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Abstract 

We argue here that the onset of classical chaos above the Fermi scale underlies the 

construction of Effective Field Theory (EFT). According to this view, particle physics and 

gravitational dynamics are low-energy manifestations of chaotic behavior and 

multifractal geometry.    
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1. Introduction and Motivation 

For far too long, the mainstream research in high-energy theory has 

overlooked two key facts concerning the dynamics of fundamental fields. In 

particular, 
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a) Quantum Field Theory (QFT) is a manifestation of critical phenomena, 

which in turn, can be shown to be equivalent to classical deterministic 

chaos [1-3]. This observation is reinforced by the Renormalization 

Group (RG) program, which describes both critical phenomena and 

the transition to classical chaos within a unified framework. It is 

important to set a clear distinction between classical chaos and 

quantum chaos, the latter dealing with the quantum dynamics of 

systems that are classically chaotic [4].  

b) Universality of nonlinear dynamics: large N -body gravitational 

systems, many Hamiltonian systems, and ensembles of unstable fields 

exhibit similar phase-space behavior in their transition to chaos [5]. 

There is growing evidence that, under certain conditions, the RG flow 

also evolves towards fully developed chaos, which is relevant to both 

condensed matter applications and the Standard Model of particle 

physics (SM) [6-7].     
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It is our view that, to a large extent, many of today’s challenges confronting 

high-energy theory are the result of these oversights. The goal of this work 

is to suggest that, accounting for a) – b), opens an unexplored path to the 

underlying physics of EFT, including the SM and General Relativity (GR). 

A key ingredient of this viewpoint is the decoherence process, which is likely 

to develop far above the Fermi scale of electroweak interactions. 

Decoherence amounts to the destruction of quantum interference in open 

systems, systems exposed to persistent noise or ensembles evolving outside 

thermodynamic equilibrium. A reasonable expectation is that, if 

decoherence sets in somewhere above the Fermi scale, unstable systems of 

interacting quantum fields are prone to turn classical and flow towards 

chaos in a universal way. This observation is consistent with the tendency of 

Hamiltonian systems to become nonintegrable under time-dependent 

perturbations or in the long-term limit [8-10]. 
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An upfront distinction must also be drawn between the ideas discussed here 

and the formalism of non-equilibrium QFT, as the latter ignores the transition 

to classical chaos driven by decoherence [11].  

The paper is organized as follows: next section details our perspective on the 

interplay between critical behavior and classical chaos. Section 3 covers 

critical behavior in continuous dimension and brings into focus the link 

between multifractal geometry and EFT. The Appendix surveys the topic of 

normal form equations and their relation to the universal approach to chaos 

in the dynamics of complex systems.    

2. Critical behavior as chaotic dynamics 

Characterization of classical dynamical systems edging towards chaos can 

be done through several related concepts. Two familiar concepts are the 

Lyapunov exponents and the Kolmogorov (K-) entropy, as generic measures 

of dynamical instability.  Let  
L  denote the sum of positive Lyapunov 

exponents 
,L i , that is, 
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,

  =L L ii
;  

,
0 L i    (1) 

Under certain conditions, K-entropy is defined as integral of (1) over the 

phase-space, i.e. 

  


=  LkS d     (2) 

in which d  denotes the differential phase-space measure. 

It is known that critical phenomena describe second-order phase transitions 

in which the scale of correlations becomes unbounded. At the transition 

point, as the control parameter of the system nears a critical value ( → c ), 

strong fluctuations develop and the relevant physical parameters either 

diverge or vanish. The correlation function of any fluctuating quantity ( )a x  

defined at two separate points decays according to 

 ( ) (0) exp( )   − xa x a ;   →x  (3) 

and the correlation length scales as 
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 ( )    − − c  (4) 

The approach to criticality means the onset of a conformal state characterized 

by vanishing masses, i.e. 

 1 ( )  −  − cm  (5) 

As pointed out in the Introduction, critical behavior and classical chaos are 

complementary formulations of the underlying dynamics. It follows that a 

close relationship must exist between (1)-(2) and (3)-(5) as detailed below:  

1) First off, the relaxation time to equilibrium ( ) may be defined as 

 11
( )k

L

dS

d




−


 = ;   KS   (6) 

Relation (6) states that a system having a vanishing K-entropy rate 

relaxes infinitely slow to thermodynamic equilibrium. The converse is 

that singular K-entropy rates correspond to systems instantaneously 

reaching equilibrium. Note that a zero K-entropy rate ( 0KdS d → ) does 
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not preclude a thermalized state described by a singular and stationary 

K-entropy ( KS → ).   

