Route Planning Algorithms for 3D Printing

A PROJECT
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FORr THE DEGREE OF

MASTER OF SCIENCE
IN
COMPUTER SCIENCE
UNIVERSITY OF REGINA
By

SHULANG LEI

REGINA, SASKATCHEWAN

AvucusTt 2015

COPYRIGHT 2015: S. LEI

Abstract

General 3D printers use Fused Deposition Modeling (FDM) and Stereolithography
(SLA) technologies to print 3D models. However, turning the nozzle on and off
during FDM or SLA extruding will cause unwanted results. This project created an
experimental 3D model slicer named Embodier that generates continuous extruding
paths whenever possible. This enables 3D printers to draw out the printing layers
accurately in a stable manner. Furthermore, the slicer partitions the outlines to tree
structures for efficiency and applies flooding algorithm for water-tightness validation.
Lastly, a 3D printing simulator is also created to visualize the printed paths in 3D
for a more intuitive review of the Embodier slicer. The end result is that we have
discovered that not only a single continuous-extruded-path slicer is possible, it can

also be optimized for performance and robustness in practice.

Keywords: Continuous extruding path, Slicing, 3D printing, Flooding Algorithm,

Space Partitioning.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Boting
Yang, for his constant support, encouragement and consideration throughout my
graduate studies. I greatly appreciate his advice and patience in helping me improve
my Graph theory knowledge and writing skills. His expertise and insight is also
invaluable for guiding me through this project when I was frustrated and stuck in my
research.

Besides my supervisor, I would like to thank Dr. Samira Sadaoui and Dr. Howard
Hamilton for being on my committee. I would like to express my gratitude to my
committee, Dr. Boting Yang, Dr. Howard Hamilton and Dr. Samira Sadaoui for
the time and efforts they put in reading and examining my report. I am particularly
grateful for the valuable suggestions and comments Dr. Howard Hamilton made on
my report writing. I also like to thank Dr. David Gerhard for sharing his experience
in 3D printing, which helped me solved the bridging problem.

I also acknowledge the financial support from my employer, University of Regina,
which makes this work possible.

Last but not least, I would like to thank my family: my wife, my parents, my
parent-in-laws, and to my dear daughter for supporting me spiritually throughout

writing this report and my life in general.

1

Contents

Abstract
Acknowledgements
List of Figures

1 Introduction

1.1 History of 3D Printing
1.1.1 SLA . . oo
1.1.2 FDMo o

1.2 Motivation for This Research

1.3 How 3D Printing Works L.
1.3.1 3D Modeling
1.3.2 Water Tightness
1.3.3 Manifold
1.3.4 Slicing
1.35 Filling
1.3.6 G-Code Generation
1.3.7 Printingo

1.4 Limitations of Home 3D Printers

1.5 Improvement Approaches.

1l

ii

vi

S N N JU N U

(@4

CONTENTS

1.6 Problems This Project Addresses

1.7 Continuous Single Path Extrusion

4.3.4

2 Route Planning Algorithms
2.1 Traveling Salesman Solving Algorithms
2.2 Eulerian path/circuit Algorithms
2.2.1 Eulerian Graph and Conversion
2.2.2 Hierholzer Algorithm
2.3 Design of Embodier Slicer
3 The Embodier Slicer
3.1 Test Models
3.2 Implementation
321 Core
322 File.
323 Slice
324 Treeo
325 Flood
3.26 Euleriano
327 Geode
4 3D Printer Simulator
4.1 Requirements of the 3D Printer Simulator
4.2 Structure of the 3D Printer Simulator
4.3 Implementationo
4.3.1 Core
4.3.2 Fileapi
4.3.3 Webcomponents

Canvasdraw

v

10
10
13
13
14
15

17
18
19
19
20
21
22
25
30
37

CONTENTS v

4.4 Example Using Slic3r Lo 44
4.5 Validation of Embodier Slicer 45
5 Conclusion 50
Appendices 52
A Embodier Slicer 53
A.1 Source Code of “slicer.core” 53
A.2 Source Code of “slicer.file” 5%
A.3 Source code of “slicer.slice” 59
A4 Source code of “slicer.tree” 68
A5 Source code of “slicer.flood” 96
A.6 Source code of “slicer.eulerian” 108
A.7 Source code of “slicer.gcode” L. 124
B Printer Simulator 128
B.1 Source code of “embodier.core” 128
B.2 Source code of “embodier.fileapi” 129
B.3 Source code of “embodier.webcomponents” 136
B.4 Source code of “embodier.canvasdraw” 140
C Links 146

References 147

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6

3.2
3.3
3.4
3.5
3.6

Polygon mesh composition L.
Left: Non-manifold. Right: Manifold.
Slicing amodel
Filling a perimeter
Skin frame structureso
Backlash
Bridging

Single path extrusion oL

Chinese cities
A single path tour produced by concorde TSP solver
The Eulerian circuit is ABCDEFGHIJKLMNOPQRST (In Order) . .
Connecting a pair of odd degree nodes
Disconnecting a pair of odd degree nodes by removing one edge

A graph without any odd degree nodes

A slice of the hot-end model
Quad-tree of one slice of 20mm box model
Quad-tree of one slice of hot-end model
Rays intersecting with box

Rays intersecting with hot-end.

vi

o N O Ot = e W

LIST OF FIGURES vii

3.8 Flooding algorithm iterations 29
3.9 Flooded result of the hot-end 30
3.10 Flooded result of the hot-end with perimeter 30
3.11 A slice of the hot-end in graph form 31
3.12 Removed edges 33
3.13 Connected edges 34
3.14 One slice of hot-end converted to a Eulerian graph 35
3.15 Eulerian circuit for the hot-end slice. 36
3.16 Eulerian circuit for the 20mm box slice 37
4.1 20mm box from thingiverse 44
4.2 G-Code path of 3rd layer 45
4.3 G-Code path for the 20mm box. 46

4.4 G-Code path for the hot-end model. 48

Chapter 1

Introduction

1.1 History of 3D Printing

Human have been making tools for millions years. Some of the methods involved
are carving, sharpening, grinding, sawing, drilling, machining, etc. These methods
are shaping objects by removing stuff: start with greater raw material and cut them
into smaller desired shapes.

3D printing was originally utilized by the industry as “Additive Manufacturing”.
Instead of subtracting from the solid raw material, material is being successively

layered by robot controlled printer head to build desired shapes.

1.1.1 SLA

3D printing was first invented by using the process called “Stereolithography”
(SLA) by Hideo Kodama of Nagoya Municipal Industrial Research Institute [1] [2].
Ultraviolet light curable liquidized plastic, or liquid resin, is exposed to a moving
ultraviolet laser that hardens the plastic layer by layer, and the object is finally
constructed.

After 3D printing made its first appearance, the process is improved and made

CHAPTER 1. INTRODUCTION 2

actionable by 3D System Corporations [3] with their contribution in the software: the
STL file format and the accompany slicing and infill strategies. Following that, metal

and many more others are also being used as raw material with similar methods.

1.1.2 FDM

Later, an extruding method “Fused Deposition Modeling” (FDM) was developed
by S. Scott Crump and commercialized by Stratasys [4]. Raw material such as plastic,
metal, wood, cement and others are made into filaments. A heated nozzle is used to
melt the filaments. A worm-drive then pushes the filament into the nozzle to extrude
the melted material into layers, in order to reconstruct the object. By being low-cost
and providing ease of use, FDM technology is currently popular among the hobbyist

and consumer-oriented market.

1.2 Motivation for This Research

Current low-cost home 3D printers are priced between $500 to $2000 at the time
of writing. Most of these printers are utilizing FDM and some are based on SLA.
Their design concept is to melt the printing material (mostly plastic), and lay the
melted plastic layer by layer to reconstruct the digital 3D object.

While these printers are starting to occupy the market, their ease of use, per-
formance and reliability are still in question. While the hardware will undoubtedly
improve in time, the improvements done in the software side can rapidly impact more
users with a lower cost.

In this project, a combination of algorithms and data structures are applied to
the routing planning processes for an open-sourced slicer named Embodier. The end
results demonstrated by a 3D printer simulator show that wide range of improvements

can be made using better software designs.

CHAPTER 1. INTRODUCTION 3

1.3 How 3D Printing Works

3D printing can be generally defined by following five major steps: 3D Modeling,

Slicing, Filling, G-Code Generation and Printing.

1.3.1 3D Modeling

There are different ways to model an object that is 3D printable. Currently, the
most popular way is using the polygon mesh format because of the abundances of the
tool-sets available. In the polygon mesh format, a single 3D object has a volume that
is bounded by 2-dimensional patches (surfaces). Because the minimum requirement
to define a surfaces is three points, the minimum units for a polygon mesh object are

triangles (see Figure 1.1).

' \/\ %ng =
Sgppe
- A 2

Figure 1.1: Polygon mesh composition

1.3.2 Water Tightness

A polygon mesh needs to have some volume to be printable. For example, an
infinitely thin wall can not be printed. The way of checking for water tightness is to

verify if the polygon mesh is “manifold”.

CHAPTER 1. INTRODUCTION 4

1.3.3 Manifold

A mesh is a manifold if each edge is incident to only one or two faces [6] (see

Figure 1.2).

Figure 1.2: Left: Non-manifold. Right: Manifold.

1.3.4 Slicing

Slicing refers to the cutting of the polygon mesh into layers along the z-axis which

is the vertical axis of the 3D printer (see Figure 1.3).

Y p

(a) Object to be sliced. (b) Object that is sliced.
Figure 1.3: Slicing a model

1.3.5 Filling

After slicing a 3D mesh into a series of 2D shapes, each outline (perimeter) needs

to be filled with regular lattice (infill pattern).

CHAPTER 1. INTRODUCTION 5

& perimeter

L S — il

® Path start
@ Pathend

Figure 1.4: Filling a perimeter

1.3.6 G-Code Generation

G-Code is a language used to tell the printer head how to move and draw out the

layer. Optimizing this aspect is the main focus of this project.

1.3.7 Printing

Printing is completed by heating the printer head to a point where the extruding
plastic melts; next, the melted plastic is extruded along the path directed by G-Code.

The final object is then constructed layer by layer.

1.4 Limitations of Home 3D Printers

The major limitations in current home 3D printing technologies are speed and
reliability. It often takes hours to print a medium-sized object. In addition, it is not
uncommon for the printing alignment to fail during the middle of the print. Therefore

the two fundamental problems are:
1. Fast printing for bigger objects
2. Unsupervised long printing projects

These two problems are hard to solve with current home 3D printers. This is why

3D printing is still a hobbyist activity and rarely being utilized by non-tech-savvy

CHAPTER 1. INTRODUCTION 6

users. In addition, the cost for businesses that provides 3D printing service is still

too high.

1.5 Improvement Approaches

There are already several efforts being made to improve 3D printing experience.

A low-cost optical fabrication printer, the Peachy Printer [8] uses laser to in-
crease fault tolerance so that the printing path will not be blocked by faulty prints.
Combined with liquid submersion to prevent gravity collapse, the outcome is very
promising.

Another approach is to use better G-Code generation algorithms. Since printing
paths, especially the filling paths can be arbitrary, we can make use of better algo-
rithms. One example is “Skin-frame Method” [7]. Tt generates a frame structure right
next to the “skin”, the surface of the object. The material need is only 15.0% of a
solid object (see Figure 1.5).

The “Skin-frame method” also attempts to improve the speed and reliability by

applying better G-Code generation algorithms.

Skin-Frame Structure

Figure 1.5: Skin frame structures

CHAPTER 1. INTRODUCTION 7

1.6 Problems This Project Addresses

A backlash happens when there are gaps in the biting surface between the gears:
any reverse action in gear rotation will result a random pausing (see Figure 1.6).
Pausing the extrusion during the movement of the printer head is done by reversing
the worm drive to create a tiny suction that holds the melted plastic. Backlash
happens in 3D printer whenever it pauses the extrusion during printing, resulting
uncontrollable inaccuracies for timing.

The rationale of this project is to improve the generation of G-Code path such
that a continuous path is being applied whenever possible rather than multiple-path
extrusions that require the extrusion to be paused during movements. In addition, a

continuous extrusion path improves speed and efficiency.

Operating pitch circles

Backlash
(transverse operation)

Figure 1.6: Backlash

Furthermore, even with stereolithography, coordinating the positions where the
extrusion needs to be turn on-and-off is complicated.

The Peachy Printer is a first low-cost stereolithography printer that uses only the
stereo-audio jack and microphone jack as the space controls. However, having to
coordinate the on-and-off of the laser during extrusion of a single layer has delayed
the project from release to pre-orders [9].

Another example of the the problem created by on-and-offs during extrusion is
bridging (see Figure 1.7).

When the printer head tries to move across the long space in the center of the

CHAPTER 1. INTRODUCTION 8

object, the printer head has a probability of leaking plastic during non-print moves.
Thus those “jumps” need to be eliminated as much as possible. If the printing path
was generated by a better algorithm, one “jump” for each layer would be sufficient

and the bridging would be easier to fix in this case.

Figure 1.7: Bridging

1.7 Continuous Single Path Extrusion

How can we generate a nice single continuous extrusion path? After slicing of the
polygon mesh, we end up with a series of 2D layers, which can be considered as a
2D graph with fully connected nodes and edges. Certain nodes need to be traversed
in order to support other layers that are built on top of them. However we are
assuming that not all of the edges need to be traveled for the sake of easier single
path generation. That means sacrificing the reconstruction accuracy of the digital
3D object for efficiency in the scope of this project. Therefore we can visualize the

extrusion path as Figure 1.8.

CHAPTER 1. INTRODUCTION 9

Figure 1.8: Single path extrusion

Since there guaranteed to be an edge between any two nodes (because all of the
nodes are inside a two-dimensional Euclidean plane and the printer head can travel
anywhere within the plane), we can simplify each layer to be a set of nodes and the
main task is to get a single continuous path that visits them all at least once.

There are two flaws of this approach:

1. There will be missing edges, such as the outline that forms the “skin” of the

object;

2. There will be surplus edges, such as the edges that cross the object in which

there is a hollow space.

Fortunately, 3D printing materials are often as versatile as wood. These flaws can
be overcome by performing simple actions: The first flaw can be fixed by applying
plastic filler afterwards. Second flaw can be fixed by adding a small bridging structure
across the space so that the path finding algorithm can be guided to pass through.
Finally, simply cut the bridging structure out with a knife, a drill or a chisel.

Note that post-processing of the G-Code path to add new paths that fix these two
flaws will be considered for future development. It is only for the duration sake of

this project that we leave out these features.

Chapter 2

Route Planning Algorithms

We need a routing algorithm which given a set of nodes on a two-dimensional
Euclidean plane will produce a nice single extrusion path so that the printer head can

travel along with its melted plastic extruding at all times, whenever it is possible.

2.1 Traveling Salesman Solving Algorithms

Firstly, a typical traveling salesman problem can be described as follows: Given a
list of cities and the distances between each pair of cities, find the shortest possible
route that visits each city exactly once. Let us see how a traveling salesman solver

works on the Chinese cities [10]:

10

CHAPTER 2. ROUTE PLANNING ALGORITHMS 11

Figure 2.1: Chinese cities

After application of the Concorde TSP solver, we have the result within 0.029%

Optimal [11] after 1.7 million seconds (472.222 hours) (see Figure 2.2).

Figure 2.2: A single path tour produced by concorde TSP solver

Unfortunately, the TSP algorithm is not fast enough for our purpose. As well
as the unacceptably long running time, there are other problems with the result

generated from TSP solver.

CHAPTER 2. ROUTE PLANNING ALGORITHMS 12

The first problem is that the path generated by the TSP solver does not travel
the outlines (perimeter) completely: this is because the algorithm is designed to get
the shortest path possible.

The first problem of not traveling the edges enough is that the printed object will
result in a very rough surface and will require massive filling job — not very practical.

The second problem of not traveling the edges enough is creating deep cracks from
the surface. Looking at Figure 2.2 and it is obvious that there will be many cracks if
we extrude the plastic that way:.

Furthermore, TSP is an NP-complete problem and most of the exact algorithms
are exponential time, resulting in the long running times.

Therefore we can conclude that for TSP solving algorithms, the advantages are:
e [t generates path that traverses all nodes.

o [t generates path that traverses only the minimum distance.

The disadvantages are:

e [t generates paths that do not traverse all edges, which produces unsatisfied

results.
e [t may have a very slow run time.
We want a better algorithm which generates a path such that:
1. It will traverse all nodes.
2. It will traverse all edges.

3. Run-time of the algorithm needs to be fast.

CHAPTER 2. ROUTE PLANNING ALGORITHMS 13

2.2 Eulerian path/circuit Algorithms

The definition of an Eulerian path/circuit is promising for what we are searching
for: a trail/circuit in a graph which visits every edge exactly once. Here we made up

an example for demonstration as shown in Figure 2.3.

o

Int

Figure 2.3: The Eulerian circuit is ABCDEFGHIJKLMNOPQRST (In Order)

It is also trivial that the path will travel every node in a graph that is fully
connected. In addition, there exists an algorithm that finds the Eulerian Path/Circle
in linear time.

Lastly, only a specific type of graphs have the Eulerian path/circuit. Fortunately,
we have discovered a way to convert each layer to this type of graph. Let us see how

this would work.

2.2.1 Eulerian Graph and Conversion

An Eulerian graph is a graph containing an Eulerian circuit. A graph is Eulerian
if and only if it has no odd degree nodes. The degree of a node is the number of its
neighbors.

Let this be the “even degree rule”. To convert a non-Eulerian graph to a Eulerian,
we simply make some change that changes the degree of any node that violates the
even degree rule.

There are two ways to change the degree of odd degree nodes to even:

1. Connect a pair of odd degree nodes as shown in Figure 2.4.

CHAPTER 2. ROUTE PLANNING ALGORITHMS 14

DTN e

Figure 2.4: Connecting a pair of odd degree nodes

2. Remove the edge that connects a pair of odd degree nodes as shown in Figure

Figure 2.5: Disconnecting a pair of odd degree nodes by removing one edge

We can apply these two methods repeatedly until all odd nodes are removed. Be
aware that there are different priorities and situations for each method to be applied.
We will discuss the details in the implementation section.

