
Florentin Smarandache, Neutrosophic Measure and Neutrosophic Integral 

Neutrosophic Measure and Neutrosophic Integral  

Florentin Smarandache 

University of New Mexico, Math & Science Division, 705 Gurley Ave., Gallup, NM 87301, USA, E-mail: smarand@unm.edu 

Abstract. Since the world is full of indeterminacy, the 
neutrosophics found their place into contemporary 
research. We now introduce for the first time the notions 
of neutrosophic measure and neutrosophic integral. 
Neutrosophic Science means development and 
applications of neutrosophic logic/set/measure/integral/ 
probability etc. and their applications in any field. It is 
possible to define the neutrosophic measure and 
consequently the neutrosophic integral and neutrosophic 
probability in many ways, because there are various types 

of indeterminacies, depending on the problem we need to 
solve. Indeterminacy is different from randomness. 
Indeterminacy can be caused by physical space materials 
and type of construction, by items involved in the space, 
or by other factors. Neutrosophic measure is a 
generalization of the classical measure for the case when 
the space contains some indeterminacy. Neutrosophic 
Integral is defined on neutrosophic measure. Simple 
examples of neutrosophic integrals are given. 
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1 Introduction to Neutrosophic Measure 

1.1 Introduction 
Let <A> be an item. <A> can be a notion, an attribute, 

an idea, a proposition, a theorem, a theory, etc. 
And let <antiA> be the opposite of <A>; while 

<neutA> be neither <A> nor <antiA> but the neutral (or 
indeterminacy, unknown) related to <A>. 

For example, if <A> = victory, then <antiA> = defeat, 
while <neutA> = tie game. 

If <A> is the degree of truth value of a proposition, 
then <antiA> is the degree of falsehood of the proposition, 
while <neutA> is the degree of indeterminacy (i.e. neither 
true nor false) of the proposition. 

Also, if <A> = voting for a candidate, <antiA> = voting 
against that candidate, while <neutA> = not voting at all, 
or casting a blank vote, or casting a black vote. In the case 
when <antiA> does not exist, we consider its measure be 
null {m(antiA)=0}. And similarly when <neutA> does not 
exist, its measure is null { m(neutA) = 0}. 

1.2 Definition of Neutrosophic Measure 

We introduce for the first time the scientific notion of 
neutrosophic measure. 

Let X  be a neutrosophic space, and Σ  a   
σ -neutrosophic algebra over X . A neutrosophic
measure ν  is defined by for neutrosophic set A∈ Σ  by

3: X Rν → ,

( ) ( )A = m(A), m(neutA),m(antiA)ν ,  (1) 

with antiA = the opposite of A, and neutA = the neutral 
(indeterminacy) neither A nor anti A (as defined above); 

for any A X⊆  and A∈ Σ , 
m(A) means measure of the determinate part of A; 
m(neutA) means measure of indeterminate part of A; 
and m(antiA) means measure of the determinate part of 

antiA; 
where ν  is a function that satisfies the following two 

properties: 
a) Null empty set: ( ) ( )0 0 0, ,ν Φ = .  

b) Countable additivity (or σ -additivity): For all
countable collections { }n n L

A
∈

  of disjoint neutrosophic 

sets in Σ , one has: 

 1n n n n
n L n L n Ln L

A m( A ), m( neutA ), m( antiA ) ( n )m( X )ν
∈ ∈ ∈∈

   = − −   
  
  

where X is the whole neutrosophic space, 
and

1n n nn L
n L n L

m( antiA ) ( n )m( X ) m( X ) m( A ) m( antiA ).
∈∈ ∈

− − = − = ∩   

1.3 Neutrosophic Measure Space 

A neutrosophic measure space is a triplet ( )X , ,νΣ .

1.4 Normalized Neutrosophic Measure 

A neutrosophic measure is called normalized if 

( ) ( )1 2 3X ( m( X ),m( neutX ),m( antiX )) x ,x ,xν = = ,

with 
1 2 3 1x x x+ + = ,  

and 
1 2 30 0 0x ,x ,x≥ ≥ ≥ .  (3) 

Where, of course, X is the whole neutrosophic measure 
space. 
1.5 Finite Neutrosophic Measure Space 

(2) 

4

4
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Let A X⊂ . We say that ( ) ( )1 2 3A a ,a ,aν =  is finite if all 

a1, a2, and a3  are finite real numbers. 
A neutrosophic measure space ( )X , ,νΣ  is called finite 

if ( ) ( )X a ,b ,cν =  such that all a, b, and c are finite (rather 

than infinite). 

1.6 σ-Finite Neutrosophic Measure 
A neutrosophic measure is called  σ-finite if X can be 

decomposed into a countable union of neutrosophically 
measurable sets of fine neutrosophic measure. 

Analogously, a set A  in X is said to have a σ-finite 
neutrosophic measure if it is a countable union of sets with 
finite neutrosophic measure. 

