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ABSTRACT 

 
 Utilizing a dimensional analysis, Vavel found a formula for the neutrino mass 

depending on the Hubble constant H, yielding a mass value of 4.26 meV. Recently, a 

related formula for the electron neutrino was proposed by Mongan, depending on H 

and the dark energy parameter ΩΛ. He assumed a spherical model for the electron 

neutrino and he proposed that its mass depends on the low mass density of the 

Universe. Furthermore, he assumed that its mass is constrained by the Compton 

wavelength. The obtained formula predicts a mass m1 of 1.37 meV. 

 An alternative formula for the mass m1 of the electron neutrino, also depending 

on H and ΩΛ, can be obtained from a toroidal model of leptons, recently proposed by 

Biemond. In this model a toroidal shape is assumed for the electron neutrino with a 

radius r1 of the torus and a radius r2 of the tube. This torus is assumed to be filled with 

the low mass density of the Universe. A mass m1 of 1.52 meV is obtained in this case. 

 By combination of the magnetic moment of a massive Dirac neutrino, deduced 

in the context of electroweak interactions at the one-loop level, and a magnetic 

moment for a neutrino arising from gravitational origin, a formula for the neutrino 

mass m1 was obtained in 2015. This result depending on the Fermi constant forms a 

bridge between electroweak interactions and gravitation. In this case a more accurate 

value of 1.530 meV was obtained for mass m1. 

 
1. ELECTRON NEUTRINO MASS AND THE HUBBLE CONSTANT 

 

 In the Standard Model of elementary particles symmetry arguments imply that 

neutrinos are strictly massless. However, two independent squared mass differences have 

been extracted from neutrino oscillation observations. In the framework of three-neutrino 

oscillations three neutrinos are distinguished: the electron neutrino, the muon neutrino and 

tauon neutrino, with mass m1, m2 and m3, respectively. Only normal hierarchy is considered 

in this work, so that m1 is the smallest mass. In that case the following squared mass 

differences have approximately been deduced from observations: Δm21
2 ≡ m2

2 – m1
2 ≈ 75 

meV2 and Δm31
2 ≡ m3

2 – m1
2 ≈ 2500 meV2. From these estimates a lower bound of m2 ≈ 8.7 

meV and m3 ≈ 50 meV can, respectively, be calculated for mass m1 = 0. An absolute value 

for the masses is not obtained by neutrino oscillation experiments. 

 Application of a dimensional analysis led Valev [1] to a formula for the mass of a 

neutrino. He considered a series of possible masses by combining the following constants: 

the reduced Planck constant ħ, the speed of light c, the gravitational constant G and the 

Hubble constant H. Subsequently, he identified mass mi (i = 1, 2, 3) as neutrino mass 
 

 

1
43 2

3
.i

H
m

c G

 
=  
 

 (1.1) 

 

Notice that the right-hand side of (1.1) yields the same result for m1, m2 and m3. Substitution 

of a recent value for H, e.g., of 69.8 km s-1 Mpc-1 from ref. [2] and the values of the other 

constants into (1.1) yields a value of mi = 4.26 meV. Since the result of mi is much smaller 

than the minimal value of m2 ≈ 8.7 meV, the mass mi must be identified as mass m1. 
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 Another formula for the mass of neutrinos, also depending on the constants ħ, c, G, 

and H has been recently been proposed by Mongan [3, 4]. In order to obtain that formula, 

he assumed that the electron neutrino or neutrino 1 is spherical and that its mass m1 is 

constrained by its Compton wavelength l1 
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In addition, he proposed the following relation for l1 
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Here ρvac is the low mass density of the Universe. It can be written as 
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where ρcrit is the critical mass density of the Universe and ΩΛ the so-called dark energy 

parameter or Omega sub Lambda parameter. Combination of (1.2), (1.3) and (1.4) yields 

the following expression for mass m1 
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Substitution of all constants into (1.5), including a value of ΩΛ = 0.6847 from the Planck 

2018 data [5], yields a value of 1.37 meV for the mass m1 of the electron neutrino. This 

result corresponds to the value of 1.36 meV from Mongan [3] for slightly different values 

of H en ΩΛ. 

 

 In order to calculate mass m1, an alternative method will be outlined below. Its 

starting point is a more detailed model for neutrino 1, recently developed by Biemond [6]. 

A toroidal shape for all charged leptons and neutrinos was proposed. For all leptons the 

torus is characterized by two radii: a radius r1 of the torus and a radius r2 of the tube of the 

torus. It appears that all charged leptons and the electron neutrino can be described by the 

same limiting case r1 >> r2. In case of the muon neutrino and the tauon neutrino, the 

limiting case r2 >> r1 applies. 