One apparent problem is that the two methods only remove a pair of odd degree
nodes each time — what if there is odd number of odd degree nodes? According to

the handshaking lemma, for a graph with node set N and edge set E [13]:

> deg(n) =2|E|

neN

Therefore every finite undirected graph has an even number of nodes with odd degree.

Thus this problem does not exist.

2.2.2 Hierholzer Algorithm

The oldest algorithm that finds the Eulerian circuit is called Fleury’s algorithm.
However, it is inefficient comparing to the Hierholzer Algorithm. The Hierholzer

algorithm can find a Eulerian circuit very quickly and is easy to implement [12]:

CHAPTER 2. ROUTE PLANNING ALGORITHMS 15

1. Choose any starting node v, and follow a trail of edges from that node until

returning to v.

2. Find another node v that belongs to the current tour but that has adjacent
edges not part of the tour, start another trail from v, following unused edges

until returning to v, and join the tour formed in this way to the previous tour.

3. Repeat until all edges are included, the traversed tour is now an Eulerian circuit.

Let us look at an example of the Hierholzer algorithm:

Figure 2.6: A graph without any odd degree nodes
1. First circuit: a,b,hk,j,g,l,m.f.
2. Second circuit: d,c,i.
3. Joined two circuits: a,b,h.k,j.glmf + d,c,i.
4. No more edges left.

5. The final Eulerian circuit for the original graph is: a,bhk,j,g .l m.f,d,c,i.

2.3 Design of Embodier Slicer

Concluding from the above analysis, we have a clear and detailed step by step

implementation design for the Embodier slicer:

CHAPTER 2. ROUTE PLANNING ALGORITHMS 16

1. Parse the polygon mesh into a set of triangles.
2. Generate a series of planes along the z-axis.

3. Calculate the intersection of each plane and the whole set of triangles to get the

outlines (perimeters).
4. Generate the infill pattern for each outline.
5. Transform each layer such that it is a Eulerian graph.
6. Use the Hierholzer algorithm to find a Eulerian circuit for each layer.

7. Generate G-Code from the Eulerian circuits.

Chapter 3

The Embodier Slicer

The Embodier slicer has the following steps in technical detail:

1. Parses binary and ASCII STL files into a set of triangles.
2. Slices polygon meshes with a list of planes.
3. Partitions the space of each layer using a quad tree.

4. Performs collision detection for each leaf of the quad tree, and stores the Boolean

results in the collided nodes of the quad tree.

5. Performs ray-tracing water-tight check for each layer, and generates the initial

flooding positions.

6. Applies a flooding algorithm to detect water-tight space, and stores the Boolean

results in the flooded nodes of the quad tree.
7. Converts each layer to a Eulerian graph.

8. Applies the Hierholzer algorithm to the Eulerian graph to find the Eulerian

circuit that traverses all edges and nodes.

17

CHAPTER 3. THE EMBODIER SLICER 18

9. Infills the quad tree partitions with selected user-defined patterns (not yet im-

plemented).

10. Generates G-Code.

The Embodier slicer is implemented as a headless command line program. This
makes future integration with a Web or Desktop interface straightforward.

The programming language of choice is Clojure, which is a functional program-
ming language based on the JVM. The design of this language focuses on idiomatic
functional semantics, multithreading and distributed computation models.

These elegant design of Clojure makes scaling up the performance and features
using multiple servers or clusters possible. In addition, the JVM makes Operating

System configuration across different platforms simple and easy.

3.1 Test Models

For our testing, we use two 3D models. These models are:

e A simple 20mm solid box (12 triangles)

- embodier.stl.slicer /resources/stl/asc.stl .

e A complicated 3D printer hot-end part with holes in it (about 900 triangles)

- embodier.stl.slicer /resources/stl/hotend _v2.stl .

A\

(a) 20mm box (b) Rostock mini hot-end holder

CHAPTER 3. THE EMBODIER SLICER 19

These are ASCII STL files that contain polygon meshes represented in text.

3.2 Implementation
The functions are divided into these name-spaces:

1. Core — gets the parameters from the command line and connects to all other

namespaces to execute the tasks.
2. File — parses binary and ASCII STL files using the GLOSS library.

3. Slice — uses plane-triangle intersection to slice the polygon mesh (in a collection

of triangles form).

4. Tree — generates an breadth-first search quad tree space partitioned data struc-

ture using axis-aligned bounding box (AABB) collision detection.
5. Flood — uses flooding algorithm to find the inner area of a layer.
6. Eulerian — generate Eulerian circuit for layers.
7. Gecode — generates G-Code from result data structures in memory.

8. Draw — draws a variety of data structures for visualization, mostly for debugging

reasons.

9. Util — provides some LISP macros to make debugging easier and to shorten

some expressions.

3.2.1 Core

The major task for the core is to take care of the command line parameters!.

Tools.cli library is used. The command line should be of the format:

'Source code is given in Appendix A.1.

CHAPTER 3. THE EMBODIER SLICER 20

embodier —help —stl [stl-file-name| —gcode [gcode-file-name]

The Parameters have the following meanings:

e help — provide the typical instructional help text for the program.
e stl — the next parameter gives the input STL file.

e gcode — the next parameter gives the output G-Code file.

Besides this, the “-main” function is the entry point of the whole program.

3.2.2 File

The File namespace reads the STL files?. It is implemented with the GLOSS
library. There are two kinds of STL files: The binary STL and the ASCII STL. Gloss
uses “Codec” to pattern match the file stream. This makes the file parsing fast and

quick to develop.

The binary codec is “b-triangle”. It represents a triangle as 12 little-endian floating
numbers that contains an normal (3) and three vertices (9), followed by an unsigned
integer.

The ASCII codec “a-triangle” is similar. It represents the triangle by string float-
ing numbers and surrounded by text tags.

The “parse-st]” function parses the files and stores the triangles in a vector of

maps for further processing.

2Source code is given in Appendix A.2.

CHAPTER 3. THE EMBODIER SLICER 21
3.2.3 Slice

The task of the Slice namespace is mainly to get the intersection between a set of
triangles and a sequence of Z axis planes?.

At first, a series of Z planes are generated by the function “gen-planes”. These
are a set of parallel planes that are separated from each other according to the nozzle
diameter (printing resolution).

Then it calculates the intersection between each plane and the set of triangles
with the “slice” function.

The “triangle-plane-inc” function finds the intersection subject to three conditions:

1. If the entire triangle sits on the plane, the function returns the whole triangle.

2. If one segment of the triangle sits on the plane, the function returns the segment

line.
3. If a point of the triangle sits on the plane, the function returns the point.
4. If no intersection is found, the function returns nil.

5. Otherwise, the intersection of one side of the triangle and the plane is returned

by the function.

Using our hot-end example (see Figure 3.1b), one of the slices appears as shown

in Figure 3.2.

3Source code is given in Appendix A.3

CHAPTER 3. THE EMBODIER SLICER 22

O) o []JO

Figure 3.2: A slice of the hot-end model

Be aware that the slice is not as nice as it looks. It looks like a single nice path, but
it actually has many segments of small but separated lines. Thus we need flooding

algorithms to figure out where is the bounded inner area.

3.2.4 Tree

The Tree namespace implements the data structure and related methods for each
layer?.

When designing the flooding algorithm, the speed of the algorithm comes into
consideration. If the flooding algorithm performs an exact simulation of how water
floods a space from drop to drop, our algorithm would have to flood the scene pixel
by pixel to achieve similar effects. This will be slow, and consume a large amount of
memory.

The solution is to use Space Partitioning. If there is a big chunk of empty
space, we want it to be represented by one single unit instead of many.

Also, we want the data structure storing these space units to be a Tree. So that
the access time to any unit are reduced from O(N) to O(log N).

We are currently using a 4-way tree such that each node of the tree has exactly

4Source code is at Appendix A.4.

CHAPTER 3. THE EMBODIER SLICER 23

4 children. Thus it is a Quad-tree, which means we are quaternary partitioning the
space.

Furthermore, we are using Axis-Aligned Bounding Box(AABB) to speed up
the collision calculation. Therefore all of the area units here are square AABBs.

Lastly, instead of using a linked structure to store the tree, we use an array
(vector) to store it in Breadth First Searching Order. The indexes of nodes will be
arithmetically representing their positions, ancestors and descendants. As a result,
most of the querying operations cost will be O(1) time.

Each node cell in the array contains a Boolean value. False means the node has
not collided with any line, true means the node has collided with at least one line.
All descendants of a False node has False values, thus the highest level False nodes
are leaf nodes.

The quad-tree is generated by the “generate-tree” function. Basic explanation of

the algorithm in steps are:

1. Get the bounding area of the whole slice as an AABB, and represented it at the

root node.

2. Get the minimum bounding area representing by a leaf node, which it is a square
with the width of the nozzle diameter — as the smallest unit that the printer

can handle.

3. Let the root node width be R, the leaf node width be L, and calculate the size

of the BF'S order array with

R
49 4 42 (=)?
Z))))(L)

4. Initialized the Array with nil values. Iterate through each element of the array

and for each element:

CHAPTER 3. THE EMBODIER SLICER 24

(a) Calculate the bounding area by walking from root to current node. O(log, N)

time.

(b) Test for collision between the bounding area and the slice: if collided, go
down another level and test the children again; else when not collided,
marked as a leaf node and no further test for descendants are needed. The

result is stored as Boolean in the current array element.

Therefore tree generation is O(N log, N).
Apply these algorithm to our test case of simple box, the result is shown as Figure

3.3.

Figure 3.3: Quad-tree of one slice of 20mm box model

Apply these algorithm to our test case of hot-end model, the result is shown as

Figure 3.4.

CHAPTER 3. THE EMBODIER SLICER 25

Figure 3.4: Quad-tree of one slice of hot-end model

Notice that the collided nodes are marked with crosses.

3.2.5 Flood

After our slices are converted to a quad tree in a BFS order array, they are ready
for the flooding algorithm?®.

However, we can not simply flood from outside of the slice, because cases like the
hot-end model (see Figure 3.1b) exists. If a slice is hollow, the flooding can not reach
the inner spaces. Therefore, we need to flood from inside of the slice.

To find the initial flooding position, We use a method similar to ray-tracing: cast
a series of parallel rays separated by the nozzle diameter into the slice. The actual
algorithm uses vertical and horizontal rays. Figure only shows vertical rays for clearer
picture.

For the 20mm box, ray intersections are shown as Figure 3.5.

5Source code is given in Appendix A.5.

CHAPTER 3. THE EMBODIER SLICER 26

Figure 3.5: Rays intersecting with box

And for the hot-end, ray intersections are shown as Figure 3.6.

Figure 3.6: Rays intersecting with hot-end.

Using Figure 3.5 or 3.6 as examples, for each line of ray, the middle point of the
first intersection and second intersection are being used as initial flooding position.
Be aware that if more than two intersections exist, then the middle points of the
third and fourth, fifth and sixth and so forth need to be included, in order to find
the initial flooding positions for contained and disconnected shapes. Due to the extra
complexity, contained and disconnected shapes are not fully supported in the current
version. Finding the initial flooding points is done with the “find-contained-flooding-

point” function.

CHAPTER 3. THE EMBODIER SLICER 27

The flooding algorithm is implemented by the function “flood-node”. The steps

of the algorithm are:

1. Use the “find-contained-flooding-point” function to find a set of initial flooding

positions.
2. Find leaf nodes that contains initial flooding positions, marked as flooded.
3. Find the neighbor leaf nodes that are false (not collided), marked as flooded.

4. Repeat the above operation until no more neighbor leaf nodes are found. Return

all of the flooded leaf nodes.

Let us run the flooding algorithm against one slice of the hot-end model as shown

in Figure 3.8.

CHAPTER 3. THE EMBODIER SLICER

(a) Initial flooding nodes (b) Second iteration

(c) Third iteration (d) Fourth iteration

(e) Fifth iteration (f) Sixth iteration

(g) Seventh iteration (h) Eighth iteration

CHAPTER 3. THE EMBODIER SLICER

(a) Ninth iteration (b) Tenth iteration

(c) Eleventh iteration (d) Twelfth iteration

(e) Thirteenth iteration (f) Fourteenth iteration

(g) Fifteenth iteration (h) Sixteenth iteration

Figure 3.8: Flooding algorithm iterations

CHAPTER 3. THE EMBODIER SLICER 30

And the final result is shown as Figure 3.9.

EJLJHHL_\\\I_JHHLJLJ
B I zp
Eﬁﬂf H P o Hﬂﬁwj
\I\!I\Ij\l\l\l\l:ill\\\\\\\\\Illjl\l\l\l:i\ll!\\\

Figure 3.9: Flooded result of the hot-end

Combined with the collided leaf nodes, we have our final shape ready for infill as

shown in Figure 3.10.

Figure 3.10: Flooded result of the hot-end with perimeter

3.2.6 Eulerian

The Eulerian namespace is the most important part of the program: it produces
the Eulerian circuit®. After the flooding algorithm is applied, we have the shapes

of the slices stored in quad-trees. Before they are ready to be searched for Eulerian

8Source code is given in Appendix A.6.

CHAPTER 3. THE EMBODIER SLICER 31

circuits, we need to convert the slices to be Eulerian graphs. For the purpose of this

discussion, the following terminologies are used:

e Nodes — All of the leaf nodes of the quad-tree. Their geometrical positions are

the center points of the bounding boxes of the leaf nodes.

e Edges — Geometrically adjacent leaf nodes have edges connecting them. An
edge is a line that starts and ends with a pair of connected nodes from center

to center. Non-adjacent leaf nodes do not have edges.

Figure 3.11 showing a visualization of the graph form of one slice from the hot-end

model.

Figure 3.11: A slice of the hot-end in graph form

CHAPTER 3. THE EMBODIER SLICER 32

To convert a graph to Eulerian Graph, the target here is to change the degrees
of the nodes with odd degrees. Remember we mentioned earlier that there are two

ways to do so:
1. Remove the edges connecting a pair of odd degree nodes.
2. Connect a pair of non-neighboring odd degree nodes.

Let us consider which is appropriate here. The first method removes some of the edges.
However, as we mentioned earlier, missing edges can be fixed by adding fillers after
the printing is done. The second method adds edges. However, the additional edges
will be connecting non-neighbor nodes. This is not appropriate for our application
because such edge will cause the printer head to jump or the nozzle to cross printed
edges. Thus the first method is better for our application. For extra long edges added
by the second method, they can be rerouted into a purposely designed bridging area,
so that removing then afterwards will be easier.

Therefore the algorithm we devised removes all of the edges that are connect-
ing pairs of odd degree nodes in as many cases as possible, and then connects the
remaining pairs of disconnected odd degree nodes. The functions doing these are
“remove-odd-deg-nodes” and “connect-odd-deg-nodes” respectfully.

For the hot-end example, applying the remove-odd-deg-nodes function produces

the set shown in Figure 3.12.

CHAPTER 3. THE EMBODIER SLICER 33

Figure 3.12: Removed edges

Applying the connect-odd-deg-nodes function to the hot-end example after the

edges have been removed produces the set shown in Figure 3.13.

CHAPTER 3. THE EMBODIER SLICER 34

Figure 3.13: Connected edges

The function “convert-to-eulerian” applies these two sets into the graph and pro-

duces a Eulerian graph as Figure 3.14.

CHAPTER 3. THE EMBODIER SLICER 35

N
1
N
N
1
N
N
N
1
N
N
1
N
N
N
N
N
N
1
N
N
1
N
N
N
1

N = [N O [[Y Y A Y o =5

Figure 3.14: One slice of hot-end converted to a Eulerian graph

The next step is the implementation of the Hierholzer Algorithm. The basic idea

of the Hierholzer algorithm is simple:

1. Randomly walk the nodes, mark each walked node, until your walk forms a loop

— the “random-loop-walk” function does this.

2. Starting from any neighbor node of one of the walked nodes, repeat the random

walk to form new loops.

3. When all nodes are marked “walked”, combine all the walked loops into a single

circuit — the “hierholzer” function does this.

Applying the Hierholzer algorithm to our hot-end base slice in Eulerian graph
form, we obtained the graph shown in Figure 3.15. Although they are too small to
see in the figure, the nodes are numbered according to their order in the Eulerian

circuit.

36

THE EMBODIER SLICER

CHAPTER 3.

