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Abstract 

In this paper, we introduce for the first time the neutrosophic system and 

neutrosophic dynamic system that represent new per-spectives in science.  A 

neutrosophic system is a quasi- or (𝑡, 𝑖, 𝑓)–classical system, in the sense that the 

neutrosophic system deals with quasi-terms/concepts/attributes, etc. [or 

(𝑡, 𝑖, 𝑓) − terms/ concepts/attributes], which are approximations of the classical 

terms/concepts/attributes, i.e. they are partially true/membership/probable (t%), 

partially indeterminate (i%), and partially false/nonmember-ship/improbable (f%), 

where 𝑡, 𝑖, 𝑓 are subsets of the unitary interval [0,1].  {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically ‘quasi’ 

means (𝑡, 𝑖, 𝑓) in a neutrophic way.}
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1 Introduction 

A system 𝒮in general is composed from a space ℳ, together with its elements 

(concepts) {𝑒𝑗}, 𝑗 ∈ 𝜃, and the relationships {ℛ𝑘}, 𝑘 ∈ 𝜓, between them, where 

𝜃  and 𝜓  are countable or uncountable index sets. For a closed system, the 

space and its elements do not interact with the environment. For an open set, 

the space or its elements interact with the environment. 

2 Definition of the neutrosophic system 

A system is called neutrosophic system if at least one of the following occur: 

a. The space contains some indeterminacy.

b. At least one of its elements 𝑥 has some indeterminacy (it is not

well-defined or not well-known).
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c. At least one of its elements x does not 100% belong to the space;

we say 𝑥(𝑡, 𝑖, 𝑓) ∈ ℳ, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

d. At least one of the relationships ℛ𝑜 between the elements of ℳ

is not 100% well-defined (or well-known); we say ℛ𝑜(𝑡, 𝑖, 𝑓) ∈

𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

e. For an open system, at least one [ℛ𝐸(𝑡, 𝑖, 𝑓)] of the system ’s

interactions relationships with the environment has some

indeterminacy, or it is not well-defined, or not well-known, with

(𝑡, 𝑖, 𝑓) ≠ (1, 0, 0).

2.1 Classical system as particular case of neutrosophic system 

By language abuse, a classical system is a neutrosophic system with 

indeterminacy zero (no indeterminacy) at all system’s levels. 

2.2 World systems are mostly neutrosophic 

In our opinion, most of our world systems are neutrosophic systems, not 

classical systems, and the dynamicity of the systems is neutrosophic, not 

classical. 

Maybe the mechanical and electronical systems could have a better chance to 

be classical systems. 

3 A simple example of neutrosophic system 

Let’s consider a university campus Coronado as a whole neutrosophic system 

𝒮, whose space is a prism having a base the campus land and the altitude such 

that the prism encloses all campus’ buildings, towers, observatories, etc. 

The elements of the space are people (administration, faculty, staff, and 

students) and objects (buildings, vehicles, computers, boards, tables, chairs, 

etc.). 

A part of the campus land is unused. The campus administration has not 

decided yet what to do with it: either to build a laboratory on it, or to sell it. 

This is an indeterminate part of the space. 

Suppose that a staff (John, from the office of Human Resources) has been fired 

by the campus director for misconduct. But, according to his co-workers, John 

was not guilty for anything wrong doing. So, John sues the campus. At this point, 

we do not know if John belongs to the campus, or not. John’s appurtenance to 

the campus is indeterminate. 
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Assume the faculty norm of teaching is four courses per semester. But some 

faculty are part-timers, therefore they teach less number of courses. If an 

instructor teaches only one class per semester, he belongs to the campus only 

partially (25%), if he teaches two classes he belongs to the campus 50%, and 

if he teaches three courses he belongs to the campus 75%.  

We may write: 

Joe (0.25, 0, 0.75) ∈  𝒮 

George (0.50, 0, 0.50) ∈  𝒮 

and   Thom (0.75, 0.10, 0.25) ∈  𝒮. 

Thom has some indeterminacy (0.10) with respect to his work in the campus: 

it is possible that he might do some administrative work for the campus (but 

we don’t know).  

