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Abstract

Recently, diffusion models have shown impressive generative performance. How-
ever, they have the disadvantage of having a high latent dimension and slow
sampling speed. To increase the sampling speed of diffusion models, diffusion
GANs have been proposed. But the latent dimension of diffusion GANs using
non-deterministic degradation is still high, making it difficult to invert the gener-
ative model. In this paper, we introduce an invertible diffusion GAN that uses
deterministic degradation. Our proposed method performs inverse diffusion using
deterministic degradation without a model, and the generator of the GAN is trained
to perform the diffusion process with the latent random variable. The proposed
method uses deterministic degradation, so the latent dimension is low enough to
be invertible.

1 Introduction

Generative models such as GANs [1] and VAEs [2] are trained to transform an easy la-
tent random variable into a complex data random variable. Generative model inversion
is a method of transforming a complex data random variable into an easy latent random
variable. It can be used for techniques such as feature embedding and principal com-
ponent analysis (PCA). One can find many GAN inversion methods and applications
in [4].

On the other hand, the diffusion model [3] has recently demonstrated high generative
performance. Since the diffusion model is also a generative model, we can consider of
inversion of it as well. However, the diffusion model has a critical disadvantage for
inversion, as its latent dimension is very high. For a basic diffusion model that uses
Gaussian noise on data, the latent dimension is the product of the data dimension
and maximum time step. For example, in a diffusion model that generates 32 × 32
resolution grayscale images with 100-time steps, the practical latent dimension would
be 32 × 32 × 100 = 102, 400. This is much higher than the latent dimension of GANs
or VAEs. High dimensional latent random variable not only makes the inversion of
the diffusion model difficult, but even if successful, the resulting inversion may not be
meaningful.

Some methods [5], [6] have applied GANs to the diffusion model to achieve faster
sampling speeds. However, these methods still use non-deterministic degradations such
as data-dimensional Gaussian noise, so the practical latent dimension remains very
high.
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Instead, in this paper, we introduce DDDG (Deterministic Degradation Diffusion
GAN), a method using deterministic degradation as the degradations [7] of the diffusion
process and injecting noise through a GAN.

In the basic diffusion model, the diffusion process occurs non-deterministically with-
out the model, and the model is trained to perform reverse diffusion. Therefore, during
the diffusion process, the data undergoes degradation, and its entropy increases. In
contrast, in DDDG, the reverse diffusion process occurs deterministically without the
model, and the GAN is trained to perform diffusion with a low-dimensional latent
random variable. Therefore, during the reverse diffusion process in DDDG, the data
undergoes degradation, and its entropy decreases.

The overall training process of DDDG is similar to DDGAN [5]. The generator
is trained to generate data for the previous time step (equal to the next time step
in DDDG), while the discriminator is trained to distinguish data at each time step.
However, there are some differences between DDGAN and DDDG.

The first difference is that DDGAN uses non-deterministic degradation, while DDDG
uses deterministic degradation. Since DDGAN uses both data dimensional non-deterministic
degradation and random latent variables, latent dimension is still high ((dx+dz)×tmax,
where dx, dz, and tmax represents data dimension, latent dimension, and maximum time
step). In contrast, DDDG uses only dz-dimensional latent random variables at each time
step, resulting in a very low latent dimension (dz × tmax).

The second difference is that the discriminator of DDGAN takes a pair of data as
input, while DDDG takes only one data as input. Since DDGAN uses non-deterministic
degradation, the discriminator needs to determine whether the generator input data and
generator output data correspond to each other. On the other hand, since DDDG uses
deterministic degradation, it can enforce the generator’s output data to correspond
to the input data. DDDG enforces the correspondence between the generator network
output data and input data by normalizing the generator’s network output. As a result,
the discriminator does not need to check whether the generator input data and output
data corresponding to each other. This means that the discriminator only needs to take
in a single data point.

Furthermore, DDDG uses deterministic degradation, and the discriminator only
takes in one data point, allowing the latent encoder that inverts the generator to be
integrated into the discriminator.

2 Deterministic Degradation Process for Diffusion
GAN

The Algo. 1 shows the training procedure of DDDG. The basic procedure is similar to
that of DDGAN [5]. In Algo. 1, DLSGAN [8] was used for GAN inversion.

In line 1, x0 is a constant. Therefore, x′
t is initialized as a constant.

In line 2, tmax represents the maximum time step.
In lines 3 and 4, Z, and X represent a latent random variable and data random

variable, respectively. Z is dz-dimensional i.i.d. random variable with mean 0 and
variance 1. The sample function represents a function that samples values from a
random variable. zt and x represent t-th latent code and data point, respectively.

