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Abstract

We investigate the equation of motion for the throat of wormhole in three dimen-
sions , both classically and quantum mechanically. Minisuperspace model is applied to
the latter case. Our main purpose is to treat the motion of the throat in the same way
as the wave function of the universe by Hartle-Hawking. The resulting wave function
may have the Yukawa potential like solution. In this article some part is preliminary.
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1 Introduction

Quantum gravity is not yet established in spite of lots of efforts of many researchers. As we
know well, black holes have been deeply studied as suitable objects of quantum gravity ;
black hole entropy, black hole evaporation associated with the information paradox, inside
of the horizon etc. Especially those have been investigated vigorously through AdS/CFT
correspondence in string theory which is one of the strong candidates of quantum gravity.
However we cannot catch an even glimpse of quantum gravity , though it has contributed
many things to theoretical physics.
In this report we will focus on the wormhole in three dimensions which may suggest the
different aspects from black hole .Wormholes are the solutions to the Einstein field equa-
tions that have topological structures with a throat connecting two asymptotically regions
of spacetime (Mouth).[6], [7], [8]. It is known as the Einstein-Rosen bridge[6]. On the
other hand microscopically wormhole is one of the topologies which are the fluctuations
of the Planck scale spacetime (spacetime foam [9][10]). A microscopic wormhole might be
extracted from the spacetime foam to produce a traversable macroscopic wormhole [12].
The traversable wormhole was first studied by Morris and Thorn in [1]. We treat three di-
mensional case. Because it looks simple and gives many suggestions to the case of our real
four dimensions . As is well known, wormholes are collapsed if the exotic matter which
violates the energy conditions, does not exist. The classical equation of motion for the
wormhole throat is obtained from both the Einstein field equations and a suitable equation
of state for the matter at the throat. The equation of motion for the throat of wormhole
is treated classically and quantum mechanically . The properties of an hyperbolically ex-
panding throat are studied. In this report the throat expansion is thought to correspond
to the expansion of the universe in quantum cosmology[2]. So we deal with the throat R(t)
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like the scale factor a(t) in the quantum cosmology. In addition the degree of freedom is
restricted to one, R(t) , namely treated as a minisuperspace model. We study the equation
of motion of the throat of wormhole classically in Section 2. In section 3 we try to treat it
as the wave function quantum mechanically. In the last section we will have the discussion
and conclusion.

2 Classical equation of motion of the throat

We will study the equation of motion for the throat of wormhole classically. In the story, mi-
croscopically , namely on the Planck scale, spacetime may fluctuate quantum mechanically
. On the macroscopic scale , the classical spacetime appears smooth connected developing
all kinds of topological structures including wormholes. A microscopic wormhole may be
extracted from the spacetime foam to induce the birth of a macroscopic traversable worm-
hole. Redmount and Suen studied microscopic wormholes in Lorentzian spacetime and
found those wormholes are quantum mechanically unstable in four dimensions[13][14].

2.1 classical dynamics

A spherically symmetric Minkowski wormhole provides a very simple model of a mode of
topological fluctuation in Lorentzian spacetime foam which was proposed by J. Wheeler[9].
The classical geometry of such a wormhole in 3 dimensions is constructed by removing a
circle of time-dependent radius r = R(t) from two Minkowski space regions and identifying
the two boundary surfaces r = R(t), and incorporating an appropriate surface-layer stress-
energy on the boundary to satisfy the Einstein field equations. Off the boundary of throat
exterior spacetime regions are empty , so the Einstein field equations are satisfied trivially.
On the boundary of the throat of the wormhole the Einstein field equations are equivallent
with the Lanczos equations.

