic digits recognition (ADR) [29], 

Arabic handwritten characters recognition (AHCR) [30], and big-scale ImageNet [31]. Deep Transfer 

Learning (DTL) is a CNN architecture that storing learning parameters gained while solving the DL 

problem and execute DTL to various DL problem. Many DTL models were introduced like VGG [32], 

Google CNN [33], residual neural network [34], Xception [35], Inception-V3 [36], and densely 

connected CNN [37]. 

This part is dedicated to works on the recent x-ray academic researches for applying DL in the 

field of MDS in chest x-ray diagnosis. In [38], proposed an early medical diagnosis system for 

Pneumonia chest X-ray images based on DTL models. In this academic research, an x-ray data [39] 

containing about 1600 healthy case, 4200 un-healthy pneumonia case. The trial score introduced that 

VGG DTL networks better than X-ception DTL network with an error rate of 19%. In [40], it 

introduced a new method of diagnosing the existence of pneumonia from chest X-ray database 

samples based on a CNN architecture with augmentation algorithms trained based on an x-ray 

database [39]. The results the model improves medical x-ray diagnosis with a miss-classification rate 

of 12.88% in training miss-classification rate is 18.35% in the validation. In [41], introduced DTL 

architectures as feature extractors followed by various classifiers (k-nearest neighbors, naïve Bayes, 

support vector machine, and random forest algorithm) for the diagnose of healthy/unhealthy chest 

X-rays data. They used an x-ray database called ChestX-ray14 proposed by Wang et al. [42]. In [43],

introduced a Compressed Sensing (CS) with DTL architectures for automatic identification of

pneumonia on the X-ray database to assist the medical physicians. The chest x-ray database used for

this research contained about 5800 X-ray images of (healthy /unhealthy). The suggested simulation

results have shown that the proposed DTL architectures diagnose pneumonia from a chest x-ray with

an error rate of 2.66%. Finally, in [44]  proposed an ensemble DTL architecture that combines results



from all DTL architectures for the identification of chest pneumonia x-ray based on the concept of 

DL. The suggested model based on [39] database reached a miss-classification error of 3.6%.

The modernity of this research is the outcome as follows: a) the proposed DTL models have end-

to-end structure without hand-craft feature extraction and selection techniques. b) We show that 

neutrosophic is an effective method to generate x-ray data. c) Chest X-ray data are one of the best 

diagnostic methods for COVID19. d) The DTL architectures outcome high-performance 

measurement in a limited COVID19 chest x-ray. The rest of the paper is organized as follows. 

Segment 2 discusses the dataset used in our paper. Segment 3 presents the proposed DTL 

architectures, while Segment 4 identifies the carried-out results and our discussion. Finally, Segment 

5 provides conclusions and directions for additional study. 

2. Dataset

The COVID19 x-ray database applied in this paper [45] was introduced by Dr. Joseph Cohen. 

The Pneumonia [39] Chest X-Ray Images was used to create the introduced database with Cohen 

Covid-19 dataset. The Cohen dataset was collected from websites like Italian Society of Medical, 

Radiopaedia web and online publications. The created dataset [46] is organized into four categories 

normal, pneumonia bacterial, pneumonia virus, and COVID19. The dataset contains 306 x-ray images 

divided to 69 images for the COVID-19 class, 79 images for the normal class, 79 images for the 

pneumonia bacterial class, and 79 images for pneumonia virus class. Figure 1 illustrates samples of 

images used for this research. Figure 1 also illustrates that there is a lot of variation of x-ray image 

sizes and features that may reflect on the accuracy of the proposed model which will be presented in 

the next section. 

Figure 1. Samples of the used images in this research. 

3. The Proposed Model

The proposed model includes two main components, the first component is neutrosophic 

domain conversion while the second component is the transfer learning architectures. Figure 2 

illustrates the proposed Neutrosophic/DTL model for the study. The neutrosophic image domain 

conversion used as a preprocessing step while the DTL architectures used in the training, and the 

testing steps. 



Figure 2. The introduced Neutrosophic /DTL model for the study. 

