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Abstract

In the last years, the liquid metallic hydrogen model has proven to be a viable alternative to the
standard solar model, almost exclusively due to the work of Pierre-Marie Robitaille (2002, 2009, 2011,
2013). By modeling the density of both the liquid metallic and the molecular state of hydrogen from
first principles, the pressure at the phase transition can be estimated, resulting in about 550 GPa. In
the liquid metallic hydrogen model, this phase transition defines the photosphere which can therefore
be considered real surface, as it is consistent with many observations. However, considerable pressure
must be exerted by the above chromosphere, which is assumed to consist of molecular hydrogen,
albeit in a compressed, liquid form. Deriving a relation between pressure and density from the above
considerations, it can be shown that the chromosphere has an approximate thickness of not more than
8000 km, in agreement with observations.

1 Introduction

There is a vast amount of evidence in favor of the liquid metallic hydrogen model, involving opacity
arguments, the visible surface across the entire electromagnetic spectrum, the phenomenology of surface
waves and coronal mass ejections, and many others. All this has been outlined in detail by Pierre-Marie
Robitaille, including a thorough discussion of the historical development that led to the currently accepted
standard model based on a gaseous sun. Long after this model had been established, Wigner in Huntington,
in (1935), proposed a metallic state of hydrogen. Such a state could explain the apparent surface of the sun
that caused the standard solar model so much trouble to understand. This curious property of hydrogen
arises because it can be seen as the ‘0th’ alkali metal,1 providing the unique opportunity to organize
itself in both the molecular and metallic state. Of course, this vastly complicates the phase diagram,
which is a matter of ongoing theoretical research. In 2016 however, the metallic state has been realized
for the first time in the laboratory (Silveira 2016) under huge pressure though this is still debated. There
is good reason however to assume that once the metallic state is reached, it can remain metastable at
considerably lower pressure. However, this will be extremely difficult to quantify, and one might also doubt
that the effect can lower the necessary pressure over orders of magnitude. Then, metastability in phase
transitions is usually observed in very controlled conditions, something that cannot easily be assumed for
the highly dynamical surface of the sun. Thus the following, rather crude calculation should demonstrate
the possibility of a metallic phase in the photosphere without resorting to the metastability argument.

1It is interesting to note that the boiling temperature of alkali elements increases from the (heavy) rubidium with 937 K,
and 1050 K (potassium) to lithium which boils at 1650 K. It is therefore reasonable to assume that such a state of the even
lighter hydrogen exists at several thousand Kelvin.
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Another caveat will be that besides the molecular and the metallic state, other lattices may exist, such
as two-dimensional, hexagonal structures similar to graphite. These should behave like semi-metals, and
there are even hints that such a semi-metallic state, emitting as a black body, forms the photosphere.
Although the following results are in agreement with the pressure observed by Silveira (2016), I restrict
to an approximate calculation. The details needed for a concrete modeling of the photosphere that may
involve several semi-metallic states would go beyond the scope of this first approach. The most striking
difference the standard solar model and the liquid metallic hydrogen model lies in the vastly different
densities of the photosphere. The standard solar model assumes those to be in the order of 10−7 g

cm3 ,
with an even lower value in the chromosphere. On the other hand, a metallic state requires densities in
the order of 0.7 g

cm3 , while the sun has an average density of 1.4 g
cm3 . iIt is clear that the metallic state

could only be achieved under huge pressure in the order of several 1011 Pa. In the following, the density
and pressure of the two states is modelled from first principles, in order to understand how the necessary
pressure may build up in the photosphere.