−8πSi
j = [Ki

j − δi jK
m
m] (1)

where Si
j is the surface stress-energy tensor and the right-hand side is the discontinuity in

the extrinsic curvature Ki
j on the boundary(Σ) , minus its trace Km

m across the boundary
(throat).Here (i, j) = (τ, θ) Now we will find the extrinsic curvature of the surface; r −
R(t) = 0. The spacetime metric on the boundary Σ can be written as

ds2Σ = −dτ2 +R2dθ2 = gijdx
idxj (2)

where dτ =
√

1− Ṙ2dt, τ is the proper time on Σ (surface, boundary)and Ṙ = dR
dt .

gij =

(
−1 0
0 R2

)
(3)
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we use the same meaning in different words.

Hyperurface=Boundary=Throat

The velocity 3-vector is

ub =
dxb

dτ
=

(
dt

dτ
,
dR

dτ
, 0

)
(4)

ub =

(
− dt

dτ
,
dR

dτ
, 0

)
(5)

ubub = −1 (6)

−
(
dt

dτ

)2

+

(
dR

dτ

)2

= −1 (7)

Ṙ ≡ dR

dt
(8)

(
dt

dτ

)2

= 1 +

(
dR

dτ

)2

= 1 +

(
dR

dt

dt

dτ

)2

= 1 +

(
dR

dt

)2( dt
dτ

)2

= 1 + Ṙ2

(
dt

dτ

)2

(9)

From (9) we obtain

dt

dτ
=

1√
1− Ṙ2

,
dR

dτ
=

Ṙ√
1− Ṙ2

(10)

So we obtain,

ub =

(
1√

1− Ṙ2
,

Ṙ√
1− Ṙ2

, 0

)
, ub =

(
− 1√

1− Ṙ2
,

Ṙ√
1− Ṙ2

, 0

)
(11)

The unit normal to Σ : nb = (n0, n1, n2) may found from

nbnb = 1, (12)

nbu
b = 0 (13)

nbu
b = n0u

0 + n1u
1 + n2u

2 = n0
1√

1− Ṙ2
+ n1

Ṙ√
1− Ṙ2

= 0 (14)
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n0n0 + n1n1 + n2n2 = 1 (15)

We obtain the unit normal vectors to Σ after some simple calculations.

nb =

(
− Ṙ√

1− Ṙ2
,

1√
1− Ṙ2

, 0

)
(16)

nb =

(
Ṙ√

1− Ṙ2
,

1√
1− Ṙ2

, 0

)
(17)

Next, we calculate the second fundamental form to Σ, which is defined as

Kij =
∂xα

∂ξi
∂xβ

∂ξj
∆αnβ (18)

= −nγ
(
∂2xγ

∂ξi∂ξj
+ Γγ

αβ

∂xα

∂ξi
∂xβ

∂ξj

)
(19)

Here (α, β) = (x0,x1, x2) = (t, r = R(t), θ) and (i, j) = (τ, θ)

ds2 = gαβdx
αdxβ = −dt2 + dr2 + r2dθ2 (20)

So,

gαβ =

 −1 0 0
0 1 0
0 0 r2

 (21)

gαβ =

 −1 0 0
0 1 0
0 0 r−2

 (22)

Christoffel symbol is calculated as

Γγ
αβ =

1

2
gγλ(∂αgβλ + ∂βgγα − ∂γgαβ) (23)

Non vanishing terms are

Γ1
22 =

1

2
(∂2g21 + ∂2g12 − ∂1g22 =

1

2
(−∂r(r2)) = −r (24)

Γ2
12 = Γ21 =

1

2
g22(∂1g22 + ∂g2g12 − ∂2g12) =

1

2
r−2∂r(r

2) =
1

r
(25)
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So we can calculate the second fundamental form explicitly;