TESZLESTIASTIHSZTE uﬁﬂ STUGPTTLPTNIZITSITILTITHITTHBOLISOTABOTEBOT £86| SBE EB6| 186|662 .um.u mmu 185/ 56¥%| £GP ﬁav 68%| umr
& F,u:,u.u:qiﬁn:c ﬁ el legl Isg E:s..ucEcE Epubl L .um.u FEU 508 TEL 1Y ccu 5 (3748 2 Furﬁ.
586 q cwu r«? 0ObE BE wﬁc _‘wE_‘wErarwﬁwﬁ:ﬁm 2B TI6L HIBLLIBLINLLT]

25T 8HIT 0ZrT 9T 88)IT e[S [41 8z 413 L3 Opw e un OTPZ 7| pLpl | 0Ll | PEHT ojuﬁ

ﬁtmr IETTZETTFTIHELTR60 3 £ 5] 69 L rﬁ wu.ma?aar.cc 166 Trb6TrS6 Li96 1Y wmd_ww?ﬁaﬁ‘par.ﬁaﬁ:um
m_mrE r. ﬁE::: FEPZIETTEDIPRL 9T ,_:u Hilh a8 [3 V> 9w [99G [85)) [ZEW 0L
uarﬁ_u.mrﬁw T.mrﬁ 43 qr:un;Tur:uvrﬁ:‘oﬁ_udﬁ_ PLIEET £901 mm.mmbcﬁrroﬁ 596 :w €| 52 aﬁmwaar.maﬁuooammm [[SELIPET{I6 WSO TIETATHE .mﬁ_:aﬁ.u;m_cwwuo.mﬂEwt obﬁ:umﬁ
LTeZNIWZLLLCWLZLCLTICPIIVLL Ivs DIbcDIZPT WELLLLDIE E_”c_”::c_”_”.._,._h_”c. DILOIPLOT PI6 r:w 9L =
ﬁwr:_‘ﬁ 621z WrT.mrﬁw.m mmuﬂ L4 bﬁﬁ urﬁu Twcﬁw oﬂqﬁuu T TOTITOW0TLLOT Ip90TEO0TE L0THL0T| E96| ETB| S Ii¥ 6P E| EBE| 18K T8
STelolt b2 eNZLLLLIPLZTeL Ll ORI IZSET WrLbL)ILILZO) WOV LUD] 6IWLDL 5[PI8 & sk Ustht)e civatay
PIEIDZENOZIRLTIILTTPLTINRZT)FOTREQ P20TPZ0TDZOH)TOTROOTO0TFO0O Ty 90T OZ8| BI8| 918 296 80! JQJ e mﬁuvcummoﬁ_‘cr oﬁ
clelELCLEIUETOLLISZT LZZIB2ZILp) L) ISPDISCOL L 9r0IbLoL SUOLZPUISYDL TES Z18 by Ubb BUY 5 ¢ &L 1"
ACETHEC ZETIPOTrPOT E90TH#0T| € c wrwﬁccaﬁ.uoa 06 LI 98 198 Ti J.m:.quJPS.umﬂ 97
T2 [W WEE [EV)IT ¢9UTIOS UL EE8 vy c;a :a s ¢ ! 6L 0B I8UL IPUH 9IS [6 S IS :cu_w:uc:c:
ﬁ1701~mc1ﬁmuu~ BILIECZT[E2 T90TESOT 2F6) S
T #OEL e | SPISUIESUT 9pFb . :.w

el

ZE166 196 0021002] 56 #ETHIB T gad 16T} qwﬁ
06b1 Z0uz 0SbIsL

~

S

e

z,& vrY rcd._:r
LLE ¥ Y| Sk 1621907
9T e

xm_:jéu_ic, 067

e
mElm Sm ©
bl

og|int

.mm:,:mﬁ |
GO TLTPIZEET

ccrﬁ.:rﬁﬁrﬁnﬁ

m

m

|
:

| e

ur.m
LOPT PEY UEB UG rw.w fo 8l
BOYTIOPT| E48 TL8| 606 £25 126 616
ZerIvursurl bEY ¢/¥ L3d vIE bl Ulb 5
mbvﬁrhnfmr .nzw1ﬁ_urq~..w1ﬁ_um1ﬁ w1ﬁ‘ 1Fv13 qﬁ oqﬁ 0T 055 aww mm 806|001 wor sor
«.a Pr Eananr:qr E:.;:u TPy lo%
P TIBBPT[4P nvrquﬁ SPTiby v«.ﬂanJ.S.u 76! 53159.1..3
por oGP Uzl hyvrIssrlvprl ¢ oilete q:m“.m

@

BE

o
m

SN
Jon

un rvs uvs LT# ﬁs1 arq

—
m

Hm .r«:...E. 1 r_ :ﬁrc;;cuﬁcq, F.ﬁ ﬁru Ev;ﬁu.m:ﬁr.w;ﬁcrumﬁ

ul g B ﬁ jLragiiry
vw am mw o.u 12 «.oﬁ 90T woﬁ 82 Z uﬁ r._ﬁ 97T/ 99T| woﬁ o T mmﬁ 00¢ no «.of aof mﬁr 4 Z _,..EF.ET.S TLTLE,
EUT LUT [SYT 6! T oz sue g LTLT TeL

o o,
TTET 1

1ce

it for the hot-end sl

Eulerian circu

3.15

Figure

CHAPTER 3. THE EMBODIER SLICER 37

After applying the same set of algorithms to the 20mm box, final result is shown

as Figure 3.16.

3351345 346 355 351352 14 24 188 194 195 201 168170 171 167

Figure 3.16: Eulerian circuit for the 20mm box slice

Now we are ready to generate the G-Code.

3.2.7 Gcode

The Gcode namespace generates the G-Code”. G-Code generation is simple. After
we have a set of Eulerian circuits (one for each layer), our G-Code commands for a
layer are just a set of mapping movement commands that describe a path from one

node to the next in the same order as the Eulerian circuits are given.

"Source code is given in Appendix A.7

CHAPTER 3. THE EMBODIER SLICER 38

The function “slice-str” generates the G-Code of each circuit of the layers recur-

sively:

1. Get the lowest positioned layer from a given list of layers.

2. With the “cut-point” representing the Z-axis position of this layer, translate it

to a vertical movement G-Code command “G1 Z [cut-point]”.
3. Calculate the distances between each node, stored in the list “point-distances”.

4. With the given “current-e-height” representing the extruded length (initial to
0) from the previous layer, calculate the total extruded length for each node,
stored in the list “extrusions”. Replace “current-e-height” with the last value

of the list.

5. Translate the node positions with their extruded lengths into a series of move-
ment G-Code commands, each one as “G1l X [x-axis|] Y [y-axis] E [extruded

length]”.

6. Combine the newly translated commands with the given “last-cmd” represent-

ing previously translated commands as the new “last-cmd”.

7. Call this function recursively with the new “current-e-height”, “last-cmd” and
the remain list of layers. Until the list of layers is empty, then all the circuits

are translated to G-Code commands.

The only tricky part is each of the extrusion axis G-Code command uses absolute
distant to represent the extruded length of the plastic filament. As a result, each
movement will increase the extruded length of the filament globally, to satisfy the

requirement of the G-Code command.

Chapter 4

3D Printer Simulator

The best way to test the result of the Embodier slicer would be to execute the
G-Code on an actual 3D printer. However, different 3D printers have different con-
figurations. The melting point will be different depending on the plastic type, and
there are different filament diameters, printer head nozzles sizes and others to be
considered. To reduce the time duration of this project, we left out these factors and
used a 3D printer simulator to validate the generated G-Code instead.

The simulator could served as a G-Code previewer for the Embodier slicer in the

future.

4.1 Requirements of the 3D Printer Simulator

A G-Code program is simply a series of movement commands for all stepper
motors of the 3D printer. These motors control the position, speed, and accuracy of

the printing process. The motors are:

e X axis stepper motor — controls the left-and-right movement of the printer head.

e Y axis stepper motor — controls the forward-and-backward movement of the

printer head.

39

CHAPTER 4. 3D PRINTER SIMULATOR 40

e 7 axis stepper motor — controls the height movement of the printer head. The
height movement only needs to be accurately controlled for the up movement.
Therefore some SLA printers do not achieve this with a stepper motor. For
example, the Peachy printer simply uses liquid drops to raise the water-level,

such that the height of the printing surface increases along with the water-level.

e E axis stepper motor — controls the extruding rate, pressure, pause of the print-

ing material in the nozzle. SLA printers does not need this motor.

G-Code is basically an imperative style programming language that commands
these motors. G1 is the movement command specifically. There are other commands
that control the calibrations, speed, reset, etc. of the printer and we are leaving those
out deliberately.

The simulator then does the following procedure:
1. Parses the G-Code and finds the movement commands.

2. Follows the movement commands and draws the printing path along the move-

ments only if the E stepper motor is in the status of extruding printing materials.
3. The drawn paths are then output to WebGL Canvas of a supported browser.

The whole simulator will be compiled to pure html/javascript and requires no server

or internet to execute.

4.2 Structure of the 3D Printer Simulator

The implementation of the simulator are separated into following namespaces:
e core — the entry point of the program, the joint of all other parts.

e fileapi — the parser of the G-Code that reads the X, Y, Z and E movements.

CHAPTER 4. 3D PRINTER SIMULATOR 41

e canvasdraw — graphic engine that draws the parsed printing path to WebGL

Canvas.

e webcomponents — the Web Interface widgets for file upload, view angles and

layer controls.

4.3 Implementation

4.3.1 Core

The core is where all namespaces are connected together'. Two major libraries

are being used as the framework here:

e Secretary — A client side routing library. You can have RESTFul style URL

routing just within browser without making any request to a server.

e Reagent — A wrapper library for Facebook React. React uses functional re-
active programmer approach to build Web UI components. Basic idea is that
the Ul components “react” to program status changes, saves huge amount of

programmer efforts to setup event hooks and callbacks.

Three routes are setup. They are the upload route, the layers route and the root
route where it is just an alias for the upload route. Upload route is where all of the
file upload web components are active, and the layer route is where all of the WebGL
and layer control web components made active.

When any of the routes being called by the browser from URL requesting, an

[4

atom that is being monitored by Reagent is then updated(by the “reset!” function),

and the related web components are activated.

!Source code is given in Appendix B.1

CHAPTER 4. 3D PRINTER SIMULATOR 42

4.3.2 Fileapi

G-Code files are text files. Thus the G-Code parsing of Fileapi is strictly string
analyzing?. The main function of this namespace is “readFile”. The threading macro
in this function connected all other functions of the Fileapi namespace:

(reset! layers (-> raw-str s/split-lines filterG1 layered cmd-map collapseZ collap-

seXYE add-next))

1. “raw-str” is the direct string from file.

2. “gplit-line” makes a vector of lines.

3. “filterG1” removes any non-movement commands.
4. “layered” partitions the lines by Z movements.

5. “emd-map” translate each movement command into a map of axis and values

like {:x 1, :y 2, ...}

6. “collapseZ” duplicates the Z axis values to all movement commands within the

its layer.

7. “collapseXYE” duplicates the X, Y, E axis values to their following commands

that is missing those values.

8. above two collapsing functions effectively convert the imperative information

(where global status are everywhere) into stateless declarative information.

9. “add-next” function adds the “next” key value pair to each command base on
extrusions. If there existed an extrusion movement, then {:next (next position)}

are added into the command, else a nil value is added. This information helps

2Source code is given in Appendix B.2

CHAPTER 4. 3D PRINTER SIMULATOR 43

the draw engine to draw the extruding lines from “this movement position” to

“next movement position”.

The final result is a series of stateless, self-explanatory and independent movement
commands. Future optimization will be greatly benefit from this kind of data, since
they can be easily parallelized.

Then “setOnLoad” is the event trigger point function that hooks the string parser

whenever a file is loaded into the browser memory.

4.3.3 Webcomponents

The webcomponents namespace are a collection of HTML UI widgets®. They are
either changing or react to the atoms that they are bound to. These atoms are the

only status that we need to keep track of:
1. routes — determines which Ul widgets to be turn on or off.
2. layers — stores the parsed movement commands once a G-Code file is loaded.

3. current-layer-num — Layer view controller changes this atom so that a detailed

layer is drawn as lines while others layers are drawn as points.

4. reqg-id — Stores the ID so that the draw engine can cancel an animation frame re-
quest previously scheduled through a call to window.request AnimationFrame().

This increases the performance after multiple G-Code sessions.

4.3.4 Canvasdraw

Canvasdraw is the CG engine that draws the 3D G-Code path into a WebGL
canvas component?. This is the same as most of the game loops in game engines.

The animation anonymous function in “show-layer” is the constantly running loop.

3Source code is given in Appendix B.3
4Source code is given in Appendix B.4

CHAPTER 4. 3D PRINTER SIMULATOR 44

Notice that the animation loop is running outside of the Reagent framework. That
means the animation will not react to atom changes automatically. So we have to
dereferences the atom in the “update-scene” function and this function is triggered
by an “on-mouse-out” event.

Since the animation loop itself is not controlled by Reagent, as it is getting more
complicated, variable states will eventually out of control. Re-factor this loop to follow
an Entity component system style is most likely happening in the future development.
In the end, the whole stack would be functional and data centric, and free of objects

and states.

4.4 Example Using Slic3r

Slic3r is a popular open-sourced slicer. Let us uses Slic3r to test if the simula-
tor shows the correct printing path. The model that we used is a 20mm box from

thingiverse as shown in Figure 4.1.

Figure 4.1: 20mm box from thingiverse

And Figure 4.2 shows what is drawn onto the canvas when the current layer is set

to 3:

CHAPTER 4. 3D PRINTER SIMULATOR 45

Figure 4.2: G-Code path of 3rd layer

The simulator only draws the path of the current layer. The node positions of the
underlying layers below the set current layer are only drawn as vertices, for the sake
of better visibility. As shown in Figure 4.2, we can see that the current layer requires
at least three separated paths to be drawn: two for the perimeter, one or more for the
infill. This appears to be showing the printing path of G-Code generated by Slic3r

correctly.

4.5 Validation of Embodier Slicer

With the G-Code simulator, we can now preview the end result of the G-Code
generated by the Embodier slicer.
Let us try the 20mm box model first: the complete slicing process took 6 minutes

on a 2012 Mac-book Air with 1.7 Ghz i5 CPU. The result is shown as Figure 4.3.

CHAPTER 4. 3D PRINTER SIMULATOR

(a) First layer, the bottom layer

(b) Second layer

(c) Tenth layer

(d) Thirty-third layer, the last layer

Figure 4.3: G-Code path for the 20mm box.

46

CHAPTER 4. 3D PRINTER SIMULATOR 47

For the first layer in Figure 4.3a, the generated path is a single and continuous
one. Being the bottom layer, it forms the surface of one side of the box. The infill
pattern is dense and traverses all parts, leaving no gap as desire.

For the second and the tenth layer (Figure 4.3b, 4.3c), we can see that the prop-
erties of quad tree leads the generated path of the center contain area to have low
density pattern. And then the path along the perimeter became dense again, such
that the surface of the box will not have gaps. Not only the quad tree data structure
gives us the efficient in speed and memory, but it also gives us a desire structure that
saves plastic consumption and maintains continuous surfaces.

Lastly, for the last layer as shown in Figure 4.3d, we found a problem instantly —
as the last layer forms the top surface of the box, the generated path pattern needs
to have high density such that it traverses all parts. However, the current generated
path is very similar to the paths of the middle layers like the second and the tenth.
Obviously, this path will leave huge open spaces in the surface of the box.

The cause of the problem is a bug in the slicing planes generation such that the
last plane generated is slightly lower than the top surface. This minor error remains
to be fixed by the newer version of the Embodier slicer.

And let us try to preview the G-Code for the hot-end model: the complete slicing
process took 30 minutes on a 2012 Mac-book Air with 1.7 Ghz i5 CPU. The result is

shown as Figure 4.4.

CHAPTER 4. 3D PRINTER SIMULATOR

(a) First layer, the bottom layer

(b) Second layer

(c) Tenth layer

(d) Thirty-fifth layer, the last layer

Figure 4.4: G-Code path for the hot-end model.

48

CHAPTER 4. 3D PRINTER SIMULATOR 49

For the first layer in Figure 4.4a, the generated path is a single and continuous one
as expected. However, unlike the 20 mm box, the hot-end model has hollow spaces.
The conversion of layer into Eulerian graph leads the generated path to be running
across the hollow spaces, and this will required further processing after the object is
printed. In the future version, a better algorithm that reroutes the crossing segment
of the path could produce better results.

For the preview of the second and tenth layer (Figure 4.4b, 4.4c), a continuous
single extrusion path, the loose pattern for the center contain area and the dense
pattern for the path along the perimeter are observed in the graph as expected.
However, the generated path is also running across the hollow spaces, and leads to
further processing of the object after printed.

Lastly, for the last layer as shown in Figure 4.4d, besides the crossing path on the
hollow spaces, we also found the problem caused by the Embodier slicer that it did
not correctly generates the last slicing plane — it leads to the open spaces that should
have been closed by a high density path pattern that traverses all parts. The next

version from the version of this report would have this minor error fixed.

Chapter 5

Conclusion

The Embodier slicer still has lots of improvements to be added. For the Eulerian
graph conversion, we could improve it by generating shorter jumps, rerouting longer
jumps to avoid hollow spaces etc. Also, instead of using quad trees, the parity of the
trees could be increased from 4 to 32 or 64 (depending on the memory address widths
supported by the operating system and the hardware). With the increased parity, the
depth of the trees will decrease dramatically, such that it will yield significant faster
access times. (from O(log, N) to O(logs, N)). Lastly, each partitioned space could
be filled with more detailed infill patterns.

The Embodier slicer provides following major improvements using the single ex-

trusion approach for 3D print model slicers:

1. Reliability - eliminate sudden change of gear movements.

2. Speed - less traversal distance for the printer head.

The Embodier slicer proves that Space Partitioning, Flooding Algorithm, Eulerian
Graph and Hierholzer Algorithm can be jointly applied to 3D printer slicing and
infilling procedures.

Although there are still more works to make the Embodier slicer to generate usable

G-Code for a specific model of 3D printers, the slicer successfully generates continuous
50

CHAPTER 5. CONCLUSION 51

G-Code paths in an efficient manner, without any hardware modification required.
The Embodier slicer provides a basis for further development of a printing slicer, for

3D printers that generate continuous extrusion paths.

Appendices

52

Appendix A

Embodier Slicer

A.1 Source Code of “slicer.core”

(ns slicer.core
(:require [clojure.tools.cli :refer [parse—opts]]
[slicer . file :as f]
[slicer .slice :as s]
[slicer .gcode :as g])

(:gen—class))

;. ##cli specs
;; declare the specs for the cmd args
(def cli—options
[[7-h® "—help”]
["—s” "——stl_STL—file” ”embodier_—s._[stl—file—name].” :id
— :stl :validate [#(re—find #”.+\.st1” %) "Must_.be_a.
— binary .STL_file .”]]

93

APPENDIX A. EMBODIER SLICER 54

[N _ " ”_ 7 7

g —gcode._Gcode—file embodier_.—g.[gcode—file—name].