2 Model

2.1 Metallic lattice

The approach by Gross (2012), sections 3.5.1 - 3.5.3 is followed. In order to estimate the binding energy of
the metallic state, a lattice of positive point charges is adopted and a cloud of negative charges, whereby
the charge of a single electron is assumed to be distributed continuously over a sphere with radius rA (half
the distance of the atomic trunks, in this case the protons). rA is usually called the Wigner-Seitz radius.
Since hydrogen has just one electron, we may write n = ( 43πr

3
A)

−1 and obtain for the average kinetic
energy of an electron (m electron mass, e, electron charge):
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Hereby, we have used the Bohr radius

aB =
4πϵ0h̄

2

me2
= 52.9 pm. (2)

Additionally, we seek an expression for the potential energy of the electrostatic interaction. Therefore, we
consider the electric potential at a distance are from a point source, taking into consideration that this
source is partially shielded by the homogeneous electron charge. For the potential, we obtain

=
e− e( r
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)3
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, (3)

whereby r < rA. The electric volume charge of the density within a spherical shell of thickness dr at a
distance r of the point source +e contributes the following amount to the electrostatic energy:
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Therefore, for the potential energy, we obtain
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Hence, the total energy writes
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After rewriting as a function of particle density n and substituting rA by ( 43πn)
1
3 , we obtain the numerical

value for E (in eV) as a function of (molar) volume

E = 0.155226 v−
2
3 − 1.76024 v−

1
3 . (7)

2.2 Compressed molecules

Intuitively, liquids are believed to be essentially incompressible. It is clear however, that under conditions
of the huge pressures in consideration, density must become a function of pressure. The following approach
should be seen as a ‘proof of concept’ rather than a fully realistic computation of this extreme state of
hydrogen. The shortcomings of this approach will be discussed later. The key question, however, is: How
do you compress an atom or a molecule, respectively? The size of an atom is determined by Bohr’s radius,
which is again determined by the condition that one entire de Broglie wavelength λB must fit into its
circumference. However, λB can vary as a matter of principle, while a smaller wavelengths corresponds to
a higher velocity, corresponding to the formula

λB =
h

mv
(8)

Although m is velocity-dependent, we can still use a non-relativistic a calculation for a wide range of v.
Naturally, a smaller λB influences the energy (which is EH = −13, 6eV in the ground state) in two ways:
a higher kinetic energy due to the increased velocity raises the energy, while the closer distance to the
nucleus still lowers the potential energy. Since the former raise is quadratic and the latter just linear, it is
clear that there is an overall loss of binding energy, as expected. Assuming the volume of an atom to be
proportional to λ3

B , one obtains:

Emol = −2EH(
ρ

ρ0
)

1
3 + EH(

ρ

ρ0
)

2
3 , (9)

as a function of density ρ and

Emol = −2EH(
v

v0
)−

1
3 + EH(

v
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)−

2
3 . (10)

as a function of molar volume v. Numerically, this compares to (7) as

0.797671 v−
2
3 − 6.58736 v−

1
3 . (11)

It is thus clear that for small densities the molecular state is energetically preferable while for large
densities, the positive term in the metallic state does not grow as much. The transition occurs around
a density of 424 kg/m3. As fig. (1) shows, this corresponds to about 0.022 l

mol . At this stage, we do
not distinguish between the atomic and the molecular state, since at t = 5800 K, the temperature of
the photosphere, the Gibbs factor exp(−EH/kT ) still yields a negligible amount of atoms compared to
molecules. However, one might add half the binding energy of the H2 molecule, 2.37 eV , to EH .

2.3 Pressure

If E(v) describes the energy content of a state as a function of volume, the pressure can simply be obtained
by

p(v) =
d

dv
E(v). (12)

This is easily retransformed into a function of density, see fig.(2). The numerical results are

pLMH(v) = −0.0561674ρ
4
3 + 0.0099062ρ

5
3 (13)
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Figure 1: Engery of the liquid metallic state (blue) and the molecular state (yellow). Function of density
(left) and volume (right).

for the liquid metallic state and

pH2(v) = −0.210196ρ
4
3 + 0.0509057ρ

5
3 (14)

for the molecular state.

Figure 2: Pressure in the liquid metallic state and in the molecular state. Function of density (left) and
volume per atom (right).