The faculty that are full-time (teaching four courses per semester) may also do 

overload. Suppose that Laura teaches five courses per semester, therefore 

Laura (1.25, 0, 0) ∈ 𝒮. 

In neutrosophic logic/set/probability it’s possible to have the sum of 

components (𝑡, 𝑖, 𝑓) different from 1: 

𝑡 + 𝑖 + 𝑓 > 1, for paraconsistent (conflicting) information; 

𝑡 + 𝑖 + 𝑓 = 1, for complete information; 

𝑡 + 𝑖 + 𝑓 < 1, for incomplete information. 

Also, there are staff that work only ½ norm for the campus, and many students 

take fewer classes or more classes than the required full-time norm. Therefore, 

they belong to the campus Coronado in a percentage different from 100%. 

About the objects, suppose that 50 calculators were brought from IBM for one 

semester only as part of IBM’s promotion of their new products. Therefore, 

these calculators only partially and temporarily belong to the campus. 

Thus, not all elements (people or objects) entirely belong to this system, there 

exist many 𝑒𝑗(𝑡, 𝑖, 𝑓) ∈ 𝒮, with (𝑡, 𝑖, 𝑓) ≠ (1, 0, 0). 

Now, let’s take into consideration the relationships. A professor, Frank, may 

agree with the campus dean with respect to a dean’s decision, may disagree 

with respect to the dean’s other decision, or may be ignorant with respect to 

the dean’s various decisions. So, the relationship between Frank and the dean 

may be, for example: 

Frank
agreement (0.5,0.2,0.3)
→  dean, i. e. not (1, 0, 0) agreement. 

This campus, as an open system, cooperates with one Research Laboratory 

from Nevada, pending some funds allocated by the government to the campus. 
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Therefore, the relationship (research cooperation) between campus Coronado 

and the Nevada Research Laboratory is indeterminate at this moment. 

4 Neutrosophic patterns 

In a neutrosophic system, we may study or discover, in general, neutrosophic 

patterns, i.e. quasi-patterns, approximated patterns, not totally working; we 

say: (𝑡, 𝑖, 𝑓) − patterns, i.e. t% true, i% indeterminate, and f% false, and 

elucidate (𝑡, 𝑖, 𝑓) −principles. 

The neutrosophic system, through feedback or partial feedback, is 

(𝑡, 𝑖, 𝑓) −self-correcting, and (𝑡, 𝑖, 𝑓) −self-organizing. 

5 Neutrosophic holism 

From a holistic point of view, the sum of parts of a system may be: 

1. Smaller than the whole (when the interactions between parts

are unsatisfactory);

2. Equals to the whole (when the interactions between parts are

satisfactory);

3. Greater than the whole (when the interactions between parts

are super-satisfactory).

The more interactions (interdependance, transdependance, hyper-

dependance) between parts, the more complex a system is.  

We have positive, neutral, and negative interactions between parts. Actually, 

an interaction between the parts has a degree of positiveness, degree of 

neutrality, and degree of negativeness. And these interactions are dynamic, 

meaning that their degrees of positiveness/neutrality/negativity change in 

time. They may be partially absolute and partially relative. 

6 Neutrosophic model 

In order to model such systems, we need a neutrosophic (approximate, partial, 

incomplete, imperfect) model that would discover the approximate system 

properties. 

7 Neutrosophic successful system 

A neutrosophic successful system is a system that is successful with respect to 

some goals, and partially successful or failing with respect to other goals. 
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The adaptivity, self-organization, self-reproducing, self-learning, reiteration, 

recursivity, relationism, complexity and other attributes of a classical system 

are extended to (𝑡, 𝑖, 𝑓) −attributes in the neutrosophic system. 

8 (𝑡, 𝑖, 𝑓) −attribute 

A (𝑡, 𝑖, 𝑓) −attribute means an attribute that is t% true (or probable), i% 

indeterminate (with respect to the true/probable and false/improbable), and 

f% false/improbable - where t,i,f are subsets of the unitary interval [0,1]. 

For example, considering the subsets reduced to single numbers, if a 

neutrosophic system is (0.7, 0.2, 0.3)-adaptable, it means that the system is 

70% adaptable, 20% indeterminate regarding adaptability, and 30% 

inadaptable; we may receive the informations for each attribute phase from 

different independent sources, that’s why the sum of the neutrosophic 

components is not necessarily 1. 