< 7 :id :gcode :default ”out.gcode”]

(def help—txt "To.slice STL, _simply._run:._\”embodier.—s.|

— stl—file—name | .—g.[gcode—file—name|\” .”)

o ## the exit
(defn exit [status & msg]
(when msg (println msg))

(System/exit status))

o ## Main function , entry point of the command
;5 first destructed the map from tools.cli, making it more
— readable.
;; If there are mo errors and it ’s not a help request,
— process with file 10
(defn —main [& args]
(let [{opts :options args :arguments summary :summary errs
< :errorsj}
(parse—opts args cli—options) |
(when (not (empty? errs))
(doseq [err errs]
(println err))
(exit 1))

(when (:help opts)

APPENDIX A. EMBODIER SLICER 55

(println help—txt)
(exit 0 summary))
; (when (:stl opts)
(println (pron—str (f/parse—stl (:stl opts)))))
(when (and (:gcode opts) (:stl opts))
(g/write—gcode (:gcode opts)
(—> (s/slice (:triangles (f/parse—stl (:
— stl opts)))
(s/gen—planes (:min (s/
— find—min—max :z (:
< triangles (f/
parse—stl (:stl opts)
1)) (max (s/
find—min—max :z (:
triangles (f/
parse—stl (:stl opts)

)))) 0.3 :2)

X

1 7)
s /rm—nil
s/tri—compressor

g/gcode)))

A.2 Source Code of “slicer.file”

(ns slicer. file

(:use gloss.core

APPENDIX A. EMBODIER SLICER

gloss .io

clojure.java.io))

(def delimiters [”\r” 7\r\n” 7\n”

sy ## binary triangle frame

(defcodec b—triangle

(ordered—map

\newline |)

:normal [:float32—le :float32—le :float32—1le]

:vertex—1 [:float32—1le :float32—le :float32—1le]

:vertex—2 [:float32—le :float32—le :float32—1le]

:vertex—3 [:float32—le :float32—le :float32—1le]

cattribute :uintl6))

s ## ascit triangle frame

(defcodec a—triangle
(ordered—map
i~ (string :utf-8 :delimiters
:normal [(string—float :utf—8
(string—float :utf—8
(string—float :utf—8

i~ (string :utf—8 :delimiters

["normal.”])

:delimiters [\space])
:delimiters [\space])
:delimiters delimiters)]

["vertex.”])

:vertex—1 [(string—float :utf—8 :delimiters [\space])

(string—float :utf—8 :delimiters [\space])

(string—float :utf—8 :delimiters delimiters)]

56

APPENDIX A. EMBODIER SLICER 57

i~ (string :utf—8 :delimiters [”vertex.”])

cvertex—2 [(string—float :utf—8 :delimiters [\space])
(string—float :utf—8 :delimiters [\space])
(string—float :utf—8 :delimiters delimiters)]

i~ (string :utf—8 :delimiters ["vertex.”])

:vertex—3 [(string—float :utf—8 :delimiters [\space])
(string—float :utf—8 :delimiters [\space])
(string—float :utf—8 :delimiters delimiters)]

i~ (string :utf—-8 :delimiters [”endfacet”])

i~ (string :utf—8 :delimiters delimiters)

)

)

sy ## binary stl frame

;; [header triangles]
;; another way to interpret header is (vec (repeat 80 :byte))
(defcodec b—stl

(ordered—map

:header (string :utf—8 :length 80)

:triangles (repeated b—triangle :prefix :uint32—le)))

s ## Ascii stl frame decode

;7 The number of appearance of "normal” will be exactly how

— many triangles

APPENDIX A. EMBODIER SLICER 58

;; Gloss documentation gives the following method:
;;itriangles (repeated a—triangle :delmiters [7endsolid”]) .
;; But this does not work.
sy Thus I have to count the words manually
(defn adecode [buffer]
(let [n (count (re—seq # normal” (String. buffer)))
a—stl (compile—frame
(ordered—map
:header (string :utf—8 :delimiters delimiters
=)
striangles (vec (repeat n a—triangle))
(string :utf—8 :delimiters delimiters)))]
(decode a—stl buffer false)))

s ## parse file

sy 115 111 108 105 100 are the magic numbers for 7solid”
;o At first it keeps giving incifient bytes errors.
;5 Then I tested the codec and finds out that it s the
— endianess that is messing with me.
(defn parse—stl [stl—file]
(let [length (.length (file stl—file))
buffer (byte—array length)]
(.read (input—stream stl—file) buffer)
(if (= ’(115 111 108 105 100) (first (split—at 5 buffer))

=)

APPENDIX A. EMBODIER SLICER

(adecode buffer)
(decode b—stl buffer))))

59

A.3 Source code of “slicer.slice”

(ns slicer.slice)

(defn dot=
~.Dot_Product
~.This_is_a.simple_version_of_dot_product_just_for._3—tuples”
[[x1 y1 2zl :as pl]
[x2 y2 22 :as p2]]
{:pre [(float? x1) (float? yl) (float? zl)

(float? x2) (float? y2) (float? z2)]}

(¢ x1 x2)

(* y1 y2)
(x+ z1 2z2)))

(defn norm

~.Norm.of_a_vector

2

[[x v z :as v]]

(Math/sqrt (dot*x v v)))

APPENDIX A. EMBODIER SLICER 60

(defn point—plane

-..Distance_from._point _to_plane

-.Returns_the_distance.

_oIfiresult_is_positive ,.point_is_at_the_side_of_the_normal,
~.if_the_result._.is_.negative ,_point_is_at_the_other_side_of_

< the._.normal.

2

[[x0 yO z0 :as point]
[[x2 y2 z2 :as normal] [x1 yl zl :as position] :as plane]]
{:pre [(float? x1) (float? yl) (float? zl)
(float? x2) (float? y2) (float? z2)
(float? x0) (float? y0) (float? z0)]}
(/
(dot* normal (map — point position))

(norm normal)))

(defn plane—line—inc
~.Ray/Segment_and_Plane_intersection
~.line_is_represented._by.start—point._and_end—point
_.plane_is._represented_by.normal_direction_vector.(from.

< original)_and_the_position._point
_.returns._the_intersection_point.if_there_is_one,
~oreturns.nil .when_.not_having._any,

~.returns_the_line_when_.the_line_.is_on_the_plane.

APPENDIX A. EMBODIER SLICER 61

7

—

[[[x1 y1 2zl :as start—point] [x2 y2 2z2 :as end—point] :as
— line]
[[x3 y3 2z3 :as normal] [x4 y4 z4 :as position]| :as plane]]
{:pre [(float? x1) (float? yl) (float? zl)
(float? x2) (float? y2) (float? z2)
(float? x3) (float? y3) (float? z3)
(float? x4) (float? y4) (float? z4)]}

(let [d (dot* normal (map — end—point start—point))]

(cond (and (zero? (point—plane start—point plane)) (zero?
< (point—plane end—point plane))) line
(zero? d) nil
celse (let [r (/ (dot* normal (map — position
< start—point)) d)]
(if (and (<=1 1) (>=1 0))
(vec (map + start—point (map * [r r r] (
< map — end—point start—point))))

nil)))))

(defn triangle—plane—inc
_.Triangle_and_Plane_intersection
_.If_the_entire_triangle_sits_on_the_plane,_returns._.the_whole

— otriangle;

APPENDIX A. EMBODIER SLICER

~.If_one_segment._of_the_triangle_sits_on_the_.plane,_that ' s_

— what_you.got ;

_.If_a_point.of_the_triangle_sits_there,_you_have_it;

_.If_not_intersecting ,_nil;

~.Otherwise , _you_have_the_intersection

—

—

2

[[[x1 y1 2zl :as pl]
[x2 y2 22 :as p2]
[x3 y3 23 :as p3] :as triangle]

[[x4 y4 z4 :as normal]

(x5 yb z5 :as position] :as plane]]

:pre oat’ x oat?’ y oat? z
f1 7 x1 f1 7yl f1 7zl

oat? x2 oat? y2 oat? z2
(float? x2) (float? y2) (float? 22)
(float? x3) (float? y3) (float? z3)

oat’ x oat ! oat”’ z
(fl 7 x5) (fl 7 yh) (fl 7 z5)

(float? x4) (float? y4) (float? z4)]}

(let [ds (map #(point—plane % plane) triangle)]
(cond
(= 3 (count (filter zero? ds)))

triangle

(= 2 (count (filter zero? ds)))

(vec (filter #(zero? (point—plane % plane)) triangle))
(= 1 (count (filter zero? ds)))

(if (neg? (apply * (filter (complement zero?) ds)))
[(first (filter #(zero? (point—plane % plane))

— triangle))

(plane—line—inc

62

APPENDIX A. EMBODIER SLICER

(vec (filter #(not (zero? (point—plane % plane)))
— triangle))
plane) |
(vec (first (filter #(zero? (point—plane % plane))
— triangle))))
celse
(if (or (empty? (filter neg? ds)) (empty? (filter pos?
= ds)))
nil
(vec (filter (complement nil?)
[(plane—line—inc [pl p2] plane)
(plane—line—inc [p2 p3] plane)
(plane—line—inc [p3 pl] plane)]))

))))

(defn slicing—plane
~.Given.a.x/y/z.axis.value_and_the_axis._keyword.:x/:y/:z,.

< returns._the_plane_[[x_y_z_:as_.normal]_[x_y_z_:as_plane

=]

[a b]

{:pre [(float? a)

(keyword? b)]}

(cond

(= b :x) [[1.0 0.0 0.0] [a 0.0 0.0]]

(= b :y) [[0.0 1.0 0.0] [0.0 a 0.0]]

APPENDIX A. EMBODIER SLICER 64

(=b :z) [[0.0 0.0 1.0] [0.0 0.0 a]]))

(defn gen—planes

7

-.Generate_a_series_of_slicing—planes._from.’start *_to.’end’_

— each.’step ’_along_the_provided. axis’

[start end step axis]

{:pre [(number? start)
(number? end)
(number? step)
(keyword? axis)]|}

(vec

(for [i (range (bigdec start) (bigdec (4+ end step)) (
< bigdec step)) |

(slicing—plane (double i) axis))))

(defn find—min—max

"finds _.the_highest _and_lowest _point_in_axis_of_.a_collection
— .of.triangles._along._provided._axis”

[axis

[{[x1 yl z1 :as pl] :vertex—1 [x2 y2 z2 :as p2]| :vertex—2
— [x3 y3 z3 :as p3] :vertex—3} & tris :as triangles]]

{:pre [(number? x1) (number? x2) (number? x3) (number? yl)
— (number? y2) (number? y3) (number? zl) (number? z2) (

— number? z3) (keyword? axis)]}

{:min

APPENDIX A. EMBODIER SLICER

(reduce (fn [min—num tri]
(cond
(= axis :x)
(min
min—num
(min (first (:vertex—1 tri))
(first (:vertex—2 tri))
(first (:vertex—3 tri))))
(= axis :y)
(min
min—num
(min (second (:vertex—1 tri))
(second (:vertex—2 tri))
(second (:vertex—3 tri))))
(= axis :z)
(min
min—num
(min (last (:vertex—1 tri))
(last (:vertex—2 tri))
(last (:vertex—3 tri))))))
(cond (= axis :x) (min x1 x2 x3)
(= axis :y) (min yl y2 y3)
(= axis :z) (min zl 22 z3))
tris)
:max

(reduce (fn [max—num tri|

(cond

65

APPENDIX A. EMBODIER SLICER

(= axis :x)
(max
max—num
(max (first (:vertex—1 tri))
(first (:vertex—2 tri))
(first (:vertex—3 tri))))
(= axis :y)
(max
max—num
(max (second (:vertex—1 tri))
(second (:vertex—2 tri))
(second (:vertex—3 tri))))
(= axis :z)
(max
max—num
(max (last (:vertex—1 tri))

(last (:vertex—2 tri))

)
)
(last (:vertex—3 tri))))))
(cond (= axis :x) (max x1 x2 x3)
(= axis :y) (max yl y2 y3)
)

(= axis :z) (max zl z2 z3))

tris)}

(defn triangle—map2vector

"convert._triangle_map_.to_vector”

66

[{v3 :vertex—3, v2 :vertex—2, vl :vertex—1, :as triangle }]

APPENDIX A. EMBODIER SLICER

[vl v2 v3])

(defn slice
"slice_every.triangle_of_the_model_with_every._plane_along.
— the_axis”
[triangles planes axis]|
{:pre [(map? (first triangles))
(map? (last triangles))
(vector? triangles)
(vector? planes)
(vector? (first planes))
(keyword? axis) |
:post [(seq? %)
(map? (first %))]}
(for [triangle triangles
plane planes|
(let [result (triangle—plane—inc (triangle—map2vector
< triangle) plane)]
{;:azis azxis
ccut—point (cond (= axis :x) (first (second plane))
(= axis :y) (second (second plane))
(= axis :z) (last (second plane)))
coplane plane
sotriangle triangle

:result result})))

(defn rm-—nil

67

APPENDIX A. EMBODIER SLICER

"remove_nil _results”
[results |
{:pre [(seq? results)
(map? (first results))]
:post [(seq? %)
(map? (first %))]}
(filter
(fn [result|

((complement nil?) (:result result))) results))

(defn tri—compressor
"transpose._.results._.to_collections._of_triangles._based_on.
<~ their_cut—points”
[[{;azis :axis
cut—point :cut—point
;plane :plane
striangle :triangle
result :result} & more :as results]]
(let [cuts (—> (group—by :cut—point (vec results)) sort)]
(for [cut cuts]
{:cut—point (first cut)
:result (for [line (second cut)]

(:result line))})))

68

A.4 Source code of “slicer.tree”

(ns slicer.tree

APPENDIX A. EMBODIER SLICER 69

(:require [clojure.core.match :refer [match]])

(:use slicer.util))

(def tree—arity 4);changing this will affect the performance
< of this algorithm. aware that some functions (

— split—aabb ...) are not arity changable

(defn line—box—inc
"check.if_a_.line_start _and_end_by_.two_points_is_intersected
— _with_an_AABB_box._Imprative_since_performance.is.
<~ important”
([[x1 y1 :as line—start] [x2 y2 :as line—end]
[min—x min—y max—x max—y :as aabb]]
(line—box—inc [x1 yl] [x2 y2] [min—x min—y| [max—x max—y])
)
([[x1 y1 :as line—start] [x2 y2 :as line—end]
[min—x min—y :as box—min] [max—x max—y :as box—max| |
(let [m (atom 0.0)
x (atom 0.0)
y (atom 0.0)]

(cond

< X2 min—x
< y2 min—y

()
()
(> x2 max—x)
()

APPENDIX A. EMBODIER SLICER

(do

(reset! m (/ (— y2 yl) (— x2 x1)))

(reset! y (+ (% @n (— min—x x1)) yl))

70

(and (s>= @y min—y 0.000001) (s<= @y max—y 0.000001)

<)) true
(do

(reset! y (+ (% @m (— max—x x1)) yl1))

(and (s>= @Qy min—y 0.000001) (s<= @Qy max—y 0.000001)

<)) true
(do
(reset! x (+ (/ (= min—y yl) @m) x1))

(and (s>= @x min—x 0.000001) (s<= @x max—x 0.000001)

—)) true
(do
(reset! x (+ (/ (— max—y yl) @m) x1))

(and (s>= @x min—x 0.000001) (s<= @x max—x 0.000001)

<)) true

celse false

))))

(defn tri—box—inc

"check_if _a_triangle_intersects._with_an_AABB_box.”

([[x1 y1 :as tri—1] [x2 y2 :as tri—2] [x3 y3 :as tri—3]

[min—x min—y max—x max—y :as aabb]]
(tri—box—inc [x1 yl] [x2 y2] [x3 y3] [min—x min—y]|

— max—y])

[max—x

APPENDIX A. EMBODIER SLICER 71

([[x1 y1 :as tri—1] [x2 y2 :as tri—2] [x3 y3 :as tri—3]

[min—x min—y :as box—min] [max—x max—y :as box—max]| |

(cond
(or

(and (< x1 min—x) (< x2 min—x) (< x3 min—x))

(and (< yl min—y) (< y2 min—y) (< y3 min—y))

(and (> x1 max—x) (> x2 max—x) (> x3 max—x))

(and (> yl max—y) (> y2 max—y) (> y3 max—y))) false ;

— tri completely outside
(and
(and (< x1 min—x) (> x1 max—x) (< yl min—y) (> yl max—y
=))
(and (< x2 min—x) (> x2 max—x) (< y2 min—y) (> y2 max—y
=))
(and (< x3 min—x) (> x3 max—x) (< y3 min—y) (> y3 max—y

<))) true ;tri completely inside bozx

(or
(line—box—inc [x1 yl] [x2 y2]| [min—x min—y] [max—x
> max—y])
(line—box—inc [x2 y2] [x3 y3| [min—x min—y] [max—x
— max—y])
(line—box—inc [x3 y3] [xl yl]| [min—x min—y] [max—x
— max—y|)) true ; edge intersecting
(and

(< (min x1 x2 x3) min—x)
(> (max x1 x2 x3) max—x)

(< (min yl y2 y3) min—y)

APPENDIX A. EMBODIER SLICER

(> (max yl y2 y3) max—y)) true ;box completely inside
— tri

celse false

)))

(defn point—box—inc
"check_if _a_point_is._inside_an_AABB”
([[x1 y1 :as point]
[min—x min—y :as box—min |
[max—x max—y :as box—max]]
(and (s>= x1 min—x 0.000001) (s<= x1 max—x 0.000001)
(s>= yl min—y 0.000001) (s<= yl max—y 0.000001)))
([point [min—x min—y max—x max—y :as aabb]]

(point—box—inc point [min—x min—y] [max—x max—y])))

(defn line—line—inc
"check_if _two_lines_intersects”
[[x1 y1 :as start—1] [x2 y2 :as end—1] [x3 y3 :as start—2]
— [x4 y4 :as end—2]]
(let [aabbl
[((min x1 x2) (min yl y2)

(max x1 x2) (max yl y2)]

aabb2

[(min x3 x4) (min y3 y4)
(max x3 x4) (max y3 y4)]

al (— y2 y1)

bl (— x1 x2)

72

APPENDIX A. EMBODIER SLICER

(+ (x al x1) (x bl yl))
(= v4 y3)
b2 (— x3 x4)
(+ (+ a2 x3) (* b2 y3))
det (— (% al b2) (% a2 bl))]
(if (zero? det)
nil
(let [x (/ (- (b2 cl
y (/ (= (x al c2

) (% bl c2)) det)

)
intersect? (and (point—box—inc [x y] aabbl)

(

(¥ a2 cl)) det)

point—box—inc [x y] aabb2))]
(if intersect?