 As an illustration, the torus for the electron neutrino or neutrino 1 is given in figure 

1. It is noticed that figure 1 in ref. [6] represent the analogous torus for the charged leptons 

(For convenience'sake, the charge e of the leptons is taken positive in the latter figure). The 

Cartesian coordinates x, y and z in the present figure 1 are again given by the set of 

equations (1.1) in ref. [6]. For the electron neutrino (and also for all charged leptons) a 

value of N = 1 was deduced. The numbers 1, 2, 3 and 4 denote the location of mass m1 at 

time t = 0, t = ¼ T, t = ½ T and t = ¾ T, respectively, where T is defined by T ≡ 2π/ω. Note 

that the speeds vary at these different times, e.g., at position 1: ẋ = ẋ(t) = 0, ẏ  = ẏ(t) =  v1 

+ v2 and ż = ż(t) = – v2. It is noticed that the positions 1, 2, 3 and 4 are lying in the same 

plane, but the orbit of the mass m1 of neutrino 1 (drawn in red) is not completely flat. 

Furthermore, for the positive mass m1 the z- and y-component of the magnetic dipole 

moment μz(1) and μy(1) are lying along the positive z-axis and y-axis, respectively. The 

total dipole moment μ(1) is also denoted in figure 1 (compare to comment below (3.5) in 

ref. [6]). 
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Figure 1. Toroidal model of the electron neutrino, according to eq. (1.1) of ref. [6] for N = 1 and r1 >> r2. When 

O is the origin of the coordinate system, the location of mass m1 is fixed by the Cartesian coordinates x = 

x(t), y = y(t) and z = z(t) of eq. (1.1) in ref. [6]. Mass m1 moves with an average speed v1 in a ring of radius r1 

and a speed v2 (v1 >> v2) in a circle of radius r2. The green blocked line is a circle with radius r1 in the x-y plane 

and the orbit of mass m1 is drawn in red. For clarity reasons the values of r1, r2, v1 and v2 are not drawn to scale. 

The vectors of the y- and z-component of the magnetic dipole moment μ(1) of neutrino 1 are also shown. 

Additional comment is given in ref. [6]. 

 
 The deduction of m1 is started with the calculation of the volume Vtorus of the torus 

in case of r1 >> r2 (see figure 1) 
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The mass of the electron neutrino is then assumed to be 
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In this equation it is assumed that the low energy density ρvac is homogenously distributed 

in the torus, whereas in the toroidal model of ref. [6] a point mass m1 is assumed. 

Furthermore, the following approximate expression for radius r1 of the electron neutrino is 

used (its deduction can be found from eqs. (1.4), (1.12) and (3.13) in ref. [6]) 
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Combining (1.7) and (1.8), radius r1 can be written as 
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Combination of (1.4), (1.8) and (1.9) then yields for m1 
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An explicit value for the ratio of r2/r1 ≈ 1/10 also follows from the toroidal model [6]. 
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Introduction of the latter value and of all other constants into (1.10) yields a value of 1.52 

meV for mass m1. Note that the ratio m1(eq. (1.10))/m1(eq. (1.5)) = (48π r2
2/r1

2)1/4 = 1.11. 

 

2. ELECTRON NEUTRINO MASS AND THE FERMI CONSTANT 

 

 Within a minimal extension of the standard model with right-handed neutrinos a non-

zero electromagnetic moment μi(em) for the left-handed Dirac neutrino has been deduced 

by Lee and Shrock [7] and Fujikawa and Shrock [8]. In the context of electroweak 

interactions at the one-loop level the following expression for μi(em) was obtained for the 

Dirac neutrino with a mass mi (i = 1, 2, 3) 

 

 
4 4

–22F F

2 2

3| | 3
(em) 3.2026 10 ,

meV8 2 4 2

i i e B i
i B

e G m c G m m c m


 

 
= = =   

 
μ σ σ σ  (2.1) 

 

where GF = 1.16638×10–5 GeV–2 is the Fermi coupling constant, σ is the Pauli matrix and 

μB = |e|ħ/2me is the Bohr magneton. Notice that μi(em) is proportional to mass mi. 

 At present, no magnetic moment of any neutrino has been measured. So far, the 

tightest constraint on μi(em) comes from studies of a possible delay of helium ignition in 

the core of red giants in globular clusters. From the lack of observational evidence of this 

effect a limit of μi(em) < 3×10–12μB has been extracted [9]. Therefore, the value of mi cannot 

yet be calculated from (2.1). 

 Since 1891 many authors have already investigated a gravitational origin of the 

magnetic field of celestial bodies and other rotating bodies, including neutrinos [10]. 

Particularly, the so-called Wilson-Blackett formula for the gravitomagnetic moment μ(gm) 

of a massive body with angular momentum S has often been considered 
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where G is the gravitational constant and k = (4πε0)–1 is the Coulomb constant. The 

parameter β is assumed to be a dimensionless constant of order unity. It is emphasised that 

the gravitomagnetic moment μ(gm) is identified as an electromagnetic moment. For a large 

series of rotating bodies an averaged absolute value of β = 0.13 is obtained (see table 2 and 

discussion in ref. [10]). 