9 Neutrosophic dynamics 

While classical dynamics was beset by dialectics, which brought together an 

entity 〈A〉 and its opposite 〈antiA〉, the neutrosophic dynamics is beset by tri-

alectics, which brings together an entity 〈A〉 with its opposite 〈antiA〉 and their 

neutrality 〈neutA〉. Instead of duality as in dialectics, we have tri-alities in our 

world.  

Dialectics failed to take into consideration the neutrality between opposites, 

since the neutrality partially influences both opposites. 

Instead of unifying the opposites, the neutrosophic dynamics unifies the triad 

〈A〉, 〈antiA〉, 〈neutA〉. 

Instead of coupling with continuity as the classical dynamics promise, one has 

“tripling” with continuity and discontinuity altogether. 

All neutrosophic dynamic system’s components are interacted in a certain 

degree, repelling in another degree, and neutral (no interaction) in a different 

degree. 

They comprise the systems whose equilibrium is the disechilibrium - systems 

that are continuously changing. 

The internal structure of the neutrosophic system may increase in complexity 

and interconnections, or may degrade during the time. 

A neutrosophic system is characterized by potential, impotential, and 

indeterminate developmental outcome, each one of these three in a specific 

degree. 
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10 Neutrosophic behavior gradient 

In a neutrosophic system, we talk also about neutrosophic structure, which is 

actually a quasi-structure or structure which manifests into a certain degree; 

which influences the neutrosophic behavior gradient, that similarly is a 

behavior quasi-gradient - partially determined by quasi-stimulative effects; 

one has: discrete systems, continuous systems, hybrid (discrete and 

continuous) systems. 

11 Neutrosophic interactions 

Neutrosophic interactions in the system have the form: 

 A  B 
 ■ ■ 

    (𝑡, 𝑖, 𝑓)  ⃡                  

Neutrosophic self-organization is a quasi-self-organization. The system’s 

neutrosophic intelligence sets into the neutrosophic patterns formed within 

the system’s elements. 

We have a neutrosophic causality between event E1, that triggers event E2, and 

so on. And similarly, neutrosophic structure S1 (which is an approximate, not 

clearly know structure) causes the system to turn on neutrosophic structure 

S2, and so on. A neutrosophic system has different levels of self-organizations. 

12 Potentiality/impotentiality/indeterminacy 

Each neutrosophic system has a potentiality/impotentiality/indeterminacy to 

attain a certain state/stage; we mostly mention herein about the transition 

from a quasi-pattern to another quasi-pattern. A neutrosophic open system is 

always transacting with the environment; since always the change is needed. 

A neutrosophic system is always oscilating between stability, instability, and 

ambiguity (indeterminacy). Analysis, synthesis, and neutrosynthesis of 

existing data are done by the neutrosophic system. They are based on system’s 

principles, antiprinciples, and nonprinciples. 

13 Neutrosophic synergy 

The Neutrosophic Synergy is referred to partially joined work or partially 

combined forces, since the participating forces may cooperate in a degree (𝑡), 

may be antagonist in another degree (𝑓), and may have a neutral interest in 

joint work in a different degree (𝑖). 
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14 Neutrosophic complexity 

The neutrosophic complex systems produce neutrosophic complex patterns. 

These patterns result according to the neutrosophic relationships among 

system’s parts. They are well described by the neutrosophic cognitive maps 

(NCM), neutrosophic relational maps (NRM), and neutrosophic relational 

equations (NRE), all introduced by W. B. Vasanttha Kandasamy and F. 

Smarandache in 2003-2004. 

The neutrosophic systems represent a new perspective in science. They deal 

with quasi-terms [or (𝑡, 𝑖, 𝑓) −terms], quasi-concepts [or (𝑡, 𝑖, 𝑓) −concepts], 

and quasi-attributes [or (𝑡, 𝑖, 𝑓) −attributes], which are approximations of the 

terms, concepts, attributes, etc., i.e. they are partially true (𝑡%),  partially 

indeterminate (𝑖%), and partially false (𝑓%). 