Kττ =
∂xα

∂τ

∂xβ

∂τ
▽α nβ

= −nγ
(
∂2xγ

∂τ∂τ
+ Γγ

αβ

∂xα

∂τ

xβ

∂τ

)
= −n0

(
∂2x0

∂τ∂τ
+ Γ0

αβ

∂xα

∂τ

xβ

∂τ

)
− n1

(
∂2x1

∂τ∂τ
+ Γ1

αβ

∂xα

∂τ

xβ

∂τ

)
− n2

(
∂2x2

∂τ∂τ
+ Γ2

αβ

∂xα

∂τ

xβ

∂τ

)
= −n0

∂2x0

∂τ∂τ
− n1

∂2x1

∂τ∂τ

=
Ṙ√

1− Ṙ2

∂2t

∂τ∂τ
− 1√

1− Ṙ2

∂2R

∂τ∂τ

=
Ṙ√

1− Ṙ2

∂

∂τ

(
∂t

∂τ

)
− 1√

1− Ṙ2

∂

∂τ

(
∂R

∂τ

)
=

Ṙ√
1− Ṙ2

∂t

∂τ

∂

∂t

(
∂t

∂τ

)
− 1√

1− Ṙ2

∂t

∂τ

∂

∂t

(
∂R

∂τ

)
=

Ṙ√
1− Ṙ2

1√
1− Ṙ2

∂

∂t

(
1√

1− Ṙ2

)
− 1√

1− Ṙ2

1√
1− Ṙ2

∂

∂t

(
Ṙ√

1− Ṙ2

)

=
R2R̈

(1− Ṙ2)5/2
− 1

1− Ṙ2

(
R̈√

1− Ṙ2
+

Ṙ2R̈

(1− Ṙ2)3/2

)

=
−R̈

(1− Ṙ2)3/2
(26)

Kθθ = −nγ
(
∂2xγ

∂θ∂θ
+ Γγ

αβ

∂xα

∂θ

∂xβ

∂θ

)
= −n0

(
∂2x0

∂θ∂θ
+ Γ0

αβ

∂xα

∂θ

∂xβ

∂θ

)
− n1

(
∂2x1

∂θ∂θ
+ Γ1

αβ

∂xα

∂θ

∂xβ

∂θ

)
− n2

(
∂2x2

∂θ∂θ
+ Γ2

αβ

∂xα

∂θ

∂xβ

∂θ

)
= −n1

(
∂2x1

∂θ∂θ
+ Γ1

αβ

∂xα

∂θ

∂xβ

∂θ

)
= − 1√

1− Ṙ2

(
Γ1
22

∂x2

∂θ

∂x2

∂θ

)
= − 1√

1− Ṙ2

(
(−R)∂θ

∂θ

∂θ

∂θ

)
=

R√
1− Ṙ2

(27)
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So the race is

K ≡ Ki
i = gikKki = g00K00 + g11K11 = (−1)Kττ +R−2Kθθ

=
R̈

(1− Ṙ2)3/2
+R−2 R√

1− Ṙ2
(28)

Using the above results we can obtain the surface stress tensor Si
j

−8πSτ
τ = Kτ

τ − δττK

−8πgτλSλτ = gτλKλτ −K

−8πgττSττ = gττKττ −K

−8π(−1)Sττ = (−1)Kττ −K (29)

We can obtain Sττ by substituting (26) and (28) to (29)

Sττ = − 1

8πR
√

1− Ṙ2
(30)

Similarly

−8πgθθSθθ = gθθKθθ −K

−8πR−2Sθθ = R−2Kθθ −K (31)

We obtain Sθθ by substituting

Sθθ =
R2

8π

R̈

(1− Ṙ2)3/2
(32)

We suppose that Sij on the throat (boundary, surface, Σ) corresponds to a perfect fluid :

Sij = (ps + σ)uiuj + psgij (33)

Here σ is the surface energy density and ps is the surface pressure on the boundary.

Si
j =

(
−σ 0
0 ps

)
(34)

Then,

Sττ = σ (35)

Sθθ = R2ps (36)

So we obtain a couple of equaitons,
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− 1

8πR
√

1− Ṙ2
= σ (37)

R2

8π

R̈

(1− Ṙ2)3/2
= R2ps (38)

In order to find the equation of motion for the throat, we need an equation of state
relating σ and ps. Generally it is represented as

ps = ωσ (39)

After some calculations, we obtain the equation of motion of the throat which is simple
but based on the Einstein field Equation.