2) Secondly, the correlation length (4) and the relaxation time (6) are 

taken to be commensurate in magnitude, i.e. [1-2].  

 1( )kdS

d
 



−  ;   KS   (7) 

On account of (4) and near criticality, the free energy F  (the analog of 

Lagrangian for a field theory in d  spacetime dimensions), the field average 

over a lattice of points and the external current can be written as [12-13] 

 ( )d d
cF   −  −  (8) 

 
1

( 2 ) ( 2 )
2 2( )

d d

c


 

   
− − + − +

  −  (9) 

 
1

( 2 ) ( 2 )
2 2( )

d d

cJ


 
   

− − + − +
  −  (10) 

In (9) and (10),   and   represent two critical exponents controlling, 

respectively, the behavior of field correlations and of the external current. It 
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is apparent from (5), (8)-(10) that the spectrum of masses, free energy, field 

average and external current are self-similar functions with respect to the 

deviation from criticality ( c − ).  

Analysis of far-from-equilibrium and multi-variable systems reveals that 

their long-time evolution (t→ ) reduces to a lower dimensional set of 

normal-form equations with a single emerging variable z  playing the role of 

an effective order parameter [Appendix]. The structure of these universal 

equations depends on whether external perturbations are stationary 

(independent of t ) or oscillatory (periodic in t ). The Appendix section 

indicates that two scenarios are possible, namely, 

a) When perturbations are stationary, the normal form equations 

describe one-dimensional parametric bifurcations [saddle-node (A6), 

pitchfork (A7) or transcritical (A8), respectively]. A basic model of 

pitchfork bifurcations can be shown to generate the electroweak sector 

of the SM [14, 19]. Bifurcations may also lie at the root of the spin-

statistics theorem of Quantum Mechanics [21].  
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b) When perturbations are oscillatory with frequency 0 , the resulting 

normal form equation represents a Stuart-Landau oscillator. This is a 

particular embodiment of the complex Ginzburg-Landau equation 

(CGLE), which is a universal model for the long-wavelength dynamics 

of complex systems. CGLE sets up a non-perturbative framework 

likely to play a key role in the physics of high-energy interactions, 

beyond the methodology of Feynman diagrams [15].  

In addition, when the normal form equations (A6-A8) are turned into 

iterated maps, the control parameter follows a Feigenbaum-like series of the 

form n
n c   −−  , where n   is the iteration index. The transition to chaos in 

(A6-A8) involves a hierarchical pattern of timescales. The impact of these 

observations on the physics of EFT is briefly surveyed in the next section. 

3. Critical behavior in continuous dimensions 

As phase transitions abound in Nature, the control parameter   can take on 

many forms, from temperature to pressure, density, chemical potential, 



10 | P a g e  

 

number of occupied lattice sites, excitation threshold, characteristic system 

size and so on. An important (and yet insufficiently appreciated) control 

parameter of field theory is the continuous dimensional deviation from four 

space dimensions defined as [6] 

 
2

24 ( ) 1
UV

mD O = − = 


 (11) 

where UV  stands for the large ultraviolet cutoff of the theory. The 

expectation is that (11) becomes relevant in far-from-equilibrium conditions, 

prone to develop well above the Fermi scale. In particular, (11) arises from 

several premises, namely,  

1) Dimensional Regularization of QFT, 

2) Emergence of nontrivial fixed points of the RG equations in statistical 

physics and the -expansion evaluation of critical exponents, 

3) Emergence of fractal spacetime from the fragmented structure of 

phase-space in Hamiltonian chaos [16].  
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There are few straightforward consequences resulting from the onset of (11) 

above the Fermi scale, as discussed below. 

a) By (5) and (11), taking  =  and 0c =  at 4D= , recovers the critical 

exponent of the correlation length in the mean-field approximation of 

Landau theory ( 1 2 = ). 

b) By (7) and (11), taking again  =  and 0c =  at 4D= , one obtains 

 KdS
d



  (12) 

The K-entropy can be alternatively defined using the concept of 

information dimension 1( )D  ,  i.e.   