3.1. Neutrosophic Image Domain Conversion 

Neutrosophy (NS) is a theory sophisticated and created by Florentin Smarandache [47–49], NS 

is a useful and successful theory in analyzing uncertain situations. In NS theory, events are analyzed 

by subset them into three sets as true (𝑇) significance the status is percentage of true, indeterminacy 

( 𝐼 ) significance the status is percentage of indefinite and falsity ( 𝐹 ) significance the status is 

percentage of false, where t varies in T subsets. In image processing such as object and edge detection, 

all pixels of the image are subdivided into T, I and F subsets. Then, the edge detection/object process 

of the image is performed through necessary operations on these subsets. The input image converts 

to the neutrosophic domain as shown in equations 1-5. 𝑃(𝑛, 𝑚)  pixel in the image domain is 

converted to neutrosophic domain 𝑃2𝑁𝑆(𝑛, 𝑚) [50,51]: 

𝑃2𝑁𝑆𝑁𝑆(𝑛, 𝑚) = {𝑇𝑛,𝑚, 𝐼𝑛,𝑚, 𝐹𝑛,𝑚} (1) 

𝑇𝑛,𝑚 =  
𝑓(�̅�,𝑚) − 𝑓𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅

𝑓𝑚𝑎𝑥  ̅̅ ̅̅ ̅̅ ̅̅ − 𝑓𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅
(2) 

Where 𝐼(�̅�, 𝑚) is the local average value of related pixels. 𝑓𝑚𝑖𝑛
̅̅ ̅̅ ̅ and 𝑓𝑚𝑎𝑥  

̅̅ ̅̅ ̅̅ ̅ variables correspond

to the last and first peaks measured from those pixels with a value higher than the maximum local 

average of the histogram. 

𝐼𝑛,𝑚 =  1 −
𝐻(𝑛,𝑚) − 𝐻𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅

𝐻𝑚𝑎𝑥  ̅̅ ̅̅ ̅̅ ̅̅ ̅− 𝐻𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅
(3) 

𝐻(𝑛, 𝑚) =  𝑎𝑏𝑠( 𝐼(𝑛, 𝑚)  −  𝐼(�̅�, 𝑚) )       (4) 

Where 𝐻(𝑛, 𝑚) is the homogeneity value of 𝑇 at (𝑛, 𝑚), which is measured by the absolute 

value of the difference between intensity 𝑓(𝑛, 𝑚) and its local mean value 𝑓(�̅�, 𝑚). While 𝐻𝑚𝑎𝑥  
̅̅ ̅̅ ̅̅ ̅̅  and

𝐻𝑚𝑖𝑛
̅̅ ̅̅ ̅̅  are the last and first peaks respectively, measured from the homogeneity image.

𝐹𝑛,𝑚 =  1 − 𝑇𝑛,𝑚  (5) 



After the image is converted to the NS domain, the COVID19 chest x-ray (object) is kept in the 

𝑇𝑛,𝑚 domain, the edges are in the 𝐼𝑛,𝑚  domain and the background is kept in the 𝐹𝑛,𝑚 domain. 

Figure 3 presents samples of images after the conversion neutrosophic image domain in the 

different domains for every class in the dataset. 

Figure 3. Different neutrosophic images domain for 4 classes in the dataset were (a) original images, 

(b) True significance, (c) Indeterminacy significance, and (d) Falsity significance images.

3.2. Deep Transfer Learning Model 

Algorithm 1 introduces the proposed DTL model in detail. Each DTL model is trained with the 

COVID-19 x-ray Images database (𝐼, 𝑍); where 𝐼 the set of 𝑁 input data, each of size, 512 lengths × 

512 widths, and 𝑍  have the corresponding label, 𝑍 = {𝑧/𝑧 ∈ {normal; pneumonia bacterial; 

pneumonia virus; COVID19}}. Let  𝑉  is a DTL architecture where 𝑉 =  {Alexnet, Googlenet, 

Resnet18} be the set of CNN models. The x-ray database divided to train and test, training set 

(Itrain; Ztrain) for 80% for the training and then validation while 10% for the validating proved it is 

efficient in many types of academic papers [52–56]. The training data then divided into mini-batches, 

each of size 𝑠 = 32, such that (𝐼𝑡;  𝑍𝑡) ∈ (Itrain; Ztrain); 𝑡 = 1,2, … ,
𝑁

𝑛
 and iteratively optimizes the 

CNN model 𝑣 ∈  𝑉 to reduce the functional loss as illustrated in Equation (6). 