Alike in neutrosophy where there are interactions between 〈A〉, 〈neutA〉, and 

〈antiA〉, where 〈A〉 is an entity, a system is frequently in one of these general 

states: equilibrium, indeterminacy (neither equilibrium, nor disequilibrium), 

and disequilibrium. 

They form a neutrosophic complexity with neutrosophically ordered patterns. 

A neutrosophic order is a quasi or approximate order, which is described by a 

neutrosophic formalism. 

The parts all together are partially homogeneous, partially heterogeneous, and 

they may combine in finitely and infinitely ways. 

15 Neutrosophic processes 

The neutrosophic patterns formed are also dynamic, changing in time and 

space. They are similar, dissimilar, and indeterminate (unknown, hidden, 

vague, incomplete) processes among the parts.  

They are called neutrosophic processes. 

16 Neutrosophic system behavior 

The neutrosophic system’s functionality and behavior are, therefore, coherent, 

incoherent, and imprevisible (indeterminate). It moves, at a given level, from 

a neutrosophic simplicity to a neutrosophic complexity, which becomes 

neutrosophic simplicity at the next level. And so on. 

Ambiguity (indeterminacy) at a level propagates at the next level. 
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17 Classical systems 

Although the biologist Bertalanffy is considered the father of general system 

theory since 1940, it has been found out that the conceptual portion of the 

system theory was published by Alexander Bogdanov between 1912-1917 in 

his three volumes of Tectology. 

18 Classical open systems 

A classical open system, in general, cannot be totally deterministic, if the 

environment is not totally deterministic itself.  

Change in energy or in momentum makes a classical system to move from 

thermodynamic equilibrium to nonequilibrium or reciprocally. 

Open classical systems, by infusion of outside energy, may get an unexpected 

spontaneous structure. 

19 Deneutrosophication 

In a neutrosophic system, besides the degrees of freedom, one also talk about 

the degree (grade) of indeterminacy. Indeterminacy can be described by a 

variable. 

Surely, the degrees of freedom should be condensed, and the indetermination 

reduced (the last action is called “deneutrosophication”). 

The neutrosophic system has a multi-indeterminate behavior. A neutrosophic 

operator of many variables, including the variable representing indeterminacy, 

can approximate and semi-predict the system’s behavior. 

20 From classical to neutrosophic systems 

Of course, in a bigger or more degree, one can consider the neutrosophic 

cybernetic system (quasi or approximate control mechanism, quasi 

information processing, and quasi information reaction), and similarly the 

neutrosophic chaos theory, neutrosophic catastrophe theory, or neutrosophic 

complexity theory. 

In general, when passing from a classical system 𝒮𝑐  in a given field of 

knowledge ℱ to a corresponding neutrosophic system 𝒮𝑁 in the same field of 

knowledge ℱ, one relaxes the restrictions about the system’s space, elements, 

and relationships, i.e. these components of the system (space, elements, 

relationships) may contain indeterminacy, may be partially (or totally) 
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unknown (or vague, incomplete, contradictory), may only partially belong to 

the system; they are approximate, quasi. 

Scientifically, we write: 

𝒮𝑁 = (𝑡, 𝑖, 𝑓) − 𝒮𝑐, 

and we read: a neutrosophic system is a (𝑡, 𝑖, 𝑓)–classical system. As mapping, 

between the neutrosophic algebraic structure systems, we have defined 

neutrosophic isomorphism. 

21 Neutrosophic dynamic system 

The behavior of a neutrosophic dynamic system is chaotic from a classical 

point of view. Instead of fixed points, as in classical dynamic systems, one deals 

with fixed regions (i.e. neighbourhoods of fixed points), as approximate values 

of the neutrosophic variables [we recall that a neutrosophic variable is, in 

general, represented by a thick curve – alike a neutrosophic (thick) function]. 

There may be several fixed regions that are attractive regions in the sense that 

the neutrosophic system converges towards these regions if it starts out in a 

nearby neutrosophic state. 

And similarly, instead of periodic points, as in classical dynamic systems, one 

has periodic regions, which are neutrosophic states where the neutrosophic 

system repeats from time to time. 