RR̈− ωṘ2 + ω = 0 (40)

If we choose ω = −1 for simplicity, the equation of motion is

RR̈+ Ṙ2 − 1 = 0 (41)

This resulting equation (40) in three dimensional gravity is the same as the one in four
dimensional gravity[4][5], surprisingly. The solution is

R(t) =
√
t2 + b2 (42)

So we can obtain the σ by substituting (42) into (37)

σ = − 1

8πb
< 0 (43)

3 Quantum Aspect

Next we investigate quantum aspect of the equation of motion of wormhole throat using the
classical result. An action corresponding to the above equation of motion Eq.(41) appears
as

S =

∫
b2

R

√
1− Ṙ2dt (44)

The Lagrangean is given by

L =
b2

R

√
1− Ṙ2 (45)
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The canonical momentum will be

p =
∂L
∂Ṙ

= − b2Ṙ

R
√

1− Ṙ2
(46)

Inserting R(t) into eq(44),

S = b2
∫

b

b2 + t2
dt = b2 arctan

(
t

b

)
(47)

Next the Hamiltonian is given

H = pṘ− L =
p

Ṙ
= −

√
p2 +

b4

R2
= −

√
p2 +

(
−b

2

R

)2

(48)

We see

M(t) = − b2

R(t)
= − ℏ

cR(t)
(49)

In quantum cosmology theory, the evolution of the universe is completely determined by
its quantum state that should satisfy the Wheeler-DeWitt equation. Now we assume
the same situation in the evolution of the throat. namely, the evolution of the throat
is completely determined by its quantum state that should satisfy the Wheeler-DeWitt
equation. Fundamentally the quantum wormhole is to be described by a wave function
ψ(R, t) in a minisuperspace model which has a few number of degree of freedom, for
example scale factor a in quantum cosmology.

Evolution of R(t) ⇐⇒ Evolution of a(t) (50)

As you know well about quantization , two ways exist, canonical method and path
integral method. Here we use the canonical method.

3.1 Canonical Method

3.1.1 rough estimation

Now we quantize the classical motion canonically in minisuperspace model which is ristricted
the degree of freedom to a finite number of it. But the hamiltonian is represented by square
root.so we will approximate ( this is a very rough treatment)

H = −b
2

R

√
1 +

R2

b4
p2 ≈ −b

2

R
(1 +

1

2

R2

b4
p2) (51)

= − R

2b2
p2 − b2

R
(52)
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We do with the ordinary procedure of canonical quantization:

p→ ℏ
i

∂

∂R
(53)

We can obtain the Wheeler-DeWitt equation:

Ĥψ(R) = 0 (54)

where

Ĥ =
ℏ2R
2b2

∂2

∂R2
− b2

R

ψ(R) is the wavefunction of the motion of the throat. Our Wheeler-DeWitt equation is

d2ψ

dR2
− 2b4

ℏ2R2
ψ = 0 (55)

The potential is

V (R) = − 2b4

ℏ2R2
(56)

The solutions of the above Wheeler-DeWitt equation ( Cauchy-Euler equation) are

ψ(R) = AR
1+

√
α

2 +BR
1−

√
α

2 (57)

where α ≡ 1 + 8b4

ℏ2 , A and B are constant defined by the boundary conditions.

3.1.2 Klein-Gordon equation

Next we estimate the Hamiltonian, From the Hamiltonian we obtain the equation;

E2 = p2 +
b4

R2
(58)

The above equation corresponds to the usual relativistic energy-momentum relation:

E2 = p2c2 +M2c4 (59)

We find

M2c4 =
b4

R2
,M = ± b2

Rc2
(60)

Next we do the ordinary canonical replacement for quantization;

E → iℏ
∂

∂t
, p→ ℏ

i

∂

∂R
(61)
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So we obtain the Klein-Gordon equation:

(
− ∂2

∂t2
+

∂2

∂R2
− b4

ℏ2R2

)
ψ(R, t) = 0 (62)

We start at the Einstein field equation to arrive at the Klein-Gordon equation in min-
isuperspace model.