𝑓𝑙𝑜𝑠𝑠(𝑤, 𝐼𝑢) =
1

𝑠
∑ 𝑓(𝑣(𝐼, 𝑤), 𝑍)

𝑖∈𝐼𝑢,𝑧∈𝑍𝑢

 (6) 

where 𝑣(𝐼, 𝑤) is the ConvNet model that true label 𝑍 for input 𝐼 given 𝑤 is a weight and 𝑓(. ) is 

the multi-class entropy loss function. 

Algorithm 1 Introduced algorithm. 

1: Input images: COVID-19 Chest x-ray Images (𝐼, 𝑍); where 𝑍 = {𝑧/𝑧 ∈ {normal; 

pneumonia bacterial; pneumonia virus; COVID-19}} 

2: Output model: The DTL model that diagnosed COVID19 x-ray images 𝑖 ∈  𝐼 

3: Pre-processing steps: 

4: resize input images to dimension 512 height × 512 width 

5: Generate neutrosophic x-ray images 

6: normalize each image 

7: install and reuse DTLmodels D= {Alexnet, Googlenet, Resnet18} 



8: Update the last layer by 4 × 1 layer dimension. 

9: foreach ∀𝑣 ∈  𝑣 do 

10: 𝜎 = 0.01 

11: for epochs = 1 to 50 do 

12: foreach mini-batch (𝐼𝑗;  𝑍𝑗) ∈ (Itrain; Ztrain) do 

Update the coefficients of the DTL model 𝑣(·) 

if the miss-classification rate is increased for six epochs then 

𝜎 = 𝜎 × 0.01 

end 

end 

13: end 

14: end 

15: foreach ∀𝑖 ∈ 𝐼𝑡𝑒𝑠𝑡  do 

16: Result of all DTL architectures, 𝑣 ∈  𝑉 

17: end 

4. Experimental Results

The introduced model for the evaluation of the neutrosophic sets with deep transfer models was 

implemented using a software package (MATLAB). The development was CPU specific. All 

outcomes were directed on a computer server equipped by an Intel Xeon processor (2 GHz), 96 GB 

of RAM. About 36 recorded experiments were conducted in this study. The experiments included the 

following trails specifications: 

• Different Image domains

• The Original dataset domain (grayscale).

• The True (T) neutrosophic domain.

• The Indeterminacy (I) neutrosophic domain

• The Falsity (F) neutrosophic domain.

• Different training and testing strategies

• 70% for the training – 30% for the testing.

• 80% for the training – 20% for the testing.

• 90% for the training – 10% for the testing.

• Different deep transfer models

• Alexnet.

• Googlenet.

• Restnet18.

The authors of this research tried first to build their deep neural networks based on the works 

presented [52,53,55], but the testing accuracy wasn’t acceptable. So, the alternative way is to use deep 

transfer learning models. Using deep transfer models proved its efficiency in many types of research 

such as work presented in [56,57]. The Alexnet, Googlenet, and Restnet18 models are selected in this 

study as they have a small number of layers on their architectures which will reflect on decreasing 

the training time, consumed memory, and processing time. All the experimental results have been 

tested according to the following hyperparameters for the training, and the testing phases: 

• Batch size [58]: 32

• Momentum: 0.9

• Epochs: 60

• Learning Rate [58]: 0.001

• Optimizer [59]: adaboost

• Early stopping [60]: 10 epochs

A large number of trials were performed to draw a full picture of the effectiveness and

significance of using neutrosophic sets in different experimental environments with different deep 

learning models. To evaluate the performance of the neutrosophic set in deep transfer learning 

models, performance matrices are needed to be investigated through this study. The most common 



performance measures in the field of deep learning are Accuracy, Precision, Recall, and F1 Score [61] 

and they are presented from Equation (7) to Equation (10). 