If two or more periodic regions are non-disjoint (as in a classical dynamic 

system, where the fixed points lie in the system space too close to each other, 

such that their corresponding neighbourhoods intersect), one gets double 

periodic region, triple periodic region: 

and so on: 𝑛 −uple periodic region, for 𝑛 ≥ 2. 

In a simple/double/triple/…/ 𝑛 − uple periodic region the neutrosophic 

system is fluctuating/oscilating from a point to another point. 

The smaller is a fixed region, the better is the accuracy. 
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22 Neutrosophic cognitive science 

In the Neutrosophic Cognitive Science, the Indeterminacy “I” led to the 

definition of the Neutrosophic Graphs (graphs which have: either at least one 

indeterminate edge, or at least one indeterminate vertex, or both some 

indeterminate edge and some indeterminate vertex), and Neutrosophic Trees 

(trees which have: either at least one indeterminate edge, or at least one 

indeterminate vertex, or both some indeterminate edge and some 

indeterminate vertex), that have many applications in social sciences.  

Another type of neutrosophic graph is when at least one edge has a 

neutrosophic (𝑡, 𝑖, 𝑓) truth-value. 

As a consequence, the Neutrosophic Cognitive Maps (Vasantha & Smarandache, 

2003) and Neutrosophic Relational Maps (Vasantha & Smarandache, 2004) 

are generalizations of fuzzy cognitive maps and respectively fuzzy relational 

maps, Neutrosophic Relational Equations (Vasantha & Smarandache, 2004), 

Neutrosophic Relational Data (Wang, Smarandache,  Sunderraman, Rogatko - 

2008), etc. 

A Neutrosophic Cognitive Map is a neutrosophic directed graph with concepts 

like policies, events etc. as vertices, and causalities or indeterminates as edges. 

It represents the causal relationship between concepts. 

An edge is said indeterminate if we don’t know if it is any relationship between 

the vertices it connects, or for a directed graph we don’t know if it is a directly 

or inversely proportional relationship. We may write for such edge that (𝑡, 𝑖, 𝑓) 

= (0,1,0). 

A vertex is indeterminate if we don’t know what kind of vertex it is since we 

have incomplete information. We may write for such vertex that (𝑡, 𝑖, 𝑓)  = 

(0,1,0). 

Example of Neutrosophic Graph (edges V1V3, V1V5, V2V3 are indeterminate and 

they are drawn as dotted): 
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and its neutrosophic adjacency matrix is: 























0110I

10100

110II

00I01

I0I10

The edges mean: 0 = no connection between vertices, 1 = connection between 

vertices, I = indeterminate connection (not known if it is, or if it is not). 

Such notions are not used in the fuzzy theory. 

Let’s give an example of Neutrosophic Cognitive Map (NCM), which is a 

generalization of the Fuzzy Cognitive Maps. 

We take the following vertices: 

C1 - Child Labor 

C2 - Political Leaders 

C3 - Good Teachers 

C4 - Poverty 

C5 - Industrialists 

C6 - Public practicing/encouraging Child Labor 

C7 - Good Non-Governmental Organizations (NGOs) 

The corresponding neutrosophic adjacency matrix related to this 

neutrosophic cognitive map is: 
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The edges mean: 0 = no connection between vertices, 1 = directly proportional 

connection, -1 = inversely proportionally connection, and I = indeterminate 

connection (not knowing what kind of relationship is between the vertices that 

the edge connects). 

Now, we give another type of neutrosophic graphs (and trees): An edge of a 

graph, let's say from A to B (i.e. how A influences B), 

may have a neutrosophic value (𝑡, 𝑖, 𝑓), where t means the positive influence 

of A on B, i means the indeterminate/neutral influence of A on B, and f means 

the negative influence of A on B.  

Then, if we have, let's say: 𝐴−> 𝐵−> 𝐶 such that 𝐴−> 𝐵 has the neutrosophic 

value (t1, i1, f1) and 𝐵−> 𝐶 has the neutrosophic value (t2, i2, f2), then 𝐴−> 𝐶 

has the neutrosophic value (t1, i1, f1)/\(t2, i2. f2), where /\ is the 𝐴𝑁𝐷𝑁 

neutrosophic operator. 