2.4 Integrating chromospheric density

By numerically inverting eq.(13) and eq.(14),we can now plot density as a function of pressure. This is done
by a Mathematica routine which interpolates between previously computed points (ρ, p). The respective
curves are shown in fig.(3).

Having expressed density as a function of pressure, it is now easy to model the pressure that the
entire chromosphere exerts on the photospheric layer that represents the phase transition from metallic
to molecular hydrogen. We can determine from eq.(14) that a pressure of ptr = 548 GPa is needed to
transform molecular to metallic hydrogen, since this amount is necessary compress molecular hydrogen
to a density of 424 kg/µ3. It should be emphasized that the molecular state in the chromosphere, despite
the high temperatures in the range of 3000 − 4000 K, can still be seen as a liquid, since due to the high
pressure, the density exceeds 70kg/m3 by far. This is the reason why temperature can be left out for the
purposes of the present discussion.
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Figure 3: Density as a function of pressure for the liquid metallic (blue) and the molecular (yellow) state.

One may thus just numerically stratify layers of molecular hydrogen on top of the photosphere, calculate
the density ρ and via

dp = −ρ g dz, (15)

with g = 274 m/s2, determine what height hc is needed to obtain 548 GPa. The result, as shown in fig. (4),
is hc = 7900 km, in good agreement with the observations. Of course, on top of this liquid molecular layer
there is still a barometric atmosphere with half thickness of about 70 km, which however does contribute
very few to the mass column.

Figure 4: Pressure as a function of height in the chromosphere

3 Outlook

Such an approximate approach thus strengthens the overall picture of the liquid metallic hydrogen model
of the sun. While the metallic (actually semi-metallic) state is able to emit blackbody radiation at T =
5800 K, the chromosphere is widely transparent, except for the Fraunhofer absorption lines. However,
there are still many details to be refined in the coarse picture outlined here. The Fraunhofer absorption
lines do not correspond exactly to the chromospheric emission spectrum. This is just one detail of a wealth
of spectroscopic evidence that points to chemical reactions in the chromosphere, which are only possible
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if the density is orders of magnitude higher than assumed in the standard solar model.2 Then, as stressed
in a series of articles by Robitaille, the transition from the molecular to the metallic state is probably not
occurring in such a direct way. Likely instead, there are intermediate states of semi-metals, presumably
with a graphite-like structure. Such crystalline structures are completely common also in liquids at high
temperature, if one restricts to properly small time and length scales. There is one shortcoming in the
above assumptions that however supports the hypothesis of an intermediate semi-metal state occurring
at a pressure inferior to the metallic transition. Assuming a shortening of de Broglie wavelengths in a
hydrogen atom would of course alter the spectrum of the hydrogen molecule (or atom), something which
is not observed, or at least not clearly identified yet. Hence, though the present model becomes increasingly
unrealistic for higher pressures, the transition to the metallic state sooner or later must occur. According
to Nellis 2013 the transition pressure at temperatures around 3000 K is even lower, around 140 GPa. In
any case, prior to the metallic state, a semimetal state, possibly graphite-like, will form that is already
capable of producing a blackbody spectrum. This would require an even less thick chromosphere.

The above considerations were justified by the fact that the temperature at the photosphere is relatively
small and corresponds only to about 0.5 eV , thus enabling us to treat the chromosphere as a (molecular)
liquid. Below the photosphere, two scenarios are possible: a metallic state with relatively uniform density,
as Robitaille (2011) has argued, backed by the coincidence that the average density of the sun is in teh same
range (1.4 g

cm3 ). On the other hand, if both temperature and pressure rise right beneath the photosphere,
there is also the possibility that the liquid metallic hydrogen model merges into the standard solar model
that treats almost the entire interior of the sun as a plasma. In this case, no big discrepancy is expected
when comparing the sun’s total mass to the integrated densities of the present model. Finally, I have not
taken into consideration the amount of helium in the sun, which is almost one fourth in mass. However,
the above methods can easily be generalized, while the rough estimate computed will surely not change
the order of magnitude.
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