Accuracy =
TP+TN

(TP+FP)+( 𝑇𝑁+𝐹𝑁) 
 (7) 

Precision =
TP

(TP+FP)
    (8) 

Recall =  
TP

(TP+FN)
  (9) 

F1 Score = 2 ∗
Precision∗Recall

(Precision+Recall)
(10) 

Where TP is the count of True Positive samples, TN is the count of True Negative samples, FP is 

the count of False Positive samples, and FN is the count of False Negative samples from a confusion 

matrix. The experimental results will be presented in three subsections, the first subsection will 

discuss the experimental results for the original dataset. The second subsection will introduce the 

experimental results for the different neutrosophic domains. Finally, the third subsection will 

illustrate a comparative results analysis for the original, the neutrosophic domain according to the 

confusion matrix for the testing accuracy. 

4.1. Original Dataset Experimental Results 

As mentioned above different experimental environments were selected in this research for the 

research experiment. Table 1 presents the testing accuracy and performance metrics for the original 

dataset. The table clearly shows that in the 90%-10% strategy, the Resnet18 model achieves the highest 

testing accuracy with 74.19% with tight scores in performance metrics. In the 80%-20% strategy, 

Googlenet achieves the highest testing accuracy with 64.52%, while in a 70%-30% strategy, the 

Googlenet model achieves the highest testing accuracy with 62.47% and close to Resnet18 which 

achieved 61.29%. 

Table 1. Testing accuracy and performance metrics for the original dataset 

Table 1 illustrates interesting facts and they are 1) The more data the deep learning models have, 

the higher testing accuracy they will achieve. 2) The 80%-20%, and 70%-30% strategy achieved very 

Training / 

Testing 

Deep Transfer 

Model 
Recall Precision F Score 

Testing 

Accuracy 

90%-10% 

Alexnet 0.6875 0.7582 0.7211 0.6774 

Googlenet 0.7188 0.8167 0.7646 0.7097 

Resnet18 0.7500 0.7639 0.7569 0.7419 

80%-20% 

Alexnet 0.5781 0.6222 0.5994 0.5645 

Googlenet 0.6563 0.7477 0.6990 0.6452 

Resnet18 0.6250 0.681 0.6518 0.6129 

70%-30% 

Alexnet 0.5506 0.5706 0.5604 0.5376 

Googlenet 0.6354 0.6814 0.6576 0.6237 

Resnet18 0.6250 0.6929 0.6572 0.6129 



close results for the testing accuracy which means that those strategies are enough to reflect an 

accurate testing accuracy for the proposed evaluation model. 

4.2. Neutrosophic Domains Experimental Results 

The Neutrosophic domains included three types, and they are the True (T) neutrosophic domain, 

the Indeterminacy (I) neutrosophic domain, the Falsity (F) neutrosophic domain. Those neutrosophic 

domains will be experimented on in this section to measure their performance under different 

experimental conditions. Table 2 presents the testing accuracy and performance metrics for the True 

(T) neutrosophic domain. As illustrated in section 3.1, The True (T) image is the averaging of the

original image as every pixel is averaged by it is neighbors with a window of choice. The choice of

the window in the study is 5 pixels.

Table 2 illustrates that in the 90%-10% strategy, both Alexnet and Googlenet model achieves 

similar highest testing accuracy with 64.52% with an advantage for the Googlenet model in the 

achieved performance metrics. In the 80%-20% strategy, also both Alexnet and Googlenet model 

achieves similar highest testing accuracy with 54.84% with an advantage for the Googlenet model in 

the achieved performance metrics while in 70%-30% strategy, Resnet18 model achieves the highest 

testing accuracy with 67.74%. 