Also, again a different type of graph: we can consider a vertex A as: 𝑡% 

belonging/membership to the graph, 𝑖%  indeterminate membership to the 

graph, and 𝑓% nonmembership to the graph. 

Finally, one may consider any of the previous types of graphs (or trees) put 

together. 

23 (𝑡, 𝑖, 𝑓) −qualitative behavior 

We normally study in a neutrosophic dynamic system its long-term 

(𝑡, 𝑖, 𝑓) −qualitative behavior, i.e. degree of behavior’s good quality (t), degree 

of behavior’s indeterminate (unclear) quality (i), and degree of behavior’s bad 

quality (f). 

The questions arise: will the neutrosophic system fluctuate in a fixed region 

(considered as a neutrosophic steady state of the system)? Will the fluctuation 

be smooth or sharp? Will the fixed region be large (hence less accuracy) or 

small (hence bigger accuracy)? How many periodic regions does the 
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neutrosophic system has? Do any of them intersect [i.e. does the neutrosophic 

system has some 𝑛 −uple periodic regions (for 𝑛 ≥ 2), and for how many]? 

24 Neutrosophic state 

The more indeterminacy a neutrosophic system has, the more chaotic it is from 

the classical point of view. A neutrosophic lineal dynamic system still has a 

degree of chaotic behavior. A collection of numerical sets determines a 

neutrosophic state, while a classical state is determined by a collection of 

numbers. 

25 Neutrosophic evolution rule 

The neutrosophic evolution rule decribes the set of neutrosophic states where 

the future state (that follows from a given current state) belongs to. If the set 

of neutrosophic states, that the next neutrosophic state will be in, is known, we 

have a quasi-deterministic neutrosophic evolution rule, otherwise the 

neutrosophic evolution rule is called quasi-stochastic. 

26 Neutrosophic chaos 

As an alternative to the classical Chaos Theory, we have the Neutrosophic 

Chaos Theory, which is highly sensitive to indeterminacy; we mean that small 

change in the neutrosophic system’s initial indeterminacy produces huge 

perturbations of the neutrosophic system’s behavior. 

27 Time quasi-delays and quasi-feedback thick-loops 

Similarly, the difficulties in modelling and simulating a Neutrosophic Complex 

System (also called Science of Neutrosophic Complexity) reside in its degree 

of indeterminacy at each system’s level. 

In order to understand the Neutrosophic System Dynamics, one studies the 

system’s time quasi-delays and internal quasi-feedback thick-loops (that are 

similar to thick functions ad thick curves defined in the neutrosophic 

precalculus and neutrosophic calculus). 

The system may oscillate from linearity to nonlinearity, depending on the 

neutrosophic time function. 
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28 Semi-open semi-closed system 

Almost all systems are open (exchanging energy with the environment). But, 

in theory and in laboratory, one may consider closed systems (completely 

isolated from the environment); such systems can oscillate between closed 

and open (when they are cut from the environment, or put back in contact with 

the environment respectively). Therefore, between open systems and closed 

systems, there also is a semi-open semi-closed system. 

29 Neutrosophic system’s development 

The system’s self-learning, self-adapting, self-conscienting, self-developing are 

parts of the system’s dynamicity and the way it moves from a state to another 

state – as a response to the system internal or external conditions. They are 

constituents of system’s behavior. 

The more developed is a neutrosophic system, the more complex it becomes. 

System’s development depends on the internal and external interactions 

(relationships) as well. 

Alike classical systems, the neutrosophic system shifts from a quasi-

developmental level to another. Inherent fluctuations are characteristic to 

neutrosophic complex systems. Around the quasi-steady states, the 

fluctuations in a neutrosophic system becomes its sources of new quasi-

development and quasi-behavior. 

In general, a neutrosophic system shows a nonlinear response to its initial 

conditions. The environment of a neutrosophic system may also be 

neutrosophic (i.e. having some indeterminacy). 

30 Dynamic dimensions of neutrosophic systems 

There may be neutrosophic systems whose spaces have dynamic dimensions, 

i.e. their dimensions change upon the time variable.

Neutrosophic Dimension of a space has the form (𝑡, 𝑖, 𝑓), where we are 𝑡% 

sure about the real dimension of the space, 𝑖% indeterminate about the real 

dimension of the space, and 𝑓% unsure about the real dimension of the space. 

