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Abstract: The unit circle and the cuspidal cubic curve have been found
to intersect at coordinates that can be defined by the Plastic constant (ρ),
which is defined as the solution to the cubic function x3 = x + 1. This
report explores the connections between the algebraic properties of the Plastic
constant and the geometric properties of the circle and this curve.
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1. INTRODUCTION

In this report, we will explore the connections between the algebraic
properties of the Plastic constant and the geometric properties of the circle
and the curve. The Plastic constant (ρ), originally studied in 1924 by Gérard
Cordonnier, is defined as the unique real number that is the solution to the
cubic function x3 = x+ 1 and is given by
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It has been discovered that the circle x2 + y2 = 1 and the cubic curve
x3 = y2 intersect at the coordinates (ρ−1,±ρ−

3
2 ); this will be the topic for

conversation and we will look at expanding on how these two figures are linked
by ρ. Being a real number, the fact that ρ arises in both x and y (Cartesian)
coordinates of the intersection points of the circle and the curve is interesting
and may suggest a deep connection between the algebraic properties of ρ and
the geometric properties of circles and cubic curves in general.



While there are already some interesting known connections between el-
liptic curves and circles, they are very different mathematical constructs with
distinct characteristics that set them apart from one another: a circle is a
conic section with a single center point and a constant radius, while an elliptic
curve is a smooth curve that can take many different forms.

The circle and the the semi-cubical parabola are two fundamental geo-
metric forms and the intersection between them is studied in this paper to
gain a better understanding of the connections between the algebraic prop-
erties of the Plastic constant and the geometric properties of circles and the
cubic curve, starting with the intersection x3 = x2|x2 + y2 = 1.

2. LITERATURE REVIEW AND PRETEXT

While it is known that the Plastic constant does have connections to
geometry and topology, it is mostly studied in the fields of complex dynamics
[1], combinatorics [2 – 3], and arithmetic. Its connection to 2D geometric
shapes, such as the unit circle and the cubic curve, is still a relatively new
area of research. That said, there are some wonderful connections that have
been shown between the Plastic constant and number theory, including how
ρ+ 1 = ρ3 leads to the nested radical identity
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visual representation called the Padovan triangles. The Plastic constant is
the limiting ratio of the successive terms of the Padovan sequence or Perrin
sequence [4] which can be visualized by the side lengths of equilateral trian-
gles in a fractal-like spiral [5]. The Padovan cuboid spiral is the spiral created
by joining the diagonals of faces of successive cuboids added to a unit cube
[6].

Dişkaya and Menken’s [7] paper ’Some Properties of the Plastic con-
stant’ shows that Padovan numbers can also be obtained in spiral form with
quadrangles, and this research goes on to show ρ’s relationship with upright
prisms, cylinders, cones, pyramids and spheres through connections with the
Golden Ratio. While this and other works do touch on the fact that ρ satis-
fies the cubic equation ρ3 − ρ − 1 = 0, they do not specifically focus on the
intersection between circles and the cubic curve.

The Plastic constant is known to satisfy certain algebraic identities, specif-
ically P−1 = P−4 and P+1 = P 3. This places it in a unique class of numbers
that can be represented by equations of the form x+1 = xm and x−1 = x−n),



where m and n are natural numbers. According to a study by Aarts et. al
[8], the Plastic constant and the golden ratio ϕ are the only known numbers
that possess this property.

The Plastic constant is known for its role in chaos theory and nonlinear
dynamical systems and plays a key role as a parameter in the study of bifur-
cations of these systems, which describe how the system’s behavior changes
with parameter variations [9]. This makes the plastic constant an important
concept in the field of nonlinear dynamics, and thus it is worth noting in the
context of being a solution to certain polynomial equations as this is concep-
tually important in the field of chaos theory. In particular, it is related to
the behavior of certain nonlinear systems known as logistic maps, which are
used to model a wide range of phenomena, from population growth [10] to
the fundamentals of electronics [11].

The expression x3 = y2 differs from the cubic formula as we may be
used to seeing it, y = ax2 + bx + c. This form of elliptic curve is important
in number theory and cryptography [12 – 13]. The equation x3 − y2 = 0
defines a curve known as a cuspidal cubic or Neile’s Semi-cubical Parabola
[14]. Cuspidal cubics are a special type of algebraic curve, which means
that it can be defined by polynomial equations [15]. In 1687, the Dutch
mathematician Christiaan Huygens who patented the first pendulum clock,
was able to show that the semi-cubical parabola is connected with physical
science, that it is a solution of a particular physical problem, the motion of
a particle under gravity [14].