Table 2. Testing accuracy and performance metrics for the True (T) neutrosophic domain 

Table 2 illustrates interesting facts and they are 1) In the True (T) neutrosophic domain, more 

data doesn’t mean higher accuracy in those deep learning architectures’ as in the 70%-30% strategy, 

the highest testing accuracy is achieved by 68.82% all over the other strategies. 2) The images on the 

True (T) neutrosophic domain are averaged images, which means that some of the important features 

of images are concealed which negatively affect the achieved testing accuracy if it is compared to the 

original experimental results presented in Table 1 for the 90%-10%, and the 80%-20% strategy. 

The second neutrosophic domain to be experimented on is the Falsity (F) neutrosophic domain. 

This domain is the opposite of the True (T) neutrosophic domain. In the Falsity (F) domain, all pixel’s 

values are inverted, it is expected that some features will be concealed, and other features will be 

revealed in images. Table 3 presents the testing accuracy and performance metrics for the (F) Falsity 

domain. 

Training / 

Testing 

Deep Transfer 

Model 
Recall Precision F Score 

Testing 

Accuracy 

90%-10% 

Alexnet 0.6563 0.6979 0.6764 0.6452 

Googlenet 0.6563 0.7500 0.7000 0.6452 

Resnet18 0.5938 0.6556 0.6231 0.5806 

80%-20% 

Alexnet 0.5625 0.5868 0.5744 0.5484 

Googlenet 0.5625 0.6139 0.5871 0.5484 

Resnet18 0.5156 0.5893 0.5500 0.5000 

70%-30% 

Alexnet 0.6310 0.7433 0.6825 0.6237 

Googlenet 0.6860 0.7462 0.7149 0.6774 

Resnet18 0.6979 0.7565 0.7260 0.6882 



Table 3. Testing accuracy and performance metrics for the Falsity (F) domain 

Table 3 illustrates that in the 90%-10% strategy, both Alexnet and Googlenet model achieves 

similar highest testing accuracy with 64.52% with an advantage for the Googlenet model in the 

achieved performance metrics. In the 80%-20% strategy, also both Alexnet and Googlenet model 

achieves similar highest testing accuracy with 56.45% with an advantage for the Googlenet model in 

the achieved performance metrics while in 70%-30% strategy, Googlenet model achieves the highest 

testing accuracy with 65.59%. 

Table 3 also shows interesting facts and they are 1) In the Falsity (F) neutrosophic domain, more 

data doesn’t mean higher accuracy in those deep learning architectures’ as in the 70%-30% strategy, 

the highest testing accuracy is achieved by 65.59% all over the other strategies. 2) The images on the 

Falsity (F) neutrosophic domain are the inversion of True (T) domain, which means that some of the 

important features of images are concealed which negatively affect the achieved testing accuracy if it 

is compared to the original experimental results are presented in Table 1 for the 90%-10%, and the 

80%-20% strategy. 3) The results presented in Table 3 are very close to results presented in Table 2, 

which means the Falsity (F) neutrosophic domains don’t add extra value for the grayscale images 

and can be discarded in some applications depending on their nature. 

The Third neutrosophic domain to be experimented on is the Indeterminacy (I) neutrosophic 

domain. This domain contains the absolute edges in the image. In the Indeterminacy (I) domain, all 

pixel values are resulted from subtracting the original pixel value from the average pixel value in the 

True (T) neutrosophic domain. Table 5 presents the testing accuracy and performance metrics for the 

Indeterminacy (I) domain. 

Table 5 illustrates that in the 90%-10% strategy, Alexnet achieves the highest testing accuracy 

with 87.10% with the highest achieved performance metrics scores. In the 80%-20% strategy, 

Googlenet achieved the highest testing accuracy with 66.13%, while in 70%-30% strategy, both 

Googlenet and Resnet18 models achieve similar highest testing accuracy with 73.12% with advantage 

for Googlenet model in the achieved performance metrics. 