31 Noise in a neutrosophic system 

A neutrosophic system’s noise is part of the system’s indeterminacy. A 

system’s pattern may evolve or dissolve over time, as in a classical system. 
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32 Quasi-stability 

A neutrosophic system has a degree of stability, degree of indeterminacy 

referring to its stability, and degree of instability. Similarly, it has a degree of 

change, degree of indeterminate change, and degree of non-change at any 

point in time. 

Quasi-stability of a neutrosophic system is its partial resistance to change. 

33 (𝑡, 𝑖, 𝑓) −attractors 

Neutrosophic system’s quasi-stability is also dependant on the 

(𝑡, 𝑖, 𝑓) −attractor, which 𝑡% attracts, 𝑖% its attraction is indeterminate, and 

𝑓%  rejects. Or we may say that the neutrosophic system 

(𝑡%, 𝑖%, 𝑓%) −prefers to reside in a such neutrosophic attractor. 

Quasi-stability in a neutrosophic system responds to quasi-perturbations. 

When (𝑡, 𝑖, 𝑓) → (1,0,0)  the quasi-attractors tend to become stable, but if 

(𝑡, 𝑖, 𝑓) → (0, 𝑖, 𝑓), they tend to become unstable.  

Most neutrosophic system are very chaotic and possess many quasi-attractors 

and anomalous quasi-patterns. The degree of freedom in a neutrosophic 

complex system increase and get more intricate due to the type of 

indeterminacies that are specific to that system. For example, the classical 

system’s noise is a sort of indeterminacy. 

Various neutrosophic subsystems are assembled into a neutrosophic complex 

system. 

34  (𝑡, 𝑖, 𝑓) − repellors 

Besides attractors, there are systems that have repellors, i.e. states where the 

system avoids residing. The neutrosophic systems have quasi-repellors, or 

(𝑡, 𝑖, 𝑓) −repellors, i.e. states where the neutrosophic system partialy avoid 

residing. 

35 Neutrosophic probability of the system’s states 

In any (classical or neutrosophic) system, at a given time ρ, for each system 

state τ one can associate a neutrosophic probability, 

𝒩𝒫(𝜏) = (t, i, f), 

where t, i, f are subsets of the unit interval [0, 1] such that: 
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t = the probability that the system resides in τ; 

i = the indeterminate probability/improbability about the system 

residing in τ; 

f = the improbability that the system resides in τ; 

For a (classical or neutrosophic) dynamic system, the neutrosophic probability 

of a system’s state changes in the time, upon the previous states the system 

was in, and upon the internal or external conditions. 

36 (𝑡, 𝑖, 𝑓) −reiterative 

In Neutrosophic Reiterative System, each state is partially dependent on the 

previous state. We call this process quasi-reiteration or (𝑡, 𝑖, 𝑓) −reiteration. 

In a more general case, each state is partially dependent on the previous n 

states, for 𝑛 ≥ 1. This is called n-quasi-reiteration, or 𝑛 − (𝑡, 𝑖, 𝑓) −reiteration. 

Therefore, the previous neutrosophic system history partialy influences the 

future neutrosophic system’s states, which may be different even if the 

neutrosophic system started under the same initial conditions. 

37 Finite and infinite system 

A system is finite if its space, the number of its elements, and the number of its 

relationships are all finite. 

If at least one of these three is infinite, the system is considered infinite. An 

infinite system may be countable (if both the number of its elements and the 

number of its relationships are countable), or, otherwise, uncountable. 

38 Thermodynamic (𝑡, 𝑖, 𝑓) −equilibrium 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

A classical system may be in stable, neutral, or unstable equilibrium. A 

neutrosophic system may be in quasi-stable, quasi-neutral or quasi-unstable 

equilibrium, and its potential energy respectively quasi-minimum, quasi-null 

(i.e. close to zero), or quasi-maximum. {We recall that ‘quasi’ means 

relative(ly), approximate(ly), almost, near, partial(ly), etc. or mathematically 

‘quasi’ means (𝑡, 𝑖, 𝑓) in a neutrophic way.} 
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In general, we say that a neutrosophic system is in (𝑡, 𝑖, 𝑓) − equilibrium, or 

𝑡%  in stable equilibrium, 𝑖%  in neutral equilibrium, and 𝑓%  in unstable 

equilibrium (non-equilibrium). 