In line 5, ”◦” represents element-wise multiplication. vt and st represent t-th latent
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Algorithm 1 Algorithm to train DDDG one cycle

Require: D,G,Z,X, v
1: x′

t ⇐ x0

2: for t in 0, 1, ..., tmax − 1 :
3: zt ⇐ sample(Z)
4: x ⇐ sample(X)

5: st ⇐
√
dzv

◦1/2
t

∥v◦1/2t ∥2

6: xt+1 ⇐ reduce info(x, t+ 1)
7: x′

t+1 ⇐ G(x′
t, zt ◦ s, t)

8: ar, ⇐ D(xt+1, t+ 1)
9: af , z

′
t ⇐ D(x′

t+1, t+ 1)

10: Lenc ⇐ 1
dz
∥(zt − z′t) ◦ s∥22

11: Ld ⇐ adv(ar, af ) + λencLenc

12: Lg ⇐ adv(af ) + λencLenc

13: x′
t ⇐ x′

t+1

14: vt ⇐ update(vt, z
′◦2
t )

15: apply gradient(D,Ld)
16: apply gradient(G,Lg)

3



variance vector and latent scale vector, respectively. vt and st correspond to the latent
variance vector, and latent scale vector of DLSGAN [8]. One other difference is that in
DDDG, v is a matrix of shape tmax × dz. The latent variance vector of each time step
can be different, so tmax latent variance vectors are required. dz represents a dimension
of the latent random variable for each time step.

In line 6, reduce info represents the degrading process. The entropy of data point
x increases after the degrading process in a typical diffusion model. However, the in-
formation of the data point x decreases after the degrading process in DDDG because
DDDG uses deterministic degrading. Therefore, reduce info(X, 0) has minimum en-
tropy (i.e., constant), and reduce info(X, tmax) equals to X. xt refers to the data point
x at the t-th time step. Therefore, one can infer that x0 in line 1 is constant.

In line 7, x′
t+1 represents generated data by the generator G. One can see that

G takes previously generated data x′
t as input and generates x′

t+1. In the case where
the model converges perfectly, x′

t in the generator input can be replaced with xt =
reduce info(x, t). However, in consideration of the case where the model may not fully
converge, we use x′

t instead. Also, note that the output of generator G is always be
normalized to ensure that x′

t+1 corresponds to x′
t (see Eqs. 1,2, and 3).

In lines 8 and 9, D represents the integrated discriminator with the latent encoder.
Therefore, integrated D has 2 outputs. The first output ar or af represents adversarial
value for real/fake discrimination. The second output z′t represents the predicted latent
code of latent code zt. ” ” represents not using value. Like DLSGAN, DDDG does not
use the predicted latent code of the real data.

In line 10, Lenc represents encoder loss. Lenc is the same as the encoder loss of
DLSGAN.

In lines 11 and 12, adv represents the adversarial loss function for GAN. One can
find several adversarial losses in [9]. λenc represents encoder loss weight.

In line 13, x′
t is updated to x′

t+1 for the next training step.
In line 14, ”update” represents the update function of DLSGAN. Note that only vt

(t-th vector of v) is updated.
DDDG uses deterministic degradation. It means that there are constraints on the

representation of x′
t+1, x

′
t+2, ..., x

′
tmax

when given x′
t. For example, assume 2× 2 average

pooling was used for image DDDG degradation. It means that average pooling on x′
t+1

or 2 times average pooling on x′
t+2 should be equal to x′

t. To satisfy such constraints,
DDDG normalizes the generator network output.

xnet
t+1 = Gnet(x

′
t, zt ◦ s, t) (1)

xnorm
t+1 = xnet

t+1 − reduce info(xnet
t+1, t) + x′

t (2)

x′
t+1 = reduce info(xnorm

t+1 , t+ 1) (3)

In Eq. 1, Gnet and xnet
t+1 represent the network part of the generator and network

output, respectively.
Eq. 2 shows an example of normalizing the generator output. xnorm

t+1 is normalized
network output. DDDG enforces the correspondence between the generator output
and input data by using Eq. 2. The normalization method can vary depending on the
degradation method used. However, Eq. 2 can be used for most degradation methods
that use typical filters.
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Eq. 3 shows applying reduce info to xnorm
t+1 so that x′

t+1 corresponds to time step
t+ 1.

Algorithm 2 DDDG sampling process

Require: G, z, v
1: x′ ⇐ x0

2: for t in 0, 1, ..., tmax − 1 :

3: st ⇐
√
dzv

◦1/2
t

∥v◦1/2t ∥2
4: x′ ⇐ G(x′, zt ◦ st, t)
5: return x′

Algorithm 3 DDDG inversion process

Require: D, x
1: z ⇐ []
2: for t in 0, 1, ..., tmax − 1 :
3: xt+1 ⇐ reduce info(x, t+ 1)
4: , zt ⇐ D(xt+1, t+ 1)
5: z.append(zt)
6: return z

Algos. 2, 3 show sampling and inversion algorithms for DDDG. In Algo. 2, x0 is a
constant.