Training / 

Testing 

Deep Transfer 

Model 
Recall Precision F Score 

Testing 

Accuracy 

90%-10% 

Alexnet 0.6563 0.6714 0.6638 0.6452 

Googlenet 0.6563 0.7404 0.6958 0.6452 

Resnet18 0.5938 0.6408 0.6164 0.5806 

80%-20% 

Alexnet 0.5781 0.7153 0.6394 0.5645 

Googlenet 0.5781 0.6249 0.6006 0.5645 

Resnet18 0.5469 0.5759 0.5610 0.5323 

70%-30% 

Alexnet 0.6131 0.7250 0.6644 0.6022 

Googlenet 0.6667 0.7083 0.6869 0.6559 

Resnet18 0.6548 0.7036 0.6783 0.6452 



Table 4. Testing accuracy and performance metrics for the Indeterminacy (I) domain 

Table 4 illustrates interesting facts and they are 1) In the Indeterminacy (I) neutrosophic domain, 

all the achieved testing accuracies are better than all the achieved testing accuracies in the Falsity (F), 

the True (T), and the original domain. 2) The images on Indeterminacy (I) neutrosophic domain are 

the absolute difference between the original and the averaged image in the True (T) domain. Those 

are very important features that have been revealed and helped the deep transfer models to achieve 

higher testing accuracy. 3) More data doesn’t mean achieving higher testing accuracy in 

Indeterminacy (I) neutrosophic domain, as in the 70%-30% strategy, the achieved testing accuracy 

was better than the achieved accuracy in 80%-20% strategy with 6.99% enhancement using 

Googlenet. 

4.3 Comparative Result of Indeterminacy (I) neutrosophic domain with the original domain 

Section 4.2 concluded that the Indeterminacy (I) neutrosophic domain achieved the highest 

possible testing accuracy in all experiment's trails. This section is dedicated for presenting a 

comparison result between the Indeterminacy (I) neutrosophic domain with the original domain with 

deeper performance metrics to evaluate the performance of the Indeterminacy (I) domain. Table 5 

presents a comparative result of the achieved testing accuracy between the Indeterminacy (I) and the 

original domain. Table 5 is a summary for the highest achieved testing accuracy selected from Table 

1 and Table 4. 

Table 5. Testing accuracy for the Indeterminacy (I) and original domain 

Training / 

Testing 

Deep Transfer 

Model 
Recall Precision F Score 

Testing 

Accuracy 

90%-10% 

Alexnet 0.8750 0.9167 0.8953 0.8710 

Googlenet 0.8125 0.8458 0.8288 0.8065 

Resnet18 0.7813 0.8534 0.8157 0.7742 

80%-20% 

Alexnet 0.6406 0.8386 0.7264 0.6290 

Googlenet 0.6719 0.8116 0.7352 0.6613 

Resnet18 0.6406 0.7688 0.6989 0.6290 

70%-30% 

Alexnet 0.7158 0.7440 0.7296 0.7097 

Googlenet 0.7336 0.8464 0.7860 0.7312 

Resnet18 0.7396 0.8294 0.7819 0.7312 

Training / Testing Domain 
Deep Transfer 

Learning Model 

Highest Testing 

Accuracy 

90%-10% 
Original Resnet18 0.7419 

Indeterminacy (I) Alexnet 0.8710 

80%-20% 
Original Googlenet 0.6452 

Indeterminacy (I) Googlenet 0.6613 

70%-30% 
Original Googlenet 0.6237 

Indeterminacy (I) Googlenet 0.7312 



Table 5 shows that the Indeterminacy (I) neutrosophic domain achieved the highest testing 

accuracy in all training and testing strategies with 87.10%(Alexnet), 66.13%(Googlenet), and 

73.12%(Googlenet) in the 90%-10%, 80%-20%, and 70%-30% accordingly. 