When 𝑓 ≫ 𝑡 (f is much greater than t), the neutroophic system gets into deep 

non-equilibrium and the perturbations overtake the system’s organization to 

a new organization. 

Thus, similarly to the second law of thermodynamics, the neutrosophic system 

runs down to a (𝑡, 𝑖, 𝑓) −equilibrium state. 

A neutrosophic system is considered at a thermodynamic  

(𝑡, 𝑖, 𝑓) −equilibrium state when there is not (or insignificant) flow from a 

region to another region, and the momentum and energy are uninformally at 

(𝑡, 𝑖, 𝑓) −level. 

39 The (𝑡1, 𝑖1,  𝑓1) −cause produces a (𝑡2, 𝑖2, 𝑓2) −effect 

The potential energy (the work done for changing the system to its present 

state from its standard configuration) of the classical system is a minimum if 

the equilibrium is stable, zero if the equilibrium is neutral, or a maximum if the 

equilibrium is unstable. 

In a neutrosophic system, a (𝑡1, 𝑖1,  𝑓1)-cause produces a (𝑡2, 𝑖2, 𝑓2)-effect. We 

also have cascading (𝑡, 𝑖, 𝑓)-effects from a given cause, and we have permanent 

change into the system. 

(𝑡, 𝑖, 𝑓)-principles and (𝑡, 𝑖, 𝑓)-laws function in a neutrosophic dynamic system. 

It is endowed with (𝑡, 𝑖, 𝑓)-invariants and with parameters of (𝑡, 𝑖, 𝑓)-potential 

(potentiality, neutrality, impotentiality) control. 

40 (𝑡, 𝑖, 𝑓) −holism 

A neutrosophic system is a (𝑡, 𝑖, 𝑓) −holism, in the sense that it has a degree of 

independent entity (t) with respect to its parts, a degree of indeterminate (i) 

independent-dependent entity with respect to its parts, and a degree of 

dependent entity (f) with respect to its parts. 

41 Neutrosophic soft assembly 

Only several ways of assembling (combining and arranging) the neutrosophic 

system’s parts are quasi-stable. The others assemble ways are quasi-

transitional.  
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The neutrosophic system development is viewed as a neutrosophic soft 

assembly. It is alike an amoeba that changes its shape. In a neutrosophic 

dynamic system, the space, the elements, the relationships are all flexible, 

changing, restructuring, reordering, reconnecting and so on, due to 

heterogeneity, multimodal processes, multi-causalities, multidimensionality, 

auto-stabilization, auto-hierarchization, auto-embodiement and especially 

due to synergetism (the neutrosophic system parts cooperating in a 

(𝑡, 𝑖, 𝑓) −degree). 

42 Neutrosophic collective variable 

The neutrosophic system is partially incoherent (because of the 

indeterminacy), and partially coherent. Its quasi-behavior is given by the 

neutrosophic collective variable that embeds all neutrosophic variables acting 

into the (𝑡, 𝑖, 𝑓) −holism. 

43 Conclusion 

We have introduced for the first time notions of neutrosophic system and 

neutrosophic dynamic system. Of course, these proposals and studies are not 

exhaustive. 

Future investigations have to be done about the neutrosophic (dynamic or not) 

system, regarding: the neutrosophic descriptive methods and neutrosophic 

experimental methods, developmental and study the neutrosophic differential 

equations and neutrosophic difference equations, neutrosophic simulations, 

the extension of the classical A-Not-B Error to the neutrosophic form, the 

neutrosophic putative control parameters, neutrosophic loops or 

neutrosophic cyclic alternations within the system, neutrosophic 

degenerating (dynamic or not) systems, possible programs within the 

neutrosophic system, from neutrosophic antecedent conditions how to predict 

the outcome, also how to find the boundary of neutrosophic conditions, when 

the neutrosophic invariants are innate/genetic, what are the relationships 

between the neutrosophic attractors and the neutrosophic repellors, etc. 
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