[(double x) (double y)]
nil)))))

:(line—line—inc [0 10] [0 —10] [0 0] [1 0])
0] [0 —1] [0 1])
0] [-1 1] [1 1])
(line—line—inc [—1 0] [1 0] [2 —1] [2 1])
(line—line—inc [—1 0] [2 0] [2 —1] [2 1])
:(line—line—inc [—1 0] [2 0] [2 8] [2 1])

i (line—line—inc [0 0] [2 0] [0 1] [2 1])

;(line—line—inc [—1 0] [1
;(line—line—inc [—1 0] [1

(defn point—point—distant
"distance._between_two_points”
[[x1 y1] [x2 y2]]

(let [dx (Math/abs (— x2 x1))

73

APPENDIX A. EMBODIER SLICER 74

dy (Math/abs (— y2 yl1))]
(Math/sqrt (+ (* dx dx) (x dy dy)))))

;(point—point—distant [0 0] [3 /])

(defn distant—closer—to—point [[x1 yl :as pl]]
"give_a.point ,_returns._a_function._taht_takes_two_points
~.and_returns_if _the_distance_between_two_points_are_closer.
— to._the_first _point”
(fn [[x2 y2 :as p2] [x3 y3 :as p3]]
(match [p2 p3]
[[x2 y2] [x3 y3]]

(let [delta—x1 (Math/abs (— x2 x1))
delta—yl (Math/abs (— y2 yl))
delta—x2 (Math/abs (— x3 x1))
delta—y2 (Math/abs (— y3 yl1))]

(< (+ delta—x1 delta—yl) (+ delta—x2 delta—y2)))

[p2 nil] false
[nil p3] true
celse false)))

;(reduce into (sorted—set—by (distant—point [0 0]))

; [[[3 4] [4 4] nil nil [1 1] nil [2 2]]

; nil

; [[4 3] [3 3]]])

APPENDIX A. EMBODIER SLICER 75

(defn line—slice—inc
"check _segment_of_line_and_slice_intersection .
~.returns._first_intersections.in_order_of_their._distance_to.
— start._point”
[[[sx1 syl :as start]| [ex2 ey2 :as end]| :as line] a—slice]
(vec (filter (complement nil?) (reduce into (sorted—set—by
< (distant—closer—to—point start))
(for [geo a—slice]
(match [geo]
[[[x1 y1 & [21]][x2 y2 & [22]][x3 v3 & [#3]]]] ;
— triangle
[(line—line—inc start end [x1 yl] [x2 y2])
(line—line—inc start end [x2 y2] [x3 y3])
(line—line—inc start end [x3 y3] [x1 yl])]
[[[x1 y1 & [z1]][x2 y2 & [z2]]]] ;line
[(line—line—inc start end [x1 yl] [x2 y2])]

celse nil))))))

;(line—slice—inc [[32 4.5] [-32 4.5]]
; [[[28 10] [28 0]]
; [[29 10] [29 0]]])

s(line—line—inc [82 4.5] [-32 4.5] [28 &8.5] [28 4.5])

;(line—slice—inc [[0 0] [10 0]]
; [[[1 1 1] [1 =1 1]]
; [[-1 —1 1] [1 1 1] [1 —1 1]]

APPENDIX A. EMBODIER SLICER

; [[1 1]]])

;(line—line—inc [0 0] [10 0] [1 1] [1 —1])
;(line—line—inc [—1 0] [10 0] [-1 1] [1 —1])
;(line—line—inc [—1 0] [10 0] [-1 —1] [1 1])

(defn slice—box—inc
"check._if _a_slice_is_intersecting .an_AABB”
[[min—x min—y max—x max—y :as aabb—box]| a-—slice]
(reduce #(or %1 %2) false
(for [geo a—slice]
(match [geo]
[[[x1 y1 z1][x2 y2 z2][x3 y3 z3]]]
(tri—box—inc [x1 yl] [x2 y2] [x3 y3] [min—x
> min—y] [max—x max—y])
[[[x1 y1 21][x2 y2 22]]]
(line—box—inc [x1 yl] [x2 y2]| [min—x min—y]
 max—x max-y])
[[x1 y1 #1]]
(point—box—inc [x1 yl] [min—x min—y| [max—x
— max—y])

celse false))))

(defn aabb—tri
"get _aabb_from_triangle”

[[[x1 y1 -] [x2 y2 -] [x3 y3 _] :as tri]]

[

76

APPENDIX A. EMBODIER SLICER 7

[(min x1 x2 x3) (min yl y2 y3) (max x1 x2 x3) (max yl y2 y3

= 1)

(defn aabb—line
"get._aabb_from._line”
[[[x1 y1 _] [x2 y2 _] :as line]]

[(min x1 x2) (min yl y2) (max x1 x2) (max yl y2)])

(defn aabb-—slice
"get _aabb_box_from_.a_list _of_geometries”
[a—slice & [border]]
(loop [geos a—slice
min—x 0
min—y 0
max—x 0
max—y 0]
(if (<= (count geos) 0)
(if (nil? border)
[min—x min—y max—x max—y |
[(— min—x border) (— min—y border) (+ max—x
— border) (+ max—y border)])
(match [(first geos)]
[[[x1 y1 _] [x2 y2 _] [x3 y3 _]]] ;triangle
(let [[mx my maxx mayy| (aabb—tri (first geos)
=)]

(recur (rest geos) (min min—x mx) (min min—y

< my) (max max—x maxx) (max max—y mayy)

APPENDIX A. EMBODIER SLICER 78

=)
[[[x1 y1 _] [x2 y2 _]]] ;line
(let [[mx my maxx mayy| (aabb—line (first geos
=))]

(recur (rest geos) (min min—x mx) (min min—y
> my) (max max—x maxx) (max max—y mayy)
=))

[[x1 y1 _]] ;point
(recur (rest geos) (min min—x x1) (min min—y

— yl) (max max—x x1) (max max—y yl))

celse
(if (nil? border)

[min—x min—y max—x max—y]

[(— min—x border) (— min—y border) (+ max—x
— border) (4+ max—y border)])

))))

(defn smaller—than—nozzle?
"is._the_current._aabb_is_smaller_than_the_nozzle”
[[min—x min—y max—x max—y :as aabb] nozzle—diameter]
(cond
(<= (= max—x min—x) nozzle—diameter) true
(<= (= max—y min—y) nozzle—diameter) true

celse false
)
)

APPENDIX A. EMBODIER SLICER 79

(defn make—square
"make_an._.aabb BOX_square./_.width_.=_height”
[[min—x min—y max—x max—y :as aabb]]
(let [delta—x (Math/abs (— max—x min—x))
delta—y (Math/abs (— max—y min—y)) |
(if (> delta—x delta—y)
[min—x min—y max—x (+ delta—x min—y) |

[min—x min—y (+ delta—y min—x) max—y])))

(defn split—aabb
"split caabb_box_to_four_smaller_boxes”
([aabb pos]
{:pre [(keyword? pos)]}
(let [aabbs (split—aabb aabb)]
(case pos
cupper—left (first aabbs)
:upper—right (second aabbs)
:lower—1left (nth aabbs 2)
:lower—right (nth aabbs 3)
celse nil)))
([[min—x min—y max—x max—y :as aabb]]
(let [delta—x (/ (Math/abs (— max—x min—x)) 2)
delta—y (/ (Math/abs (— max—y min—y)) 2)]
[[min—x (+ min—y delta—y) (— max—x delta—x) max—y]
[(+ min—x delta—x) (4+ min—y delta—y) max—x max—y]

[min—x min—y (— max—x delta—x) (— max—y delta—y) |

[(+ min—x delta—x) min—y max—x (— max—y delta—y)]])))

APPENDIX A. EMBODIER SLICER 80

sy follwing three functions are deprecated due to potential
— StackOuerflowErrors. commented out as referencing
— matters.

(comment

(declare make—node)

(defn make—leaf
[aabb a—slice pos nozzle—diameter]
(let [aabb—node (split—aabb aabb pos)
toosmall? (smaller—than—nozzle? aabb—node
< nozzle—diameter)
intersects? (slice—box—inc aabb—node a—slice) |
(cond (and toosmall? intersects?) [:leaf aabb—node
< intersects ?]
(and toosmall? (not intersects?)) [:emptyleaf
< aabb—node intersects?]
(and (not toosmall?) (not intersects?)) [:emptyleaf
< aabb—node intersects?]
(and (not toosmall?) intersects?) (make—node [(case
<> pos
cupper—left :floodingleafA
cupper—right :floodingleafB
:lower—left :floodingleafC
:lower—right :floodingleafD)]

aabb—node a—slice nozzle—diameter)

:else [:error aabb—node]

APPENDIX A. EMBODIER SLICER 81

)))

;;this is a non—taitl call recusive function. Need core.async
— optimization later
;;a better way is to use a set of BFS nodes of the whole tree
— down to the smallest node
;;then use pmap to check AABB collision and assigned the true
— /false wvalue
;;way easier and fasters, mo conrecursion too.
(defn make—node
[tree aabb a—slice nozzle—diameter |
(let [m—leaf #(identity
[:node [(make—leaf (split—aabb aabb %)
< a—slice :upper—left nozzle—diameter)
(make—leaf (split—aabb aabb %)
<~ a—slice :upper—right
< nozzle—diameter)
(make—leaf (split—aabb aabb %)
— a—slice :lower—left
< nozzle—diameter)
(make—leaf (split—aabb aabb %)
— a—slice :lower—right
— nozzle—diameter) |
aabb (slice—box—inc aabb a—slice)])]
(match [(first tree)]
[: floodingleafA]

(m—leaf :upper—left)

APPENDIX A. EMBODIER SLICER

[: floodingleafB |
(m—leaf :upper—right)
[: floodingleafC |
(m—leaf :lower—Ileft)
[: floodingleafD]

(m—leaf :lower—right))

))

(defn make—tree
"tree_construction._from_a.layer_of_slice”
[a—slice nozzle—diameter |
{:pre [(seq? a—slice)
(number? nozzle—diameter) |}
(let [aabb (—> (aabb-—slice a—slice)
make—square)
aabbs (split—aabb aabb)
tree [:node
(make—node [:floodingleafA] (first aabbs)
— a—slice nozzle—diameter)
(make—node [:floodingleafB| (second aabbs)
— a—slice nozzle—diameter)
(make—node [:floodingleafC] (nth aabbs 2)
< a—slice nozzle—diameter)
(make—node [: floodingleafD] (nth aabbs 3)
< a—slice nozzle—diameter)
aabb

(slice—box—inc aabb a—slice)]]

82

APPENDIX A. EMBODIER SLICER

tree))

(defn tree—nodes—count
"the_.totoal _number_of_nodes_from_height_for _K—arity_based.
— tree”
[height base]
(/ (dec (Math/pow base height)) (dec base)))

(defn height
"given_tree_or.its._.leafs_count,_return.its_height”
[t b]
(cond
(or (seq? t) (vector? t)); if given a tree, return its
< height
(let [d (dec b)
¢ (count t)
a (Math/log (inc (* ¢ d)))]
(int (Math/ceil (/ a (Math/log b)))))
(number? t); if given a leaf count, return its height
(let [d (Math/log 4)
¢ (Math/log t)]
(int (inc (Math/ceil (/ ¢ d)))))

celse nil))

;(height [1] 4)

83

APPENDIX A. EMBODIER SLICER

;(height (vec (range 5)) 4)
;(height (vec (range 21)) 4)
:(height (vec (range 85)) 4)
i (height 4 4)

:(height 16 4)

:(height 65 4)

; (Math/log 4)

(defn index—to—hrp
"given_tree_arity._base_and_the_index._to_one_of_its_node, .
— return_height_and_level _position._across._the._same.

— level._OLogN_time.”
[ind base]
{:pre [(pos? base) (not (neg? ind))]
}
(loop [h 1]
(if (>= (tree—nodes—count h base) (inc ind))
(let [i (int (— ind (tree—nodes—count (dec h) base)))]
{:height h
:row—index 1i})
(recur (inc h))

)

;repl tests

84

APPENDIX A. EMBODIER SLICER

;(clojure.repl/doc case)
;(case 2

;1 01

;2 2

(mod 4 4)
;(index—to—hrp 4 4)

(defn aabb—walk

[b h r]

(let [div #(quot % b)
divs #(iterate div %)

]
aabb—walk

{:pre [(< r (Math/pow b h))]}

pos #(mod % tree—arity)

85

"given._.base,_height _and_row—index , _returns._a.walk_from_the._

— root._to.the_node._OLogN_time.”

aabb—walk (map #(identity {:position

(case (mod %l tree—arity)
— 0 :upper—left 1
— upper—right 2
— lower—left 3
— lower—right)

cheight %2})

(take h (divs 1)) ;reverse walking in
— row indezxes

(reverse (range 1 (inc h))))

APPENDIX A. EMBODIER SLICER 86

))

;(aabb—walk 4 1 0)
;(aabb—walk 4 2 0)
;(aabb—walk 4 4 16)
i (mod 15 4)

(defn hr—to—aabb
”given ._.aabb,_.base,_height _and_row._.index , _return _AABB_box_in

< _OLogN_time.”

[aabb b h r]
(if (= 1 h)
aabb

(loop [walkings (reverse (drop—last (aabb—walk b h r)))
p (:position (first walkings))
current—aabb (split—aabb aabb p)]
(let [next—walkings (rest walkings)]
(if (empty? next—walkings)
current—aabb
(recur next—walkings (:position (first next—walkings)
—) (split—aabb current—aabb (:position (first

— next—walkings)))))))))

; (hr—to—aabb [—10 —10 10 10] 4 2 0)
; (hr—to—aabb [—10 —10 10 10] 4 38 15)

; (quot (quot 63 4) 4)

APPENDIX A. EMBODIER SLICER

i(def tt1 #(quot % 4))

s(def tt2 #(iterate tt1 %))

;(def tt3 #(nth (tt2 %1) (— %2 2)))
J(tt3 16 4)

(take 3 (tt2 30))

;(iterate #(quot % /) 63)

i(iterate #(quot % 4) 15)

s(iterate #(quot % /) 3)

(defn index—to—aabb
"given._aabb,_base_and_index ,_returns_aabb._OLogN_time.”
[aabb b 1]
(let [hrp (index—to—hrp i b)]

(hr—to—aabb aabb b (:height hrp) (:row—index hrp))))

(defn index—to—center
”given ._.aabb,_base_and._.index ,_returns.center._point._OLogN.
— time.”
[aabb b 1]
(let [[min—x min—y max—x max—y| (index—to—aabb aabb b 1)
dx (/ (= max—x min—x) 2)
dy (/ (= max—y min—y) 2)]
(+ min—x dx) (+ min—y dy)]))

(defn tree—leaf—size
"given._tree_or.its._.leafs_count_.and_.root _,AABB_box,._return.