Table 5 also shows interesting facts and they are 1) in the Indeterminacy (I) neutrosophic or the 

original domain, Googlenet model is the most dominant model in achieving the highest accuracy 

possible as it contains 20 layers in its architecture if it is compared with Alexnet and Resnet18 which 

contains 8, and 18 layers. 2) The Indeterminacy (I) neutrosophic greatly affects the testing accuracy, 

in the 90%-10%, the Indeterminacy (I) neutrosophic domain achieves better accuracy with 12.91% 

more than the achieved testing accuracy in original domain. In the 70%-30% the Indeterminacy (I) 

neutrosophic domain achieves better accuracy with 10.75% than the original domain. 3) In the 

Indeterminacy (I) neutrosophic domain, deep transfer models can learn with fewer data as illustrated 

in the 70%-30% strategy, the Googlenet achieves better accuracy than the 80%-20% strategy. That 

means the model can generalize whatever the amount of the data existed. While in the original 

domain, more data means higher testing accuracy. 

All the experimental outcomes show that converting to the Indeterminacy (I) neutrosophic 

domain from the original domain grantees achieving higher testing accuracy. Therefore, the 

Indeterminacy (I) neutrosophic need further investigations to prove it is efficient for the detection of 

COVID-19 among the other classes. The confusion matrices for the Indeterminacy (I) neutrosophic 

domain for the different deep transfer models are presented in Figures 4, 5, and 6. The figures show 

that the testing accuracy for the COVID-19 class in the different training and testing strategies are 

acceptable. For the 90%-10% strategy, The Alexnet model was able to detect COVID-19 with testing 

accuracy 100% and for the normal class with 100%. In the 80%-20% strategy, The Googlenet model 

was able to detect COVID-19 with testing accuracy 77.8% and for the normal class with 100%. While 

in the 70%-30% strategy, The Googlenet model was able to detect COVID-19 with testing accuracy 

100% and for the normal class with 87.5%.   

Figure 4. Confusion matrix for Alexnet in 90%-10% strategy for Indeterminacy (I) neutrosophic 

domain 



Figure 5. Confusion matrix for Googlenet in 80%-20% strategy for Indeterminacy (I) neutrosophic 

domain 

Figure 6. Confusion matrix for Googlenet in 70%-30% strategy for Indeterminacy (I) neutrosophic 

domain 

This study concludes that using the neutrosophic set with deep learning models might be an 

encouraging transition to achieve higher testing accuracy, especially with limited datasets such as 

COVID-19 chest x-ray dataset which is investigated throughout this research. 

5. Conclusion and future works

According to the World Health Organization (WHO), coronaviruses are a family of viruses that 

lead to sicknesses ranging from the common cold to more severe diseases. With the advancements in 

computer science, detection of this type of virus is urgently needed. In this paper, a study of 

neutrosophic significance on the deep transfer learning model is presented. The neutrosophic domain 

consisted of three types of images and they are, the True (T) images, the Indeterminacy (I) images, 

and the Falsity (F) images. The dataset used in this research had been collected from different sources 

as there is no benchmark dataset for COVID-19 chest X-ray until the writing of this research. The 

dataset consisted of four classes and they are COVID-19, Normal, Pneumonia bacterial, and 

Pneumonia virus. This study aimed to review the effect of neutrosophic sets on deep transfer learning 

models. The selected deep learning models in this study were Alexnet, Googlenet, and Restnet18. 

Those models were selected as they had a small number of layers on their architectures that will 



reflect on reducing the consumed memory and training time. To test the performance of the 

conversion to the neutrosophic domain, about 36 trails had been conducted and recorded. A 

combination of training and testing strategies by splitting the dataset into (90%-10%, 80%-20%, 

and70%-30%) were included in the experiments. Four domains of images are tested, and they were, 

the original images, the True (T) neutrosophic images, the Indeterminacy (I) neutrosophic images, 

and the Falsity (F) neutrosophic images. The four domains with the different training and testing 

strategies were tested using Alexnet, Googlenet, and Restnet18 deep transfer models. According to 

the experimental results, the Indeterminacy (I) neutrosophic domain achieved the highest accuracy 

possible in the testing accuracy and performance metrics such as Precision, Recall, and F1 Score. The 

study concluded that using the neutrosophic set with deep learning models might be an encouraging 

transition to achieve better testing accuracy, especially with limited datasets such as COVID-19 

dataset. 
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