1.7 Neutrosophic Axiom of Non-Negativity 
We say that the neutrosophic measure ν  satisfies the 

axiom of non-negativity, if:  
 A∀ ∈Σ ,

( ) ( )1 2 3 1 2 30 if 0 0, and 0A a ,a ,a a ,a aν = ≥ ≥ ≥ ≥ . (4)

While a neutrosophic measure ν , that satisfies only 
the null empty set and countable additivity axioms (hence 
not the non-negativity axiom), takes on at most one of the 
±∞  values. 

1.8 Measurable Neutrosophic Set and Measurable 
Neutrosophic Space 

The members of Σ  are called measurable neutrosophic 
sets, while ( )X ,Σ   is called a measurable neutrosophic 
space. 

1.9 Neutrosophic Measurable Function 
A function ( ) ( )X Yf : X , Y ,Σ → Σ , mapping two 

measurable neutrosophic spaces, is called neutrosophic 
measurable function if ( )1 Y XB , f B−∀ ∈Σ ∈Σ  (the

inverse image of a neutrosophic Y -measurable set is a 
neutrosophic X -measurable set). 

1.10 Neutrosophic Probability Measure 
As a particular case of neutrosophic measure ν  is th 

neutrosophic probability measure, i.e. a neutrosophic 
measure that measures probable/possible propositions        

( )0 3Xν− +≤ ≤ ,     (5)

where X is the whole neutrosophic probability sample
space.

We use nonstandard numbers, such 1+ for example, to 
denominate the absolute measure (measure in all possible 
worlds), and standard numbers such as 1 to denominate the 
relative measure (measure in at least one world). Etc. 

We denote the neutrosophic probability measure by 
NP  for a closer connection with the classical probability 
P . 

1.11 Neutrosophic Category Theory 

The neutrosophic measurable functions and their 
neutrosophic measurable spaces form a neutrosophic 
category, where the functions are arrows and the spaces 
objects. 

We introduce the neutrosophic category theory, which 
means the study of the neutrosophic structures and of the 
neutrosophic mappings that preserve these structures. 

The classical category theory was introduced about 
1940 by Eilenberg and Mac Lane. 

A neutrosophic category is formed by a class of 
neutrosophic objects X ,Y ,Z ,...  and a class of 

neutrosophic morphisms (arrows) , , ,...ν ξ ω  such that: 

a) If ( )Hom X ,Y  represent the neutrosophic

morphisms from X  to Y , then ( )Hom X ,Y and

( )Hom X ',Y '  are disjoint, except when X X '=  and

Y Y '= ; 
b) The composition of the neutrosophic morphisms

verify the axioms of 
i) Associativity: ( ) ( )ν ξ ω ν ξ ω=   

ii) Identity unit: for each neutrosophic object X
there exists a neutrosophic morphism denoted Xid , called 

neutrosophic identity of X  such that Xid ν ν=  and 

Xidξ ξ=  

  Fig. 2 

1.12 Properties of Neutrosophic Measure 
a) Monotonicity.

If 1A  and 2A  are neutrosophically measurable, with 

1 2A A⊆ , where 

( ) ( ) ( )( )1 1 1 1A m A ,m neutA ,m( antiA )ν = ,

and ( ) ( ) ( )( )2 2 2 2A m A ,m neutA ,m( antiA )ν = ,

then 

1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )m A m A m neutA m neutA m antiA m antiA≤ ≤ ≥
  (6) 

Let ( ) ( )1 2 3X x ,x ,xν =  and ( ) ( )1 2 3Y y , y , yν = . We

say that ( ) ( )X Yν ν≤ , if 1 1x y≤ , 2 2x y≤ , and 
3 3x y≥ .  

b) Additivity.
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If
1 2A A = Φ , then ( ) ( ) ( )1 2 1 2A A A Aν ν ν= + ,    

(7)  
where we define 
( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 3 3a ,b ,c a ,b ,c a a ,b b ,a b m( X )+ = + + + −  

(8) 
where X is the whole neutrosophic space, and 

3 3 1 2( ) ( ) ( ) ( ) ( )

( ).

a b m X m X m A m B m X a a

m antiA antiB

+ − = − − = − −
= ∩

(9) 

1.13 Neutrosophic Measure Continuous from 
Below or Above 

A neutrosophic measure ν  is continuous from below 

if, for 1 2A ,A ,...  neutrosophically measurable sets with 

1n nA A +⊆ for all n , the union of the sets nA  is

neutrosophically measurable, and 

( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
                  (10) 

And a neutrosophic measure ν  is continuous from 

above if for 1 2A ,A ,...  neutrosophically measurable sets,

with 1n nA A +⊇  for all n , and at least one nA  has finite 

neutrosophic measure, the intersection of the sets nA  and 

neutrosophically measurable, and 

 ( )
1

n n
n

n

A lim Aν ν
∞

→∞=

  = 
 
 .        (11)                   

1.14 Generalizations 
Neutrosophic measure is a generalization of the fuzzy 

measure, because when ( ) 0m neutA =  and m(antiA) is

ignored, we get  

( ) ( )( ) ( )0 0A m A , , m Aν = ≡      (12)

and the two fuzzy measure axioms are verified: 
a) If A = Φ , then ( ) ( )0 0 0 0A , ,ν = ≡
b) If A B⊆ , then ( ) ( )A Bν ν≤ . 