A circle is a specific type of curve defined as the set of all points that are a
fixed distance, called the radius, away from a central point. The equation for
a circle with center (h, k) and radius r is: (x−h)2+(y−k)2 = r2 [16]. Circles
have a smooth curve that does not have any sharp turns or breaks. On the
other hand, the cuspidal cubic does not have any central point. Cuspidal
cubics are a type of algebraic curve that have a unique feature called a cusp.
This is a singularity point on the graph of the curve where the curve has a
sharp transition. At this point, the only tangent line that can be drawn is
the one that is parallel to the Y-axis, Y=0 [15].

The fact that the intersection points of the circle and this cubic curve
can be defined in terms of ρ suggests that the properties of ρ are somehow
”encoded” in the geometric properties of the circle and cubic equations, and
studying the intersection points could lead to a deeper understanding of this
constant. Further to this, since any circle can be related to any other cir-
cle through a transformation such as scaling, rotation, or translation, and
similarly, curves can also be transformed by changing the coefficients of the



equation, or by applying transformations such as scaling, rotation or trans-
lation [17 – 18], it might be suggested that we can use the properties of the
unit circle and the cubic curve, such as the plastic constant, to understand
and solve problems involving circles and curves in general.

All these points together, can make the intersection of these shapes an
interesting subject to study in mathematics and can give researchers more
insight about algebraic and geometric properties of shapes. Given the Plastic
constant’s significance in the field of physics, it is anticipated that research
in this area will continue to expand beyond the realm of mathematics.

3. DERIVATION AND ANALYSIS

The intersection in question thus far was discovered in an investigation
into how the Fundamental Theorem of Calculus can be used with a regres-
sion in the Desmos Graphing Calculator [19] to find the Cartesian coordi-
nates of the end-point of an arc length measured along smooth well-behaved
curves, and how when calculated, these coordinates might be backed up us-
ing trigonometry and Pythagoras’ theorem. Finding the intersection was a
bit of a happy accident, however the methods used could not be considered
rigorous and it then became important to the author to present a direct al-
gebraic proof, for the reasons given in the previous sections.

To show that the circle x2 + y2 = 1 and the curve x3 = y2 intersect at
the coordinates (ρ−1, ρ−3/2), we can substitute x = ρ−1 into the equation of
the circle and the equation of the cubic curve and see if they are satisfied
simultaneously. We will use the letter P to denote the suggested factor of this
intersection point instead of ρ until we have proved that the Plastic constant
is a real solution. Since both the unit circle and the curve x3 = y2 are sym-
metrical about the x axis, proving this will logically prove that (ρ−1, −ρ−3/2)
is also an intersection point. This author is not best-placed to discuss any
complex solutions that may exist.

The equation of the circle with x = P−1 is:
(P−1)2 + y2 = 1
y2 = 1− (P−1)2

The equation of the cubic curve with x = P−1 is:
(P−1)3 = y2

y2 = P−3



Now we can substitute the value of y2 in the equation of the circle:
P−3 = 1− (P−1)2

P−3 + (P−1)2 = 1

This is the equation we need to find true for values of P being equal to
ρ. Before we do so, we can now rearrange the above equation and get

(P−1)2 = 1− P−3

We then substitute this in the equation of the cubic curve:
y2 = (1− P−3)

Taking the square root of both sides we find that
y = P−3/2

So, the coordinates of the point of intersection are (P−1, P−3/2).

To prove that when P = ρ, p−3 + (p−1)2 = 1, we will substitute the value of
ρ into the equation P−3 + (P−1)2 = 1. We know that the value of ρ is
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Plugging this value in to the equation P−3 + (P−1)2 = 1 and evaluating
it, we find the equation holds true, which confirms that the coordinates of
the point of intersection are (ρ−1, ρ−3/2).