< its _minimum.AABB_width”

APPENDIX A. EMBODIER SLICER 88

[t aabb]
(let [last—index (if (number? t)
(dec t)
(dec (count t)))
[minx miny maxx maxy| (index—to—aabb aabb tree—arity
— last—index) |

(min (— maxx minx) (— maxy miny))))

(defn parent

"given.a.node.index ,.returns.parent._index”
[1]

{:pre [(integer? i)]}

(cond
(=i 0) nil
(< i 5) 0

celse (let [hr (index—to—hrp i tree—arity)
grandparent—node—count (tree—nodes—count (— (:
— height hr) 2) tree—arity)
parent—row—index (Math/floor (/ (:row—index hr
<) tree—arity))]
(int (4+ grandparent—node—count parent—row—index)))

=)

;(parent 1)
;(parent 5)
;(parent 21)

;(parent 85)

APPENDIX A. EMBODIER SLICER

;(parent 341)

(defn children
"given.a.node_index , _.returns._children_indexes:
_.|child—upper—left _child cupper—right._child—lower—left.
< child—lower—right |”
i)
{:pre [(integer? i)]}
(let [hr (index—to—hrp i tree—arity)
a (—> (—>> hr
cheight)
(tree—nodes—count tree—arity))
e (—> hr
:Tow—index
inc
(+ 4)
(+ a)
dec
int)]

[(= e 3) (= e 2) (dec e) e]))

;(children 0)
;(children 1)
;(children 2)
;(children 3)
;(children 4)
;(children 5)

89

APPENDIX A. EMBODIER SLICER
(defn generate—tree
7generate_tree._down.to._the_lowest_level _in_BFS_order._O(
< NLogN) _time”
[a—slice nozzle—diameter & [border|]
{:pre [(seq? a—slice)
(number? nozzle—diameter) |}
(let [[min—x min—y max—x max—y :as aabb] (if (nil? border)

(—> a—slice aabb-—slice make—square)
(—> a—slice (aabb-—slice border) make—square))
diff—x (— max—x min—x)
leaf—num (let [round—up (/ diff—x nozzle—diameter)
(int (Math/pow round—up 2)))
tree—height (height leaf—num tree—arity)
node—count (tree—nodes—count tree—height tree—arity)
result (atom (vec (repeat node—count nil)))]
(doseq [ind (range node—count) |
(cond
(= ind 0);get collsion test for root node
(swap! result assoc ind
(—> (index—to—aabb aabb tree—arity ind)
(slice—box—inc a—slice)))
(true? (nth Q@result (parent ind)));only get collision
— test for modes which parent is collided
(swap! result assoc ind
(—> (index—to—aabb aabb tree—arity ind)

(slice—box—inc a—slice)))))

90

APPENDIX A. EMBODIER SLICER 91

Qresult

))

(defn adjacent
"given.indexes._.of _two.nodes,_returns._if_their ,AABB_boxes.
— are.adjacent_to_each_other”
[nl n2 aabb]
{:pre [(integer? nl) (integer? n2)]}
(let [[min—x1 min—yl max—x1 max—yl :as nl—aabb] (
— index—to—aabb aabb tree—arity nl)
[min—x2 min—y2 max—x2 max—y2 :as n2—aabb]| (

< index—to—aabb aabb tree—arity n2)]

(cond

(= min—x1 max—x2) true
(= min—x2 max—x1) true
(= min—yl max—y2) true
(= min—y2 max—yl) true

celse false)))

(defn aabb—inc
"given_two_aabb_returns_if _they_are_intersecting._with_each._
— other”
[[min—x1 min—yl max—x1 max—yl :as aabbl] [min—x2 min—y2
< max—x2 max—y2 :as aabb2]]
(cond
(and

(or (and (>= min—x2 min—x1) (<= min—x2 max—x1))

APPENDIX A. EMBODIER SLICER 92

(and (>= max—x2 min—x1) (<= max—x2 max—x1)))
(or (and (>= min—y2 min—yl) (<= min—y2 max—yl))
(and (>= max—y2 min—yl) (<= max—y2 max—yl))))
— true

celse false))

(defn node—inc
7given.indexes._.of .two_.nodes,_.returns._if_their ,AABB_boxes.
— are.intersecting._.with_.each_other”
[nl n2 aabb]
{:pre [(integer? nl) (integer? n2)]}
(let [nl—aabb (index—to—aabb aabb tree—arity nl)
n2—aabb (index—to—aabb aabb tree—arity n2)]

(aabb—inc nl—aabb n2—aabb)))

(defn false—ancestor

"given._.a_tree_and_an_index_of_an_nil _node._returns_its._
— ancestor._.which.is_a_false_node”

[t]

{:pre [(—> t (nth i) nil?)]}

(loop [parent—node (parent i)]

(cond

(false? (nth t parent—node)) parent—node

:else (recur (parent parent—node))

)

APPENDIX A. EMBODIER SLICER 93

;(false—ancestor [false nil nil nil false nil nil nil nil nil

— nil nil nil nil nil nil nil nil nil nil nil nil] 17)

(defn leafs
"given.a._tree ,_.returns.its_leafs”
[t]
(let [last—index (—> t count dec)
hr (index—to—hrp last—index tree—arity)
last—row—start—index (—> hr :height dec (
< tree—nodes—count tree—arity) int)]
(—>
(for [i (range last—row—start—index (inc last—index))]
(if (nil? (nth t i))
(let [anc (false—ancestor t i)] [anc (nth t anc)])
i (nth t i)]))

set

vec)))

;(leafs [true false false false true nil nil nil nil nil nil
— nil nil nil nil nil nil true false false false])

i(leafs (range 5))

;(leafs (range 21))

;(leafs (range 85))

(defn center—aabb

APPENDIX A. EMBODIER SLICER 94

”give._aabb,_put._it_to_the_center_so_that._.[0.0.20.20].
— becomes.[—10.—10.10.10]"
[[min—x min—y max—x max—y :as aabb]]
(let [delta—x (—> (— max—x min—x) (/ 2) (4+ min—x))
delta—y (—> (= max—y min—y) (/ 2) (4+ min—y)) |
[(— min—x delta—x) (— min—y delta—y) (— max—x delta—x)

— (= max—y delta—y)]))

;(center—aabb [—1 —1 5 5])
;(center—aabb [—11 —11 =5 —=5])
;(center—aabb [11 11 15 15])

(defn point—Ileaf

"given._a.point ,_.returns._the_leaf_node_where_it_sits_on”
[p t aabb]
{:pre |
;(do (debugger p "P:7) true)
(number? (first p)) (number? (second p)) (vector? t)
< (number? (first aabb))
I}
(if (point—box—inc p aabb)
(let [child—nodes (children 0)
child—aabbs (map (fn [i] (index—to—aabb aabb
<~ tree—arity 1)) child—nodes)

sits—in—node (match [(point—box—inc p (first

< child—aabbs))

APPENDIX A. EMBODIER SLICER 95
(point—box—inc p (nth
< child—aabbs 1))
(point—box—inc p (nth
< child—aabbs 2))
(point—box—inc p (nth
< child—aabbs 3))]
[true - _ _] (first child—nodes
=)
[_ true _ _] (nth child—nodes
— 1)
[_ true _] (nth child—nodes
— 2)

[- _ true] (mnth child—nodes

= 3))]
(loop [node sits—in—node]
(cond

;out of bounce
(—> (children node)

last

(>= (count t)))
node
;false mnode 1s a leaf node
(false? (nth t node))
node
;true node needs check deeper level
(nth t node)

(let [c—mnodes (children node)

APPENDIX A. EMBODIER SLICER

c—aabbs (map (fn [i] (index—to—aabb aabb
< tree—arity i)) c—nodes)]
(recur (match [(point—box—inc p (first c—aabbs

nth c—aabbs 2

((
(point—box—inc p (nth c—aabbs 1
(point—box—inc p (

(

))
))
))
point—box—inc p (nth c—aabbs 3))
[true - _ _] (first c—nodes)

[true _ _] (nth c—nodes 1)

[. _ true _] (nth c—nodes 2)

[- _ true] (nth c—nodes 3))))
;you shouldn 't be here

celse :warning—intruder—alert!)))

nil)

96

]

A.5 Source code of “slicer.lood”

(ns slicer.flood
(:require [clojure.core.match :refer [match]]
[slicer.tree :as tree])

(:use slicer.util))

(defn flooding—aabb—gen
[[min—x min—y max—x max—y :as aabb]]
(let [w (— max—x min—x)

h (— max—y min—y) |

APPENDIX A. EMBODIER SLICER 97

[[(— min—x w) min—y min—x max—y]| ;left box
[min—x max—y max—x (+ max—y h)] ;upper box
[max—x min—y (4+ max—x w) max—y| ;right box

[min—x (— min—y h) max—x min—y]|])) ;lower bozx

(defn slow—flood
"given.a.tree_and_aabb_.generated _from._the._slice ,
~.flood _the_tree_from.outside._.and.return.the_.nodes_that_are.
— flooded.
..Perfect _flood _compare_to_fast—flood , _and_no_border._is .
— required.”
[t aabb]
(let [flooding—aabbs (atom (flooding—aabb—gen aabb))
leafs (tree/leafs t)
flooded—nodes (atom #{})]
(loop [flooded—count (count @flooded—nodes) |
(doseq [[leaf collided] leafs
flooding—aabb @flooding—aabbs |
(let [leaf—aabb (tree/index—to—aabb aabb tree/
< tree—arity leaf)]
(match [(tree/aabb—inc leaf—aabb flooding—aabb)
(contains? @flooded—nodes leaf)
collided |
[true false false] ;when the leaf is
— intersecting with the flooding nodes;

— and not flooded before; and is not

— part of the slice matters; flood it

APPENDIX A. EMBODIER SLICER 98

— now

(swap! flooded—nodes conj leaf)

:else :do—not—care)))

(reset! flooding—aabbs
(—>> @flooded—nodes
vec
(map #(tree/index—to—aabb aabb tree/
— tree—arity %))

vec))

(if (<= (count Qflooded—nodes) flooded—count) ;when
— flooded nodes are not increasing. water has reach
— all parts
(vec @flooded—nodes)

(recur (count @flooded—nodes))))))

;since aabb can be smaller than mnozzle—diameter, this functin

— needs extra care

;(range 0.5 1 0.5)

(defn aabb—flood—points
"generate._flooding._points_for_interseciton._check_from._aabb”
[[min—x min—y max—x max—y :as aabb]| leaf—size]

(let [hl (/ leaf—size 2)
x—points (range (+ min—x hl) max—x hl)
y—points (range (+ min—y hl) max—y hl)
left—points (map #(identity [(— min—x hl) %])

— y—points)

APPENDIX A. EMBODIER SLICER

;(aabb—flood—points [0 0 1 1] 1) = ([1/2 —1/2] [1/2 3/2]

)

)

)

right —points (map #(identity [(+ max—x hl) %])

< y—points)

99

up—points (map #(identity [% (+ max—y hl)]) x—points)

low—points (map #(identity [% (— min—y hl)]) x—points

=)]
(—> left—points
(into right—points)
(into up—points)

(into low—points))))

— [3/2 1/2] [-1/2 1/2])
(aabb—flood—points [0 0 2 2] 1)

(defn aabb—flood—points

"generate flooding points for interseciton check from aabb

oo
[[min—z min—y maz—=z maz—y :as aabb]
(let [[mz my :as mid—point] [(—> (-
(/

(+

(—> (=

(/

(+

leaf—size]
maxr—r min—z)
2)

min—zx))
maz—y min—y)
2)

min—y))]

dz (min leaf—size (— mazr—z min—z))

dy (min leaf—size (— maz—y min—y))]

[; left column

APPENDIX A. EMBODIER SLICER 100

; [(— min—z (/ dz 2)) (— my (/ dy 2))]

; [(— min—z (/ dz 2)) (+ my (/ dy 2))]
;right column

; [(+ maz—z (/ dz 2)) (— my (/ dy 2))]

; [(+ maz—z (/ dz 2)) (+ my (/ dy 2))]
;upper row
[(— mz (/ dz 2)) (+ maz—y (/ dy 2))]
[(+ mz (/ dz 2)) (+ maz—y (/ dy 2))]

; ;lower row

; [(— mz (/ dz 2)) (= min—y (/ dy 2))]
[(+ ma (/ dz 2)) (= min—y (/ dy 2))]]
))

;(count (range —10 10 0.1))
;(aabb—flood—points [—10 —10 10 10] 0.1)
;(aabb—flood—points [—0.5 —0.5 0.5 0.5] 1)
p(into A} [1 2 3])

;(def debugging (atom []))

;(def tree—debug (atom mnil))

;(def aabb—debug (atom nil))

;(count @debugging)

;(nth @debugging 1)

;(slicer.draw/gqui—main @Qdebugging @tree—debug Qaabb—debug (

— str "resources/pic/fdd—1.png”))

APPENDIX A. EMBODIER SLICER 101

(defn flood—node
"geometrically .flood _the_nodes_that_are_intersecting._with.
— the_given_aabbs,
_.given_collision _.of_either_true_or._false.
~.the_second._aabb.is_the._.root_aabb_box_for_the._tree_t.
~.returns:
oo#{leaf—index....}”
[aabbs—or—points aabb t leaf—size collision]
(let [init—flood—points (match [(count (first
< aabbs—or—points)) |
[2] aabbs—or—points
[4] (—>> aabbs—or—points
(map (fn [ab] (aabb—flood—points ab leaf—size)))
(reduce into #{})
vec))
init—flooded —leafs (—>> init—flood—points
(map (fn [p] (tree/point—leaf
<~ p t aabb)))
(filter (complement nil?))
(filter (fn [i] (= collision
5 (nth t 1)))))
flooded—set (atom (set init—flooded—1leafs))]
(loop [flooding—leafs init—flooded—leafs]
(let [flood—points (—>> flooding—leafs
(map (fn [i] (tree/
— index—to—aabb aabb tree/

< tree—arity 1i)))

APPENDIX A. EMBODIER SLICER 102

(map (fn [ab] (
— aabb—flood—points ab
— leaf—size)))
(reduce into #{})
(filter (complement nil?)))
flooded—leafs (—>> flood—points
(map (fn [p] (tree/point—leaf
<~ p t aabb))) ;;get leafs
— for the points
(filter (complement nil?))
(filter (fn [node] (mot (
— contains? @flooded—set
< mnode)))) ;; remove the
— flooded ones
(filter (fn [i] (= collision (
— nth t i)))) ;;filtered
— according to collision
— boolean
)]
(swap! flooded—set into flooded—leafs)
(if (empty? flooded—leafs) ;; if the new flooded set
— 15 not grew, flooding is done
@flooded —set
(recur flooded—leafs))))))

;(keys (zipmap (map (comp keyword str) [1 2 3]) (repeat nil))

=)

APPENDIX A. EMBODIER SLICER 103

;(vec (reduce into #{} ([1 2 8] [4 &5 6])))
;(map inc #{1 2 3})

;(contains? #{1 2 3} 4)

(conj #0 1)

;(set nil)

;(set [01 2 3 }])

;(trampoline (flood [true false true true truef)) => 1
;(trampoline (flood [true true true true false])) = /4

;(tree/leafs [true false true true true])

i(let [a [1 2 3]
; b (atom a)

; _ (swap! b rest)]
;o [a @)

i)

; Now to look for contained space, [use line—slice
— intersection .
; Shoot a list of parallel lines along the longer axis where
— the slice sits.
; If the distance between first and second intersection
< points is larger than the smallest node (mozzle
— diameter)

; then we have a flooding point to start.

APPENDIX A. EMBODIER SLICER 104

; But what if the the model has no contained spaced after
— made as quad—tree,
; then a simple outer flood with all the collided nodes will

— left mnothing.

; Out most flood should be done first to see if there is
— contained space.
; then line intersection checks

; then the inner flooding.

s In case of line intersection checks finds no flooding point
% 7
; while out most flood + collided nodes = all leafs,

; the lines are not generated good enough.

; (map vector
; (map vector [1 2 3] [8 4 5])
; (map vector [1 2 3] [3 4 5]))

;(into [1 2 3] [4 5 6])

(defn mid—point
"given_two_points ,_return._middle_point”
[[x1 y1 :as pl] [x2 y2 :as p2]]
(let [dx (/ (— x2 x1) 2)

dy (/ (= v2 yl1) 2)]

APPENDIX A. EMBODIER SLICER 105

[(double (+ x1 dx)) (double (+ yl1 dy))]))

; (mid—point [0 0] [2 2])
; (mid—point [0 0] [-2 —2])
;(mid—point [1 0] [-2 —2])

(defn line—slice—flood—point
"give_,a.line .segment , _a.slice ,_returns._the_flood _point_or.
— nil_if _none_exist.

oo XXk > Xk

[line a—slice leaf—size]
(let [intersections (tree/line—slice—inc line a—slice)]
(cond
(empty? intersections)
nil
(even? (count intersections)) ;there are some missing
— dntersecitons , even? will filter those out.
(let [[x1 yl :as pl] (first intersections)
[x2 y2 :as p2] (second intersections)]
(cond
(or ;if a min—node aabb can fit in first two points
(> (Math/abs (— x2 x1)) leaf—size)
(> (Math/abs (— y2 yl)) leaf—size))
(mid—point pl p2) ;(move—point—towards—point pl p2
— (x 1.1 leaf—size)) ;return the middle point
celse nil))

celse

APPENDIX A. EMBODIER SLICER 106

nil)))

(defn find—contained—flooding—point
"generate_a.list _of_parallel_lines_from_AABB_of_a.slice ,
_.find _the_point_that_.is_contained._in_the_slice”
[a—slice leaf—size [min—x min—y max—x max—y :as aabb]]
(let [x—points (range (+ min—x (*x leaf—size 1.5)) (— max—x
— (% leaf—size 1.5)) (/ leaf—size 2))
x—start—points (map vector x—points (repeat max—y))
x—end—points (map vector x—points (repeat min—y))
x—lines (map vector x—start—points x—end—points)
y—points (range (4+ min—y (x leaf—size 1.5)) (— max—y
— (% leaf—size 1.5)) (/ leaf—size 2))
y—start—points (map vector (repeat max—x) y—points)
y—end—points (map vector (repeat min—x) y—points)
y—lines (map vector y-—start—points y—end—points)
lines (into x—lines y—lines) |
(loop [ind 0
results []]
(if (>= ind (count lines))
results
(let [flood—point (line—slice—flood—point (nth lines
< ind) a—slice leaf—size)]
(if (not (nil? flood—point))
(recur (inc ind) (conj results flood—point))

(recur (inc ind) results)

))))))

APPENDIX A. EMBODIER SLICER 107

;(find—contained—flooding—point [[[10 10 1] [10 —10 1]]
; [[-10 —10 1] [10 10 1] [10
— —10 1]]

: [[1 1]]]

; 1)

;(find—contained—flooding—point [[[1 1 1] [1 —1 1]]

; [[-1 —1 1] [1 1 1] [1 —1 1]]
; [[1 1]]]

; 1)

(defn fast—flood
"above._flood._is._so._slow ,_why_.not_a_new._one.
.faster ,.but_sacrificed .some_accuracy .
~.This_.will _not_flood .a_slice_.correctly_if _tree_is._not.
— generated _with_a_border.
~.border._needs.to_be_at_least _two_.times_of_the_nozzle_size”
[t aabb a—slice]
(let |
;outer—aabbs (flooding—aabb—gen aabb)
;- (debugger outer—aabbs ”"outer aabbs:”)
;outer—nodes (flood—node outer—aabbs aabb t leaf—size
— false)
;debug—nodes (—>> contained—points (map (fn [p] (tree

— /point—leaf p t aabb))) (filter (complement nil
— ?)))