The neutrosophic measure is practically a triple
classical measure: a classical measure of the determinate 
part of a neutrosophic object, a classical part of the 
indeterminate part of the neutrosophic object, and another 
classical measure of the determinate part of the opposite 
neutrosophic object. Of course, if the indeterminate part 
does not exist (its measure is zero) and the measure of the 
opposite object is ignored, the neutrosophic measure is 
reduced to the classical measure. 

1.15 Examples 
Let’s see some examples of neutrosophic objects and 

neutrosophic measures. 
a) If a book of 100 sheets (covers included) has 3

missing sheets, then 

( ) ( )97 3 0book , ,ν =    (13)

where ν is the neutrosophic measure of the book 
number of pages. 

b) If a surface of 5 × 5 square meters has cracks of
0.1 × 0.2 square meters, then ( ) ( )24 98 0 02 0surface . , . ,ν = ,             

(14), where ν is the neutrosophic measure of the surface. 
c) If a die has two erased faces then

( ) ( )4 2 0die , ,ν = , (14)

where ν is the neutrosophic measure of the die’s 
number of correct faces. 

d) An approximate number N  can be interpreted as

a neutrosophic measure N d i= + , where d  is its

determinate part, and i  its indeterminate part. Its anti part 

is considered 0. 
For example if we don’t know exactly a quantity q ,

but only that it is between let’s say [ ]0 8 0 9q . , .∈ , then

0 8q . i= + , where 0.8 is the determinate part of    q , and

its indeterminate part [ ]0 0 1i , .∈ .

We get a negative neutrosophic measure if we 
approximate a quantity measured in an inverse direction on 
the x-axis to an equivalent positive quantity. 

For example, if [ ]6 4r ,∈ − − , then 6r i= − + , where  -6

is the determinate part of r, and [ ]0 2i ,∈  is its

indeterminate part. Its anti part is also 0. 
e) Let’s measure the truth-value of the proposition
G = “through a point exterior to a line one can draw 

only one parallel to the given line”. 
The proposition is incomplete, since it does not specify 

the type of geometrical space it belongs to. In an Euclidean 
geometric space the proposition G is true; in a Riemannian 
geometric space the proposition G is false (since there is 
no parallel passing through an exterior point to a given 
line); in a Smarandache geometric space (constructed from 
mixed spaces, for example from a part of Euclidean 
subspace together with another part of Riemannian space) 
the proposition G is indeterminate (true and false in the 
same time). 

( ) (1,1,1)Gν = .     (15) 

f) In general, not well determined objects, notions,
ideas, etc. can become subject to the neutrosophic theory. 

2 Introduction to Neutrosophic Integral 

2.1 Definition of Neutrosophic Integral 

Using the neutrosophic measure, we can define a 
neutrosophic integral. 

The neutrosophic integral of a function f is written as: 

X
fdν   (16) 

where X is the a neutrosophic measure space, 
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and the integral is taken with respect to the 
neutrosophic measure ν .  

Indeterminacy related to integration can occur in 
multiple ways: with respect to value of the function to be 
integrated, or with respect to the lower or upper limit of 
integration, or with respect to the space and its measure. 

2.2 First Example of Neutrosophic Integral: 
Indeterminacy Related to Function’s Values 

Let  fN: [a, b]  R  (17)
where the neutrosophic function is defined as: 

fN (x) = g(x)+i(x)   (18)
with g(x) the determinate part of fN(x), and i(x) the 
indeterminate part of fN(x),where for all x in [a, b] one 
has: ( ) [0, ( )], ( ) 0i x h x h x∈ ≥ .                    (19) 

Therefore the values of the function fN(x) are 
approximate, i.e. ( ) [ ( ), ( ) ( )]Nf x g x g x h x∈ + .  (20) 

Similarly, the neutrosophic integral is an approxi-
mation: 

( ) ( ) ( )
b b b

N

a a a

f x d g x dx i x dxν = +    (21) 

1.10 Second Example of Neutrosophic Integral: 
Indeterminacy  Related to the Lower Limit 

Suppose we need to integrate the function 

f: X R      22) 

on the interval [a, b] from X, but we are unsure about the 

lower limit a.  Let’s suppose that the lower limit “a” has a 

determinant part “a1” and an indeterminate part ε, i.e. 

a = a1+ε    (23) 

where 

[0, 0.1]ε ∈ .   (24) 

Therefore 

1

1( ) i
b b

X

a a

fd f x dxν = −    (25) 

where the indeterminacy i1 belongs to the interval: 

1

1

0.1

1 [0, ( ) ]
a

a

i f x dx
+

∈  .      (26) 

Or, in a different way: 

1

2

0.1

( ) i
b b

X

a a

fd f x dxν
+

= +   (27)

where similarly the indeterminacy i2 belongs to the 
interval: 

1

1

0.1

2 [0, ( ) ]
a

a

i f x dx
+

∈ 
.     (28) 
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