 As has been discussed previously [11, 12], the gravitomagnetic moment μi(gm) for 

an elementary particle like a neutrino with mass mi (i = 1, 2, 3) and angular momentum S 

= (ħ/2)σ may be written as 
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where the parameter gi (i = 1, 2, 3) is a dimensionless quantity of order unity, related to the 

gl-factor for charged leptons l (l = e, μ, τ). Starting from the Dirac equation, however, in first 

order the same factor gi = +2  is deduced (see refs. [11, 12]) for all neutrinos mi , analogously 

to the factor gl = +2 for charged leptons l. In order to get a linear dependence on mass mi, 

a factor mi/m1 has been added to the right-hand side of (2.3). If the electromagnetic moment 

μi(em) of (2.1) may be put equal to the gravitomagnetic moment μi(gm) of (2.3), one obtains 

the following formula for the electron neutrino mass m1 
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Note that the reduced Planck constant drops out in this result. In order to obtain a positive 

result for mass m1, a negative value of β = – 1 has been chosen. Insertion of all constants 

in (2.4) then yields a value of 1.530 meV for mass m1. The accuracy of this result mainly 

depends on the value of the least accurate constant in (2.4), i.e., on the gravitational constant 

G = 6.674× 10–11 kg–1 m3 s–2. Therefore, the latter value is more accurate than the value m1 

= 1.52 meV from (1.10) that depends on more uncertain parameters like H and ΩΛ. It is striking, 

however, that both results for mass m1, due to totally different origins, nearly coincide. 

 

3. DISCUSSION OF THE RESULTS 

 

 In this work a number of different formulas is discussed for the electron neutrino or 

neutrino 1 with mass m1: eq. (1.1) from Valev [1], eq. (1.5) from Mongan [3] and eq. (1.10) 

from Biemond. All these formulas connect the mass m1 of neutrino 1 to the Hubble constant 

H, a typical cosmological parameter. The last two formulas also connect mass m1 to the dark 

energy parameter ΩΛ, another cosmological parameter. So, a bridge is found between the 

microscopic electron neutrino and the large-scale parameters H and ΩΛ. 

 In order to be able to calculate the last two formulas for mass m1, details of the basic 

structure of neutrino 1 are necessary. For the calculation of (1.5) Mongan assumed that the 

neutrino is spherical and that its mass is constrained by its Compton wavelength. 

 In the calculation of mass m1 of (1.10) results are utilized from a recently developed 

toroidal model for leptons from Biemond [6]. This model implies a radius r1 for the torus 

and a radius r2 for the tube of the torus. As a consequence, a value for the ratio r2/r1 can be 

obtained. In addition, the radius r1 is approximately given by the Compton wavelength, 

both in case of the electron and the electron neutrino. Furthermore, the expressions for the 

magnetic moments of both elementary particles are of the same form, the leading term of 

the so-called magnetic moment anomaly included. According to ref. [6], the ratio r2/r1 of 

the electron and of neutrino 1 can, respectively, be written as 
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where α is the fine-structure constant and αW is the electroweak coupling constant at low 

energy. 

 Combination of the electromagnetic moment μi(em) of (2.1) from refs. [7, 8] and the 

gravitomagnetic moment μi(gm) of (2.3) from refs. [11, 12] leads to the fourth formula for 

the electron neutrino mass m1. The first magnetic moment μi(em) is a consequence of the 

theory of the weak interactions, working at microscopic level and characterised by the 

Fermi constant GF. The gravitational constant G connects the gravitomagnetic moment 

μi(gm) of (2.3) to the theory of gravitation. The combined result of (2.4) forms a bridge 

between electroweak interactions and gravitation. 

 Concerning the gravitomagnetic moment μi(gm) of (2.2), many authors have already 

considered a gravitational origin of the magnetic field of celestial bodies from Moon up to 

Galaxy. In this approach the Schuster-Wilson-Blackett hypothesis [10] has been playing an 

important role for more than a century. A recent review of relation (2.2) and the extra-

polation to the neutrinos of (2.3) has also recently been given in ref. [10]. 

 Summing up, four different formulas for the neutrino mass m1 are discussed. The 

first mass, given in eq. (1.1) from Valev [1] depends on the Hubble constant H, whereas 

eq. (1.5) from Mongan [3, 4], and eq. (1.10) from Biemond depend on H and the dark energy 

parameter ΩΛ. The fourth formula for the neutrino mass m1 depends on the Fermi constant 

GF, a constant characteristic for weak interactions. Surprisingly, the obtained masses m1 

from (1.10) and (2.4), m1 = 1.52 meV and m1 = 1.530 meV, respectively, nearly coincide, 

although they follow from totally different starting points. 
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