APPENDIX A. EMBODIER SLICER 108

leaf—size (tree/tree—leaf—size t aabb)
edges (filter (fn [i] (nth t i)) (map first (tree/
— leafs t)))
contained—points (find—contained—flooding—point
< a—slice leaf—size aabb)
contained—nodes (if (empty? contained—points)
nil
(flood—node contained—points aabb t
— leaf—size false))]

(into edges contained—nodes)

))

A.6 Source code of “slicer.eulerian”

(ns slicer.eulerian
(:require [clojure.core.match :refer [match]]
[clojure.set :as s]
[slicer .tree :as tree]
[slicer .flood :as flood])

(:use slicer.util))

;eample of an meighbour—set:
i{ineg {1 #{2 3 4}

; 2 4 1}

; 8 4 1}

; 4 A1 2 3}

;oipos {01 A2 3 4}

APPENDIX A. EMBODIER SLICER 109

; 2 #H4 1}
; 8 M4 1}
; 4 {1 2 311}

(defn neighbours
"give_the_a_.list _of.nodes_.and_a_leaf _node_and_a_neighbour.
— set.(neg.and.pos),.returns.its._neighbours_.within._the.
— list _of_.nodes”
[node nodes t aabb & [neighbour—set]]
(let [node—aabb (tree/index—to—aabb aabb tree/tree—arity
< node)
leaf—size (tree/tree—leaf—size t aabb)
neighbour—points (flood/aabb—flood—points node—aabb
— leaf—size)
results (—>> neighbour—points
;find leaf of each poine
(map #(tree/point—leaf % t aabb))
;remove ones that are not in the flooded
— nodes
(filter #(contains? (set nodes) %))
set
vec
)]
(if (nil? neighbour—set)
results

(—>> results

APPENDIX A. EMBODIER SLICER 110

(filter (fn [n] ;remove ones that are in the neg
— mneighbour—set
(let [non—neighbours ((keyword (str node)) (:
< mneg neighbour—set)) |
(not (contains? non—neighbours n)))))
(into ((keyword (str node)) (:pos neighbour—set)))

— ;add ones in pos meighbour—set

))))

;(contains? (set [1 2 3]) /)
;(contains? (set [1 2 3]) 3)
;((keyword (str 3)) {:3 #{1 2 3}})

(defn bodd?
"bigger._odd”
[a]

(if (> a 2)
(odd? a)
false))

;this 1s too slow and not correct

;(defn remove—odd—deg—nodes

; "remove adjacent nodes edge that connects nodes of both
— odd degree.”

; [nodes—with—odd—degrees t aabb pre—set]

; (let [result—set (atom pre—set)]

APPENDIX A. EMBODIER SLICER 111

; (doseq [node—from nodes—with—odd—degrees]

; (doseq [node—to (neighbours node—from
— nodes—with—odd—degrees t aabb Qresult—set)] ;neighbours
— of odd degrees

; (swap! result—set update—in

; [:neg (keyword (str node—from))]

; conj node—to)

; (swap! result—set update—in

; [:neg (keyword (str node—to))]

; conj node—from)))

; @result—set))

(defn first—odd—node
"find _the_first _node_of_the_.searching—nodes_that_has._odd.
— degrees.within._nodes.”
[searching—nodes nodes t aabb pre—set]
(loop [ind 0]
(cond (>= ind (count searching—nodes))
nil
(bodd? (count (neighbours (nth searching—nodes ind)
< nodes t aabb pre—set)))
(nth searching—nodes ind)

celse (recur (inc ind)))))

(defn remove—odd—deg—nodes
"remove.adjacent _.odd—nodes_edge_that_connects_odd—nodes.of_

— both_odd_degree.”

APPENDIX A. EMBODIER SLICER

112

[odd—nodes nodes t aabb pre—set searched—nodes]
(let [node—odd—deg (first (s/difference odd—nodes
— searched—nodes))
neighbour—node—odd—deg (if (mot (nil? node—odd—deg))
(first—odd—node (neighbours
— node—odd—deg nodes t
< aabb pre—set) nodes
< t aabb pre—set)
nil)]
;(debugger (count odd—nodes) "counting odd—nodes”)
;(debugger (count searched—nodes) ”"counting
— searched—odd—nodes”)

(match [(nil? node—odd—deg) (nil? neighbour—node—odd—deg)

=]
[false false]; two adjacent odd—nodes with odd
— degrees are found
(recur odd—nodes
nodes t aabb
(—> pre—set
(update—in [:neg (keyword (str
— node—odd—deg))] conj
— mneighbour—node—odd—deg)
(update—in [:neg (keyword (str
— neighbour—node—odd—deg))| conj
< node—odd—deg))
(conj searched—nodes node—odd—deg

< mneighbour—node—odd—deg))

APPENDIX A. EMBODIER SLICER 113

[false true]; one node of odd degree without
— neighbour of odd degrees are found, and not
— all odd—nodes are searched.

(recur odd—nodes nodes t aabb pre—set (conj
— searched—nodes node—odd—deg))

celse

pre—set

)))

;(assoc—in {:neg {:1 #{2}}}
; [:neg :1]
; (conj (:1 (:neg {:neg {:1 #{2}}})) 3))

(defn min—index [v]

(first (apply min—key second (map—indexed vector v))))

(defn connect—odd—deg—nodes
"connect._the_pair_of_nodes_of_odd_degrees._in_.a_heruistic.
— fashion:
~.links _each.node_.to.its.closest _non—neighbour”
[odd—nodes nodes current—node t aabb pre—set]
(let [neighbour—nodes (neighbours current—node nodes t aabb
< pre—set)
searching—odd—nodes (vec (disj (s/difference
< odd—nodes neighbour—nodes) current—node))
searching—points (map #(tree/index—to—center aabb

— tree/tree—arity %) searching—odd—nodes)

APPENDIX A. EMBODIER SLICER 114

searching—distances (map #(tree/point—point—distant

(tree/index—to—aabb aabb
— tree/tree—arity
— current—node) %)
searching—points)
min—node (if (not (empty? searching—distances))
(nth searching—odd—nodes (min—index
< searching—distances))
nil)
next—node (if (>= (count searching—odd—nodes) 2)
(first (disj (set searching—odd—nodes)
< min—node))
nil)]
(cond
(number? next—node)
(recur (disj odd—nodes current—node min—node)
nodes
next—node
t aabb
(—> pre—set
(update—in [:pos (keyword (str current—node))|
< conj min—node)
(update—in [:pos (keyword (str min—node))]
< conj current—node)))
(number? min—node)

(—> pre—set

APPENDIX A. EMBODIER SLICER 115

(update—in [:pos (keyword (str current—node)) |
< conj min—node)

(update—in [:pos (keyword (str min—node))]
< conj current—node))

celse

pre—set)))

;(disj #{] 2 3’} 32 1)
s (min—key (range 4) [4 4 4 1])
;(min—index [1 2 3 0 4])

(defn convert—to—eulerian
"given._a.flooded._leaf _nodes,
~.returns._a_neighbour—set_that_will _convert_the_.graph_that._
<~ has_eularian._path”
[nodes t aabb]
(let [init—set (zipmap
(map (fn [n] (keyword (str n))) nodes)
(repeat #{}))
pre—set {:neg init—set :pos init—set}
odd—nodes (set (filter (fn [n] (bodd? (count (
< neighbours n nodes t aabb)))) nodes))
neg—set (remove—odd—deg—nodes odd—nodes nodes t aabb
— pre—set #{})
odd—nodes2 (set (filter (fn [n] (odd? (count (

— neighbours n nodes t aabb neg—set)))) nodes))

APPENDIX A. EMBODIER SLICER 116

final—set (connect—odd—deg—nodes odd—nodes2 nodes (
< first odd—nodes2) t aabb neg—set)

;odd—nodes3 (filter (fn [n] (odd? (count (mneighbours
< n nodes t aabb final—set)))) nodes)

]

final—set

;(vec odd—nodes3)
)

(defn all—edges
"returns.all_edges_of _the_flooded _.node”
[nodes t aabb & [fix—set]]
(let [result (atom #{})]
(doseq [node nodes]
(doseq [neighbour (if (nil? fix—set)
(neighbours node nodes t aabb)
(neighbours node nodes t aabb
— fix—set))]
(swap! result conj #{node neighbour})))
Q@Qresult))

i(= A1 2y A2 1))
i(conj #H} A1 2y #H2 1})

APPENDIX A. EMBODIER SLICER 117

J(zipmap [:1 :2 :3] (repeat #{}))
;(assoc {:neg {} :pos {}} :neg {:1 [2 3]})
;(assoc {:meg {:1 [4]} :pos {}} :neg {:1 [2 3]})

(defn random—loop—walk
[start —node unwalked—edges & [init—node walked—edges]]
{:pre [(set? unwalked—edges)]}
(let [the—walked—edges (if (nil? walked—edges) []
— walked—edges)
the—init—node (if (nil? init—node) start—node
< init—node)
step—edge (first (s/select #(contains? % start—node)
— unwalked—edges))
]
(cond
;walked to an end without anymore step—edge, gives an
— error
(nil? step—edge) (throw (Exception. "loop.walked._failed
< ,.graph_is._not_eulerian.”))
swalked to original position with a loop, walked s
— finished .
(= (first (disj step—edge start—node)) the—init—node) (
< conj the—walked—edges step—edge)
celse
(recur (first (disj step—edge start—node))

(disj unwalked—edges step—edge)

APPENDIX A. EMBODIER SLICER 118

[the—init—mode (conj the—walked—edges step—edge)

= 1))))
P(first (disj #{1 2} 1))

;(into
; (random—Iloop—walk 1 #{#{1 2} #{6 7} #{5 7} #7 1} #{2 3}
— #4 5y #H4 5 Ao 51})

;. (random—loop—walk 1 #{#{1 2} #{6 7} #{5 7} #7 1} #{2 3}
— #4 3t #4 5y #{6 5}}))

p(disj H#H{1 2y A2 3y #H2 3}1)

(defn get—start—node
[walked—edges unwalked—edges |
{:pre [(vector? walked—edges)]|}
(if (empty? walked—edges)
[(first (first unwalked—edges)) 0]
(let [[edge node]
(first
(for [x walked—edges
y unwalked—edges
:when (not (empty? (s/intersection x y)))]
[x (first (s/intersection x y))]))
;error: this indexr is not where 1t should be
— inserting the new loop.

; need search again for the position

APPENDIX A. EMBODIER SLICER 119

; sometimes place after, sometimes place before
index (.indexOf walked—edges edge)
;- (debugger walked—edges "walked—edges”)
;- (debugger (first (s/intersection (first
— walked—edges) (last walked—edges))) 7 first
— and last:”)
;- (debugger (first (s/intersection (nth
— walked—edges index) (nth walked—edges (inc
— index)))) "this and after:”)
insert—index (cond
Jfirst and last node has the start

— node

(first (s/intersection (first
— walked—edges) (last
— walked—edges)))
node)
0
scurrent and one after has the start

— node

(first (s/intersection (nth
— walked—edges index) (nth
— walked—edges (inc index))))
node)
(inc index) ;insert between current

— and one after

APPENDIX A. EMBODIER SLICER 120

;current and one before has the
— start node
(:
(first (s/intersection (nth
— walked—edges index) (nth
— walked—edges (dec index))))
node)
index ;insert between current and
— one after
:else (throw (Exception. ”loop.

< insertion._failed”))

]

[node insert—index])))

i (get—start—node [#{1 2} #{2 5}] #HH5 4} A4 1} #4 51})
i(get—start—node [#{6 2} #{2 3}] HH3 4} #4 1} #4 5}})
i(get—start—node [#{6 2} #{2 3}] HH7 4} #4 1} #{4 5}})
i(get—start—node [] HHT 4y #H4 1} #4 5}})

;(s/select #(contains? % 3) #{#{1 2} #{3 4}})

i(for [z AL 2} A2 5t
; y H#3 4y #4 1} #4 51}
; cwhen (not (empty? (s/intersection z y)))]

; (s/intersection x y))

APPENDIX A. EMBODIER SLICER 121

i(s/select #(contains? % 1) #H#H{2 3 #1 2}}) = AH#HL 21}
i (cindexOf [{1 2} #2 3} #{3 4} | #1 2})

i (indexOf [{1 2} #2 3} #3 4} | #2 0}) = —1
;(cindexOf [#{1 2} #{2 3} #{3 4} | nil) = —1

[12 8 4 5] = [4 512 3]

s(subvee [#{1 2} #{2 5y #{5 4} 0 1)

P(subvee [#{1 2} #2 5y #5841 1 3)

(defn shift—edges
"shift .the_edges_of_walked—edges_so_that_the_start—node.is._
— the_last”
[start—node walked—edges]
(let [end—edge (first (s/select #(contains? % start—node) (
— set walked—edges)))
index—end—edge (inc (.indexOf walked—edges end—edge))
first—segment (subvec walked—edges 0 index—end—edge)
last—segment (subvec walked—edges index—end—edge (
— count walked—edges)) |

(into last—segment first—segment)))

S(shift—edges 1 [#{1 2} #2 3} #3 4 #4 1}])
((shift—edges 2 [#{1 2} #2 9} #3 4} #4 1}])
S(shift—edges § [#{1 2} #2 3} #3 4 #4 1}])
S(shift—edges 4 [#{1 2} #2 3} H3 4Y #4 1}))
S(shift—edges 5 [#{1 2} #2 3}y #3 4 #4 1}])

(defn hierholzer

APPENDIX A. EMBODIER SLICER 122

"recursively .randomly_walk _the_flooded .nodes_until_all.
— edges.are_walked ,
~.returns._the_walking._path”
[all—edges nodes walked—edges]
(if (= (count walked—edges) (count all—edges));if all edges
— are walked
walked —edges
(let |
unwalked—edges (s/difference all—edges (set
— walked—edges))
[start—node index—start—node] (get—start—node
— walked—edges unwalked—edges)
first—seg (subvec walked—edges 0 index—start—node)
new—loop (random—loop—walk start—node
— unwalked—edges)
last—seg (subvec walked—edges index—start—node (
< count walked—edges))
new—walked—edges (into (into first—seg new—loop)
— last—seg)
;- (debugger new—loop "new—loop:”)
;- (debugger start—node 7start—node:”)
;- (debugger index—start—node "indexr—start—node:”)

]

(recur all—edges nodes new—walked—edges))))

linto [1] [2 3]) = [1 2 3]

APPENDIX A. EMBODIER SLICER 123

(defn edge—to—lines
[edges aabb]
(for [edge edges]
[(tree/index—to—center aabb tree/tree—arity (first edge))

< (tree/index—to—center aabb tree/tree—arity (second

— edge))]))

(defn edge—to—node—path [edge—path]
(let [edge—path—s (conj (vec (rest edge—path)) (first
— edge—path)) ;shift the path
intersections (map (fn [a b] (first (s/intersection a
< b))) edge—path edge—path—s)
result (filter (complement nil?) intersections)
first—node (first (s/difference (first edge—path) (
— sorted—set (first result))))
last—node (first (s/difference (last edge—path) (
— sorted—set (last result))))
]
(cond
(= 1 (count edge—path)) (vec (first edge—path)) ;single
— edge
(= (last result) first—node) (into [first—node]| result)
— ;if a loop
(not= (last result) first—node) (into (into [first—node
<] result) [last—node]) ;if a path

:else (throw (Exception. "node.path._failed”))

)

APPENDIX A. EMBODIER SLICER 124

))

(defn edge—to—points
[edges aabb]
(let [nodes (edge—to—node—path edges) |
(for [node nodes]

(tree/index—to—center aabb tree/tree—arity node))))

;(conj [1 2] 3)

;(map #(identity [%1 %2]) [1 2 3] [2 3])

i (edge—to—node—path [#{1 2} #{3 2} #{5 4} #{4 5} #{5 1}])
; (edge—to—node—path [#{1 2} #{3 2} #{3 4}])

i (edge—to—node—path [#{1 2} #{35 2}])

; (edge—to—node—path [#{1 2} #1 2}])

; (edge—to—node—path [#{1 2}])

(s/intersection #{1 2} #{2 3})

;(conj (vec (rest [1 2])) 1)

A.7 Source code of “slicer.gcode”

(ns slicer.gcode
(:require [slicer.util :refer :all]
[slicer .tree :as tree]
[slicer . flood :as flood]
[slicer .eulerian :as eulerian])

(:use clojure.java.io))

APPENDIX A. EMBODIER SLICER 125

(def header—str

(str 7;_generated._by_embodier.0.0.1” \newline))

(defn point—str [p e]

(str "G1.X" (first p) ”7.Y” (second p) ”"_E” e \newline))

(defn sum~—Ist
"[1.2.3) c=>.[1.3.6]"
[a]
(vec (reverse (take (count a) (map #(reduce + %) (iterate
~ drop—last a))))))
i(reduce + [1 2 3 4])
i(def a [10 1 1 11 5)])

; (sum—Ist a)

(defn slice—str
[cuts last—cmd last—e—height |
(if (empty? cuts)
last —cmd
(let [cut (first cuts)
init—cmd (str "Gl.Z” (:cut—point cut) \newline)
slice (:result cut)
;- (debugger slice "slice:”)
tree (tree/generate—tree slice 1 2)

aabb (—> slice (tree/aabb—slice 2) tree/make—square

=)

flooded—1leafs (flood/fast—flood tree aabb slice)

APPENDIX A. EMBODIER SLICER 126

fixing—set (eulerian/convert—to—eulerian
— flooded—leafs tree aabb)

edges (eulerian/all—edges flooded—leafs tree aabb
— fixing—set)

edge—path (eulerian/hierholzer edges flooded—Ileafs
= [])

points (eulerian/edge—to—points edge—path aabb)

point—distants (into [last—e—height]

(map tree/point—point—distant
< (drop—last points) (rest
< points)))

extrusions (sum—Ist point—distants)
current—e—height (last extrusions)]
#(slice—str (rest cuts)
(str last—cmd
init—cmd
(apply str (map point—str points
< extrusions)))

current—e—height))))

;this funciton is just a placepo for watertight, outline
— anfill , traversal and extruding accumulation

(defn gcode
[cuts]

(trampoline slice—str cuts header—str 0))

(defn write—gcode

APPENDIX A. EMBODIER SLICER 127

[gcode—Tfile gcode—str]
(with—open [g (writer (file gcode—file))]

(.write g gcode—str)))

Appendix B

Printer Simulator

B.1 Source code of “embodier.core”

(ns embodier. core
(:require
[embodier.webcomponents :as web]
[embodier.canvasdraw :as draw]
[goog.events :as events|

[secretary.core :as secretary :include—macros true :refer

— [defroute]]
[reagent.core :as reagent])
(:import [goog History |

[goog. history EventType]))

(reagent /render—component [web/app] (.—body js/document))

(secretary/set—config! :prefix "#)

128

APPENDIX B. PRINTER SIMULATOR 129

(defroute upload 7 /gcode” []

(reset! web/routes (assoc web/default :gcode—file true)))

(defroute layers 7 /layers” []

(reset! web/routes (assoc web/default :layer—view true)))

(defroute ”/” []

(reset! web/routes (assoc web/default :gcode—file true)))

(def history (History.))