Looking for circles of the form x2+y2 = ρA that intersect with the curve
x3 = y2 at points (ρB, ρC) where A, B and C are integers, again using the
graphing methods mentioned at the top of this section, it was first constant
that x2 + y2 = p5 appears to intersect x3 = y2 at coordinates (p1,±p3/2) and
then that x2 + y2 = p13 appears to intersect x3 = y2 at coordinates (p4,±p6).
Running through the process of proof employed above we’ll look to prove
these intersections:

To prove that the circle x2 + y2 = p5 and the cubic curve x3 = y2 inter-
sect at the coordinates (ρ1, ρ

3
2 ), we can use similar algebraic techniques as

the ones used to prove that the circle x2+y2 = 1 and the cubic curve x3 = y2

intersect at the coordinates (ρ−1,±ρ−
3
2 ). Again we will use P as the suggested

number until we can prove P=ρ.

First we substitute the coordinates into both equations and show that they
are true.



Substituting (P 1, P
3
2 ) into the equation for the circle, we get:

(P 1)2 + (P
3
2 )2 = P 5

Simplifying this equation, we get:
P 2 + P 3 = P 5

Substituting (P 1, P
3
2 ) into the equation for the cubic curve, we get:

(P 1)3 = (P
3
2 )2

Simplifying this equation, we get:
P 3 = P 3

Since both equations P 2 + P 3 = P 5 and P 3 = P 3 are true when P is sub-
stituted for an evaluation of ρ, we can conclude that the circle x2 + y2 = ρ5

and the cubic curve x3 = y2 intersect at the coordinates (ρ1, ρ
3
2 ). Since the

circle is on the origin point (0, 0) and the curve is symmetrical about the x

axis, we again can easily deduce that (ρ1,−ρ
3
2 ) is also an intersection.

For the circle x2 + y2 = ρ13, the two equations that we need to be true
are (P 4)2 + (P 6)2 = P 8 + P 12 = P 13 and P 12 = P 12, which hold true when
P= ρ.

The equations x2 + y2 = p13 and x3 = y2 are both algebraic equations,
and in general, such equations can have multiple solutions. Furthermore,
since the exponents are integers, it is possible that there are infinitely many
solutions which can be expressed in terms of integers powers of the variables.

The rule that this last intersection adheres to is quite simple: assuming
x and y are real and positive, xy − x(y−1) − x(y−5) = 0 can be reduced to
x3 − x− 1 = 0, the cubic function, and has a unique real solution of ρ.

4. CONCLUSION

In conclusion, this paper has explored the connections between the
algebraic properties of the Plastic constant and the geometric properties of
circles and cubic equations. Through the examination of the intersection
between the unit circle x2 + y2 = 1 and the cubic curve x3 = y2, it was
discovered that these two figures intersect at the coordinates (ρ−1,±ρ−

3
2 ).

Looking for circles of the form x2 + y2 = ρA that intersect with the curve



x3 = y2 at points (ρB, ρC) where A, B and C are integers, we find that
x2 + y2 = p13 intersects x3 = y2 at coordinates (p4,±p6) and that this was
due to how for real and positive values of x and y, xy − x(y−1) − x(y−5) = 0
can be reduced to the the cubic function.

It is hoped that the findings of this research contribute to the understand-
ing of the Plastic constant and its connections to geometry and topology, and
that it adds further suggestion that the Plastic constant is not just a number
that arises in complex dynamics, combinatorics, and arithmetic but it is also
an important number in the geometric world.

Overall, this paper has demonstrated that the Plastic constant is a fasci-
nating number with deep connections to both algebraic and geometric con-
cepts.

References

1. Russell, S. A Creep/Relaxation Model Which Exhibits Chaotic Insta-
bility—Comparison With Solder Data (1991).

2. Yilmaz, N. & Taskara, N. Matrix sequences in terms of Padovan and
Perrin numbers. Journal of Applied Mathematics 2013 (2013).

3. Anatriello, G., Németh, L. & Vincenzi, G. Generalized Pascal’s triangles
and associated k-Padovan-like sequences. Mathematics and Computers
in Simulation 192, 278–290 (2022).

4. Sloane, N. J. A. Padovan sequence (or Padovan numbers) http://oeis.
org/A000931. Last updated Jan 2021.

5. Stewart, I. Tales of a neglected number. Scientific American 274, 102–
103 (1996).

6. Stewart, I. Math Hysteria: Fun and games with mathematics (Oxford
University Press, 2004).
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