In Algo. 3, [] represents empty list.
One can find several differences between DDDG and DDGAN [5] in Algo. 1.
The first difference is that DDGAN uses non-deterministic degradation, while DDDG

uses deterministic degradation. Since DDGAN uses both data dimensional non-deterministic
degradation and random latent variables, it uses a very high latent dimension ((dx +
dz)× tmax, where dx represents data dimension). Therefore, it is difficult to invert the
generator in DDGAN, and even if inverted, it may not be meaningful. In contrast,
DDDG uses only dz-dimensional latent random variables at each time step, resulting in
a very low latent dimension (dz × tmax). This makes it easy and meaningful to invert
the generator.

The second difference is that the discriminator of DDGAN takes a pair of data as
input, while DDDG takes only one data as input. Since DDGAN uses non-deterministic
degradation, the discriminator needs to determine whether the generator input data
and output data corresponding to each other. In contrast, DDDG uses deterministic
degradation, so it can enforce the generator’s output data to correspond to the input
data. DDDG enforces the correspondence between the generator network output data
and input data by normalizing the generator’s network output (Eq. 2).

Furthermore, DDDG’s use of deterministic degradation and discriminator receiving
only one data input allows the latent encoder for inverting the generator to be integrated
with the discriminator. In the case of DDGAN, since the discriminator takes a pair
of data with non-deterministic noise as input, a separate encoder that does not share
layers with the discriminator is required to invert the generator.

Due to these differences, DDDG can efficiently and meaningfully invert diffusion
GANs. Also, DDDG retains the advantage of fast sampling speed compared to a
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general diffusion model like another diffusion GANs.

3 Experiments

We trained DDDG with MNIST dataset [13]. The following hyperparameters were used
for model training.

λr1 = 0.1
λenc = 1.0
dz = 64
tmax = 6

Z ∼ N(0, Idz)

optimizer = Adam

learning rate = 0.002

β1 = 0.0

β2 = 0.99


trainable weights ema decay rate = 0.999

latent variance vector ema decay rate = 0.999
batch size = 16
epochs = 100

NSGAN [1] with R1 regularization [10] were used for adversarial losses. λr1 repre-
sents R1 regularization weight. Equalized learning rate [11] was used for all trainable
weights. DDDG is applicable for class-conditional GANs as the number of time steps
is very low. Therefore, we used CAGAN [14] for class-conditional GAN loss. We also
utilized the idea of CAGAN for the latent encoder of the discriminator. We set the
latent encoder output to dz × tmax-dimensional and only activate dz-dimensional latent
encoder output corresponding to each time step.

We used Gaussian blur for the degradation process. Fig. 1 shows the degradation
process of real images with Gaussian blur.

After training, the FID score [12] of DDDG was 4.196431, and the real image re-
construction performance was a PSNR of 14.816616 and an SSIM of 0.468145.

Fig. 2 visualizes the sampling process of DDDG. One can observe that the data is
progressively generated through the diffusion process in Fig. 2.

Fig. 3 visualizes the reconstruction process of DDDG. dz = 64 and tmax = 6, so
practical latent dimension of each sample is 64 × 6 = 384. It means that the latent
encoder of DDDG encodes input data into a 384-dimensional latent code.

In DDDG, the error in the predicted latent code at low t continues to have a persis-
tent impact on the subsequent time steps. We can see from Fig. 3 that some samples
are incorrectly reconstructed due to the poorly predicted latent code when the time
step is low. However, it still demonstrates that DDDG can properly reconstruct many
images through generative model inversion.

4 Conclusion

In this paper, we propose a diffusion GAN that uses deterministic degradation. Our
proposed method performs inverse diffusion using deterministic degradation without a
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Figure 1: Degradation process with Gaussian blur in real images. First column: con-
stant (reduce info(x, 0)). Second column: blurred image with Gaussian kernel σ = 6
(reduce info(x, 1)). Third to sixth column: σ = 5, 4, 3, 2. Last column: original image
(reduce info(x, tmax)).

model, and the generator of the GAN is trained to perform the diffusion process with
the latent random variable. The proposed method utilizes deterministic degradation,
allowing for a very low latent dimension, making it possible to invert the generator.
In addition, by using generator output normalization, the proposed method enforces
the generator to produce data that corresponds to the input data. As a result, the
discriminator does not need to take in a pair of data. In addition, because DDDG uses
deterministic degradation and the discriminator only needs to take in one data point,
the latent encoder and discriminator can be integrated efficiently.
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