 1

( )
( )

log ( )
KS

D



 

= −  (13) 

Here,    is the sliding scale of the RG flow associated with a time-like 

parameter as in 
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 (log )
d

dt d





= =  (14) 

Relation (13) leads to    

 1( ) ( )

( ) ( )

( )K DdS
d 

 

  

 

 
= −  (15) 

in which the “beta-functions” of the dimensional deviation and the phase 

space measure are respectively given by 

 ( )
d
d


 


=  (16a) 

 ( )
d
d


 


=  (16b) 

Combined use of (12), (13) and (15) yields the following constraint 

between (16a) and (16b) 

 
1 3 2

1 1

( ) ( ) ( )
D D



  
 

     
+

− −  (17) 
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Invoking again (5) and (8)-(10) shows that observables of interest are self-

similar functions of the dimensional deviation ( )  , which in turn, 

embodies the information content of the K-entropy. Our research reveals that 

various aspects of ( )   lie behind the multifractal geometry of EFT, the 

repetitive architecture of SM parameters, the Cantor Dust structure of Dark 

Matter and the thermodynamic interpretation of GR [6, 20]. Inspired by these 

findings, the flowchart below suggests the roadmap from classical chaos and 

multifractal geometry to EFT and Information Theory. 
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APPENDIX:  

Reduction of complex dynamics to normal-form equations 

The emergence paradigm of complex dynamics hints that all field theories 

evaluated at low-energy scales arise from an underlying system of high-

energy entities called primary variables. Let the high-energy sector of field 

theory be described by a large set of such variables  , 1,2,...,,ix x i n = , 1n  

whose mutual coupling and dynamics is far-from-equilibrium. The specific 

nature of the high-energy variables is irrelevant to our context, as they can 

take the form of irreducible objects such as, but not limited to, spinors, 

quaternions, twistors, octonions, strings, branes, loops, knots, information 

bits and so on. 

The downward flow of  ix x  may be mapped to a system of ordinary 

differential equations having the universal form  

 ' ( ( ), ( ), ( ))tx f x t t D t=  (A1) 
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Here, , ,t D  denote, respectively, the control parameters vector 

 , 1,2,...k k m = = , the evolution parameter and the dimension of the 

embedding space. If the dimension of the embedding space is taken to be an 

independent variable or control parameter, the system (A1) further reduces 

to 

 ' ( ( ), ( ))tx f x t t=  (A2) 

It is sensible to assume that the flow (A1) or (A2) occurs in the presence of 

perturbations induced by far-from-equilibrium conditions. These may 

surface, for example, from primordial density fluctuations in the early 

Universe or from unbalanced vacuum fluctuations in the high-energy 

regime of QFT. 

To make explicit the effect of perturbations, we resolve ( )x t   into a reference 

stable state ( )sx t  and a deviation generated by perturbations, i.e.,       

 ( ) ( ) ( )sx t x t y t= +  (A3) 
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Direct substitution in (A2) yields the set of homogeneous equations 

 ' ({ }, ) ({ }, )s sty f x y f x = + −  (A4) 

Further expanding around the reference state leads to 

 ' ( , ) ({ }, )st ij j i j
j

y L x y h y = +  (A5) 

where i jL  and ih  denote, respectively, the coefficients of the linear and 

nonlinear contributions induced by departures from the reference state. 

Here, i jL  represents a n n  matrix dependent on the reference state and on 

the control parameters vector. Under the assumption that parameters   stay 

close to their critical values ( ) = c , it can be shown that (A5) undergoes 

bifurcations and its behavior can be mapped to a closed set of universal 

equations referred to as normal forms [17-18] . If, at  = c  perturbations are 

non-oscillatory (steady state), the normal form equations are 

 2' ( )ctz uz = − −  (A6) 

 3' ( )ctz z uz = − −  (A7) 
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 2' ( )ctz z uz = − −  (A8) 

Instead, if perturbations are oscillatory at  = c , the normal form equation 

models the dynamics of a Stuart-Landau oscillator 

 
2

0' [( ) ]ctz i z uz z  = − + −  (A9) 

where 0  is the frequency of perturbations at the bifurcation point and both 

u  and z  are complex-valued. (A9) is a particular embodiment of the complex 

Ginzburg-Landau equation (CGLE), a universal model that holds for all 

pattern forming systems undergoing a Hopf bifurcation. Furthermore, if 

0 1   and u  assumes real values, (A9) reduces to the more familiar real 

Ginzburg-Landau equation (RGLE), a benchmark model of statistical physics 

and condensed matter theory. Note that the effective order parameter z  can 

relate either to a field or a collective property of the system such as 

magnetization, polarization, conductivity, density, number of occupied 

lattice sites and so on. 
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