(events/listen history EventType.NAVIGATE

(fn [e] (secretary/dispatch! (.—token e))))

(.setEnabled history true)

B.2 Source code of “embodier.fileapi”

(ns embodier. fileapi
(:require

[clojure.string :as s]))

(defn abs |[a]
(if (< a 0)
(= 0 a)
a))

APPENDIX B. PRINTER SIMULATOR

(defn d [log & logs]
(.log js/console "=————=debug

— log logs)))

(defn reverse—layerscmd
"reverse._.each_layers._cmds”
[layers—cmds |
(for [cmds layers—cmds]

(reverse cmds)))

(defn collapseY
"stores._Y_into_each_command”
[layers—cmds |
(for [cmds layers—cmds]

(loop [resultcmds nil
counter 0
last—y 0]
(if (= counter (count cmds))
resultcmds

(recur

(if (nil? (:y (nth cmds counter)))

(cons (assoc (nth cmds counter) :y last—y)

< resultcmds)

(cons (nth cmds counter) resultcmds))

(inc counter)

(if (nil? (:y (nth cmds counter)))

last—y

” (apply print—str

130

APPENDIX B. PRINTER SIMULATOR 131

(:y (nth cmds counter))))))))

(defn collapseX
"stores _X_into_each_command”
[layers—cmds |
(for [cmds layers—cmds]
(loop [resultcmds nil
counter 0
last—x 0]
(if (= counter (count cmds))
resultcmds
(recur
(if (nil? (:x (nth cmds counter)))
(cons (assoc (nth cmds counter) :x last—x)
< resultcmds)
(cons (nth cmds counter) resultcmds))
(inc counter)
(if (nil? (:x (nth cmds counter)))
last —x

(:x (nth cmds counter))))))))

(defn collapseE
"stores.extrusions.into._each._command”
[layers—cmds |
(for [cmds layers—cmds]

(loop [resultcmds nil

counter 0

APPENDIX B. PRINTER SIMULATOR 132

last —extrusion 0]
(if (= counter (count cmds))
resultcmds
(recur
(if (nil? (:e (nth cmds counter)))
(cons (assoc (nth cmds counter) :e last—extrusion
<) resultcmds)
(cons (nth cmds counter) resultcmds))
(inc counter)
(if (nil? (:e (nth cmds counter)))
last —extrusion

(:e (nth cmds counter))))))))

(defn collapseXYE
"stores XY.into.each _command”
[layers—cmds]
(for [emds layers—cmds]
(let [last—x (atom 0)
last—y (atom 0)
last—e (atom 0) |
(for [cmd cmds]
(—> cmd
(#(do (if (mot (nil? (:x %))) (reset! last—x (:x
= %)) %))
(#(do (if (not (nil? (:y %))) (reset! last—y (:y
= %)) %))

APPENDIX B. PRINTER SIMULATOR 133

(#(do (if (not (nil? (:e %))) (reset! last—e (:e
— %)) %))

(#(if (nil? (:

(#(if (nil? (:y %)) (assoc % :y Qlast—y) %))

(#(if (nil? (:e %)) (assoc % :e Qlast—e) %)))

))))

x %)) (assoc % :x Qlast—x) %))

(defn add—next
"make_single._linked_.list _according_to_extrusions”
[layers—cmds |
(for [cmds layers—cmds]
(for [i (range (count cmds)) |
(cond
(=0 i) (assoc (nth cmds i) :next (inc i))
(= (dec (count cmds)) i) (assoc (nth cmds i) :next
< mnil)
(> (:e (nth cmds i)) (:e (nth cmds (dec i)))) (assoc
— (nth cmds i) :next (inc 1))

:else (assoc (nth cmds i) :next nil)))))

(defn collapseZ
"collapse_:z_to_all_points”
[layers—cmds |
(loop [resultemds nil

counter 0
last—z 0]

(if (= counter (count layers—cmds))

APPENDIX B. PRINTER SIMULATOR

(reverse (filter #(if (nil? (first %)) false true)

— resultcmds))
(recur
(cons
(for [cmd (nth layers—cmds counter) |
(if (nil? (:z cmd))
(assoc cmd :z last—z)
nil))
resultcmds)
(inc counter)

(if (= (:z (first (nth layers—cmds counter))) nil)

last—z

(:z (first (nth layers—cmds counter))))))))

(defn cmd—map
"translate each_command._to._a_map_like_ {:x.1,.:y.2,_...}"
[layers—cmds |
(filter (complement empty?)
(for [part layers—cmds]
(filter (complement empty?)
(for [cmd part]
(apply merge (filter #(if (mot= % nil) true false)
(for [token (s/split cmd #’\s”)]
(cond

(re—find #" "X—«\d+.x$” token) {:x (re—find #’

— —x\d+\.x\d*" token)}

134

APPENDIX B. PRINTER SIMULATOR 135

(re—find # "Y—x\d+.x$" token) {:y (re—find #’
— —x\d+\.x\d*” token)}

(re—find # "Z—«\d+.x$" token) {:z (re—find #’
— —x\d+\.x\d*” token)}

(re—find # "F—sx\d+.x$" token) {:f (re—find #’
— —#\d+\.x\d*" token)}

(re—find # "E—x\d+.x$" token) {:e (re—find #’
< —x\d+\.#\d*” token)}

relse mil)))))))))

(defn layered
"partition _the _Gl_commands._array_by.Z_axis_movements”
[str—ary |
(partition—by (fn [s]
(if (re—find (re—pattern " "Gl.*Z.x”) s)
false
true))

str—ary))

(defn filterG1
"filter _out.commands_that_is_not_.started .with._G1”
[str—ary |
(filter (fn [s]
(if (re—find (re—pattern ""Gl.x”) s)
true
false))

str—ary))

APPENDIX B. PRINTER SIMULATOR 136

(defn readFile [layers file]
(let [raw—str (—> file .—target .—result)]
;(reset! layers (—> raw—str s/split—1lines filterG1
— layered cmd—map collapseZ collapseX collapseY
— collapseE reverse—layerscmd add—nezt))

(reset! layers (—> raw—str s/split—lines filterG1l layered
< cmd—map collapseZ collapseXYE add—next))
;(reset! layers (—> raw—str s/split—1lines filterG1
— layered cmd—map collapseZ collapseX collapseY

< collapseE reverse—layerscmd remove—long—jumps))
;(-log js/console (print—str (s/join "\n” @layers)))
;(d (nth @layers 1))

;(-log js/console (print—str (nth Q@Qlayers 2)))

))

(defn setOnLoad
7 called _by._web._component_of._file_onload._.f_(file)._being.
— read._into_layers._atom”
[f layers]
(let [reader (js/FileReader.) |
(set! (.—onload reader) (partial readFile layers))
(.readAsText reader f)))

B.3 Source code of “embodier.webcomponents”

(ns embodier.webcomponents

APPENDIX B. PRINTER SIMULATOR 137

(:require
[embodier. fileapi :as file]
[embodier.canvasdraw :as draw]

[reagent.core :refer [atom]]))

(def default {:gcode—file false

:layer—view false })

def width 640)
def height 480)

def routes (atom (assoc default :upload—file true)))

(

(

(

(def layers (atom nil))

(def current—layer—num (atom 0))
(def req—id (atom nil))
(defn notify [text]
(set! (.—innerHTML (.getElementByld js/document ”

< mnotification”)) text))

(defn logo []

[:div {:style {:font—size "18px”}} ”"Gcode.Viewer”])

(defn github []
[:a {:href "https://github.com/gzmask/embodier”} ”Github”])

(defn header []

[div.row

APPENDIX B. PRINTER SIMULATOR

[+ div.

(%
[:div

>

[div.

col-md—1 {:style {:background—color
href 77#/77} 77H0me77]]

.col-md—1 {:style {:background—color

href "#/gcode”} ”"Gceode_File”]
col-md—1 {:style {:background—color
href ”"#/layers”} ”"View_Layers” |]

.col-md—1 {:style {:background—color

]

.col-md—2 [logo]|]])

(defn upload—button []

[:input#upload—button {:type ”file”

7

:name ” files []

138

"Heee”}r [ra {:
"H#ceee”) [ra {:
"#cee”) [ra {:

"#cce”}} [github

:style {:color "#555”}

:on—change #(do

(file /setOnLoad (aget

—

%

—

(.. % —target —
files) 0) layers

)

(reset! routes (assoc

—

<_>

—

(defn gcode—dropper []

[:div

[:div.row

default

layer—view true)

)))

APPENDIX B. PRINTER SIMULATOR 139

[: div.col-md—4.col—md—offset—1
[: div#file—dropper. bcircle. circle_file [:span.glyphicon
— .glyphicon—hdd] ” Select _Gcode_File” |]]
[:div.row

[:div.col-md—3.col-md—offset—3 [upload—button|]|]])

(defn layer—view—before []
[: div#layer—view—before. bcircle. circle_layer

[: canvas#mycanvas|])

(defn control—range! [name min max]
[:div.col-md—10.col—md—offset—2 [:div.input—group
[:span.input—group—addon ”min:” min]
[:input {:type "range”
‘name name
:value @current—layer—num
:on—change #(do (notify ”
— Rendering ...”)
(reset! current—layer—num (—> %
<~ .—target .—value)))
:on—mouse—out #(draw/show—layer
— layers 7
— layer—view—before”
< current—layer—num req—id)
‘min min :max max

:style {:padding—top "4px”}

H

APPENDIX B. PRINTER SIMULATOR 140

[:span.input—group—addon ”at:”
< @current—layer—num |

[:span.input—group—addon "max:” max]]]|)

(defn layer—viewer []

[: div#layer—view .row

[:div.col-md—8
[:div.row
[control—range! ”layer” 1 (dec (count Qlayers))]]
[:div.row
[:div.col-md—11.col—md—offset—1 [layer—view—before|]]
[:div.row

[: span.col-md—offset—6 "hold.’D’ _to_drag” |]]])

(defn app []
[:div
[header |
[:div.row
[:div#notification.col-md—12 {:style {:color ”#888”
— font—size 720px”}} 7.7]]
(for [x (range 4)] “{ikey x} [:br])
(if (:layer—view Q@routes) [layer—viewer])
(if (:gcode—file @routes) [gcode—dropper])

1)

B.4 Source code of “embodier.canvasdraw”

APPENDIX B. PRINTER SIMULATOR 141

(ns embodier.canvasdraw)
(def THREE js /THREE)

(defn notify [text]

(set! (.—innerHTML (.getElementByld js/document ”

< mnotification”)) text))

(defn three—partics

"given.a.collection_of_pointso({:x.?,.:y.7},o...) ,.returns.
— a_threejs_ParticleSystem?”
[points color]
(let [geo (THREE.Geometry.)
mat (THREE. ParticleBasicMaterial. (clj—>js {:size
< 0.2, :color color}))
p—list (for [p points] (THREE.Vector3d. (:x p) (:y p)
= (7))
setup (set! (—> geo .—vertices) (apply array p-—list))
partics (THREE. ParticleSystem. geo mat)]

partics))

(defn three—line

7given.twooofpoints. ({:x 7oy 702?000) ,oreturns.a.

— threejs.line”

[points color]

(let [geo (THREE.Geometry.)

APPENDIX B. PRINTER SIMULATOR 142

mat (THREE. LineBasicMaterial. (clj—>js {:color color
= 1))
line (THREE.Line. geo mat)
p—list (for [p points]| (THREE.Vector3d. (:x p) (:y p)
S (7))
(set!
(—> geo .—vertices)
(apply array p-—list))
line))

(defn draw—lines
"given.cmds_.with_:next,_add_.lines _to.scene_in_pairs.
— accordingly”
[cmds scene color]
(doseq [cmd cmds]
(if (not (nil? (:next cmd)))
(let [p [cmd (nth cmds (:next cmd))]]

(.add scene (three—line p color))))))

(defn trackball—control [cam render dom]
(let [control (THREE. TrackballControls. cam dom) |
—rotateSpeed control) 1.0)
—zoomSpeed control) 1.2)
—panSpeed control) 0.8)

(.
(.
(.

set! (.—noZoom control) false)
(.—noPan control) false)
(.

—staticMoving control) true)

APPENDIX B. PRINTER SIMULATOR 143

(set! (.—dynamicDampingFactor control) 0.3)
(set! (.—keys control) (array 65 83 68))
(.addEventListener control ”change” render)

control))

(defn update—scene
"add.layers._from._file—api.into._.the_.scene”
[scene layers current—layer]
(let [children (.—children scene)]
(loop [i (dec (count children))]
(if (<« 1 0)
(do
(draw—lines (nth @layers @current—layer) scene 0
— x00ff00)
(loop [i (dec @current—layer) |
(if (< 1 0)
(notify ”Render.is._done.”)
(recur (do (.add scene (three—partics (nth
— @layers i) 0x000088))
(dec 1))))))
(recur
(do

(.remove scene (aget children 1))

(dec i)))))))

(defn NaN? [node]

"this_is._.the_js_.nil.”

APPENDIX B. PRINTER SIMULATOR

144

(and (= (.call js/toString node) (str ”[object_Number]”))

(js/eval (str node ”.!=_4" node

(defn get—center

))))

7given.an_array.of_{:x.:y_.:z}_points,_find._.the_center_point

2

N
[cmds |

(reduce (fn [p p—]

{:x (/ (+ (js/parselnt (:x
(js/parselnt (:x

ty (/ (+ (js/parselnt (:y
(js/parselnt (:y

z (/ (+ (js/parselnt (:z
(js/parselnt (:z

def width 640)
def height 480)
def scene (THREE. Scene.))

. 1000))
(set! (.—y (.—position camera)) —25)
(set! (.—z (.—position camera)) 25)

(def renderer (THREE.WebGLRenderer.))

(defn show—layer

[layers dom—id current—layer req—id]

def camera (THREE.PerspectiveCamera. 75 (/ width height) 0.1

(let [dom (.getElementByld js/document dom-—id)

APPENDIX B. PRINTER SIMULATOR 145

center—point (get—center (nth @layers Q@current—layer)
=)
render #(.render renderer scene camera)
control (trackball—control camera render dom)
animate (fn an []
(reset! req—id (js/requestAnimationFrame an
=))
(.update control)
(render)) |
(.setSize renderer width height)
(set! (.—innerHTML dom) ”77)
(.appendChild dom (.—domElement renderer))
(update—scene scene layers current—layer)
(set! (.—target control) (THREE.Vector3. (:x center—point
<) (:y center—point) (:z center—point)))
(js/cancelAnimationFrame Qreq—id)

(animate)

))

Appendix C

Links

1. Source Code of Embodier slicer:

https://github.com /gzmask /embodier.stl.slicer

2. Source Code of Embodier Geode viewer:

https://github.com/gzmask /embodier-gcode-webgl

3. G-Code viewer:

http://gzmask.github.io/embodier-gcode-webgl

146

References

1]

Hideo Kodama, “A Scheme for Three-Dimensional Display by Automatic Fab-
rication of Three-Dimensional Model”, IEICE TRANSACTIONS on Electronics
(Japanese Edition), Vol.J64-C, No.4, pp. 237-241, April 1981.

Hideo Kodama, “Automatic Method for Fabricating A Three-dimensional Plastic
Model with Photo-hardening Polymer”, Review of Scientific Instruments, Vol.52,
No. 11, pp. 1770-1773, November 1981.

PCMag.com, “3D Printing: What You Need to Know”, web,
http://www.pcmag.com/slideshow_viewer /

0,3253,1=293816&a=289174&po=1,00.asp, Retrieved October 2013.

Chee Kai Chua, Kah Fai Leong, Chu Sing Lim, “Rapid Prototyping: Principles

and Applications”, World Scientific, Vol. 1, pp. 124, 2003

Hassler Whitney, “Differentiable manifolds”, The Annals of Mathematics, Vol.37,

pp- 645-680, July 1936.

Ching-Kuang Shene, “Mesh Basics - Computing with Geometry”, web,
http://www.cs.mtu.edu/Shene/ COURSES /cs3621/SLIDES/Mesh.pdf, pp 3,

Spring 2012.

Weiming Wang, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong,
Weihua Tong, Jiansong Deng, Falai Chen, Xiuping Liu, “Cost-effective Printing

147

REFERENCES 148

[10]

[11]

[12]

[13]

of 3D Objects with Skin-Frame Structures”, ACM Transactions on Graphics

(SIGGRAPH Aisa), Vol.32, No.5, Article 177: pp. 1-10, 2013

Rylan Grayston, “The Peachy Printer”, Kickstarter project campaign, web,
https://www.kickstarter.com/projects/117421627 /the-peachy-printer-the-first-

100-3d-printer-and-sc/description, September 2013.

Rylan Grayston, “Known Issues & Delays”, The Peachy Printer Weekly Update
#38, Web,
https://youtu.be/edYiZAQKbDw, June 2015.

Chinese Cities Instance, “University of Waterloo Traveling Saleman Problems”,
Web,

http://www.math.uwaterloo.ca/tsp/world /countries.html, retrieved June 2015.

China Computation Log, Web,

http://www.math.uwaterloo.ca/tsp/world /chlog.html, September 15 2001.

Mircea Marin, “Lecture 10: Eulerian trails and circuits. Hamiltonian paths and
cycles.”, Web,

http://web.info.uvt.ro/ mmarin/lectures/GTC/L-11e.pdf, December 2014.

Kenneth Rosen, “Graph Terminology and Special Types of Graphs”, Discrete
Mathematics and Its Applications (7th Ed), Ch. 10-2, pp. 653, 2012.