The above equation is resolved by using inverse Fourier transform. ψ(R, t) is represented
by Inverse Fourier Transform.

ψ(R, t) =
1√
2π

∫
ψ̂(k, t)eikRdk (63)

So we obtain the equation;

∂2ψ(R, t)

∂R2
=

1√
2π

∫
ψ̂(k, t)

(
∂2

∂R2
eikR

)
dk (64)

=
1√
2π

∫
ψ̂(k, t)(ik)2eikRdk (65)

∂2ψ(R, t)

∂t2
=

1√
2π

∫
∂2ψ̂(k, t)

∂t2
eikRdk (66)

The above equations are substituted into the original Klein-Gordon equation. We obtain

∂2ψ̂(k, t)

∂t2
+ k2ψ̂(k, t) +

b4

ℏ2R2
ψ̂(k, t) = 0 (67)

At last we obtain the equation:

∂2

∂t2
ψ̂(k, t) = −ω2ψ̂(k, t) (68)

where

ω2 ≡ k2 +
b4

ℏ2R2
(69)

where b2

R = M corresponds to the rest mass of a particle. This equation describes the
Harmonic Oscillation ; The solutions are

ψ̂(k, t) = A(k)e−iωt +B(k)eiωt (70)

(71)
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Next we consider the stationary case of the Klein-Gordon equation, namely time inde-
pendent case. The equation is(

∂2

∂R2
− b4

ℏ2R2

)
ψ(R) = 0 (72)

The corresponding Green function is(
∂2

∂R2
− α2

)
G(R) = −δ(R) (73)

where

α2 =
b4

ℏ2R2
(74)

and δ(R) is the delta function. Here we set the inverse Fourier transform of G(R):

G(R) =
1√
2π

∫ ∞

−∞
G̃(k)eikRdk (75)

δ(R) =
1√
2π

∫ ∞

−∞
eikRdk (76)

The delta function is defined as the Fourier transform of “1”. Substituting eq (72),(73)
into (71), we obtain

G̃(k)
(
k2 + α2

)
= 1 (77)

So

G̃(k) =
1

k2 + α2
(78)

Substituting (76) into (73),

G(R) =
1√
2π

∫ ∞

−∞

1

k2 + α2
eikRdk (79)

Considering the complex plane, we can perform the above integration by use of the resdue
of the poles at k = ±iα. Concretely we consider the next function on the complex plane;

f(k) =
eikR

k2 + α2
=

eikR

(k + iα)(k − iα)
(80)
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So by the suitable integral pathway , we obtain the resdue as

Res(iα) = (k − iα)f(k)|k=iα =
eikR

k + iα
|k=iα =

e−αR

2iα
(81)

So we obtain∮
C
f(k)dk =

∮
C

eikR

k2 + α2
dk =

∮
C

eikR

(k + iα)(k − iα)
dk = 2πiRes(iα) =

π

α
e−αR (82)

We obtain , using α2 = b4

ℏ2R2

ψ(R) =
1√
2π

π

α
e−αR =

√
π

2

e−αR

α
=

1√
2π
R
e−

b2

ℏ

b2

ℏ
(83)

This solution may look like the deformation of the Yukawa potential[11].

4 Conclusions

In this report we investigated the equation of motion of wormhole throat in three dimensions
in both classical level and quantum level. In minisuperspace model , the quantized equation
of motion is the Klein -Gordon like equation. The solutions describe the ordinary Harmonic
Oscilattion. Especially in a stationary case, the solution has the Yukawa potential like
solutions. However the object we dealt with here is the gravitational equation of motion
for the throat of wormhole in general relativity. We intended to describe the evolution of
the throat in the same way as Hawking described the wave function of the universe..
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