
ON THE TOPOLOGY OF PROBLEMS AND THEIR SOLUTIONS

THEOPHILUS AGAMA

Abstract. In this paper, we study the topology of problems and their solution

spaces developed introduced in our first paper [1]. We introduce and study the

notion of separability and quotient problem and solution spaces. This notions
will form a basic underpinning for further studies on this topic.

1. Introduction

In [1] we studied the theory of problems and their solution spaces. We recall the
following definitions

Definition 1.1. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all problems to be solved to provide
solution X to problem Y the problem space induced by providing solution X to
problem Y . We denote this space with PY (X). If K is any subspace of the space
PY (X), then we denote this relation with K ⊆ PY (X). If the space K is a subspace
of the space PY (X) with K 6= PY (X), then we write K ⊂ PY (X). We say problem
V is a sub-problem of problem Y if providing a solution to problem Y furnishes
a solution to problem V . If V is a sub-problem of the problem Y , then we write
V ≤ Y . If V is a sub-problem of the problem Y and V 6= Y , then we write V < Y
and we call V a proper sub-problem of Y .

Definition 1.2. Let PY (X) be the problem space induced by providing the solution
X to problem Y . Then we call the number of problems in the space (size) the
complexity of the space and denote by C[PY (X)] the complexity of the space.
We make the assignment Z ∈ PY (X) if problem Z is also a problem in this space.

Definition 1.3. Let X denotes a solution (resp. answer) to problem Y (resp.
question). Then we call the collection of all solutions to problems obtained as a
result of providing the solution X to problem Y the solution space induced by
providing solution X to problem Y . We denote this space with SY (X). If K is any
subspace of the space SY (X), then we denote this relation with K ⊂ SY (X). We
make the assignment T ∈ SY (X) if solution T is also a solution in this space.

In [1], we made the following conjectures, whose proof or disprove will undoubt-
edly change the landscape of the theory and could illuminate certain subtle futures
about this topology:

Conjecture 1.4. Let V be a problem. If V has a minimal and a maximal sub-
problem, then V must be a regular problem.
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Conjecture 1.5. Let V be a problem with solution U and Y a problem with solution
X. If V be regular and the spaces PV (U) and PY (X) are highly connected, then Y
must also be regular.

In the current studies, the truth of the following result is obvious.

Proposition 1.6. Let V and Y be any two problems in some problem space. If
there exists an L ∈ SY (X) that solves V and Y , then either V = Y or V ≡ Y .

2. Alternative solutions and their corresponding solution spaces

Definition 2.1. Let Y be a problem. Then we say X and U are alternative
solutions to Y if and only if U and X both solves Y . We denote this relation with
X ⊥ U or U ⊥ X.

Proposition 2.2. Solution spaces remain invariant under replacement with alter-
native solutions.

Proof. Let PY (X) be a problem space with corresponding solution space SY (X).
Suppose L ∈ SY (X) with L ⊥ K, then there exist a problem F ∈ PY (X) that is
solved by L. Since L ⊥ K, it follows that K also solves F . Thus we can replace
L ∈ SY (X) with K. �

3. Separable and inseparable problem and solution spaces

In this section we introduce and study the notion of separability of problem and
their corresponding solution spaces. We first launch the following language.

Definition 3.1. Let PY (X) be a problem space. Then we say PY (X) is separable
if and only there exist some PV (U) ⊂ PY (X) and PK(L) ⊂ PY (X) such that

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅
and F 6≡ G for any F ∈ PV (U) and G ∈ PK(L). Otherwise, we say the problem
space is inseparable. Similarly, we say a solution space SY (X) is separable if and
only if there exist some SV (U) ⊂ SY (X) and SK(L) ⊂ SY (X) such that

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
and R 6⊥ W for any R ∈ SV (U) and W ∈ SK(L). Otherwise, we say the solution
space is inseparable.

We demonstrate that the notion of separability can be passed to and fro be-
tween problems and their corresponding solution spaces. The following result is a
formalization of this important concept.

Theorem 3.2. Let PY (X) be a problem space with the corresponding solution space
SY (X). Then PY (X) is separable if and only if SY (X) is separable.
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Proof. Suppose PY (X) is separable, then there exist PV (U) ⊂ PY (X) and PK(L) ⊂
PY (X) such that

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅
and F 6≡ G for any F ∈ PV (U) and G ∈ PK(L). For any F ∈ PV (U) there
exists some R ∈ SV (U) that solves F and some W ∈ SK(L) that solves G. Since
PV (U)∩PK(L) = ∅ and problems in both spaces are not equivalent, it follows that
R 6⊥W and R 6∈ SK(L) and W 6∈ SV (U). Since R and W are arbitrary , it follows
that SY (X) must also be separable. Suppose without loss of generality that R solves
some problem in the space PK(L). In particular, there exists some T ∈ PK(L) that
is solved by R. Since R also solves F and there exists some W ∈ SK(L) that
solves T , it must be that W ⊥ R, a contradiction. In the case, R ⊥ W then we
obtain R ∈ SK(L) and W ∈ SV (U) by virtue of Proposition 2.2. Without loss of
generality, we examine the case R ⊥ W and R ∈ SK(L) with W 6∈ SV (U) then
W ∈ SV (U) by virtue of Proposition 2.2. This is also a contradiction.
Conversely, suppose the solution space SY (X) is separable. Then there exist some
SV (U) ⊂ SY (X) and SK(L) ⊂ SY (X) such that

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
and R 6⊥W for any R ∈ SV (U) and W ∈ SK(L). Clearly R solves some G ∈ PV (U)
and W solves some T ∈ PK(L). We claim that T 6≡ G with

PV (U) ∪ PK(L) = PY (X)

with

PV (U) ∩ PK(L) = ∅.
Suppose T ≡ G for some T ∈ PK(L) and G ∈ PV (U), then R ⊥W , a contradiction.
Since

SV (U) ∪ SK(L) = SY (X)

with

SV (U) ∩ SK(L) = ∅
it follows that

PV (U) ∪ PK(L) = PY (X).

Suppose to the contrary that

PV (U) ∪ PK(L) ⊂ PY (X)

then there exist a problem A ∈ PY (X) that has no solution in SV (U)∪ SK(L) but
has solution in SY (X). This assertion contradicts the equality

SV (U) ∪ SK(L) = SY (X).

We note that SV (U) ∩ SK(L) = ∅ implies PV (U) ∩ PK(L) = ∅. Suppose that
PV (U)∩PK(L) =6 ∅. Then there exists a problem J ∈ PV (U)∩PK(L) so that there
exists some N ∈ SV (U) ∩ SK(L) that solves J . This completes the proof. �
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4. Quotient problem and solution spaces

In this section, we introduce and study the notion of the quotient problem and
their corresponding solution spaces. We launch the following terminologies.

Definition 4.1. Let PY (X),PV (U) be problem spaces with

PV (U) ⊂ PY (X).

Then we say the quotient space induced by PV (U) in PY (X) regulated by a fixed
T ∈ PY (X), denoted by PY (X)/TPV (U), is the collection of problems

PY (X)/TPV (U) := {T} ∪ PV (U).

If PY (X)/TPV (U) := {T} ∪ PV (U) = PY (X) for some T ∈ PY (X) then we
say PV (U) is a principal subspace of the space PY (X). On the other hand, if
PY (X)/TPV (U) := {T} ∪ PV (U) = PV (U) for all T ∈ PY (X) (T 6= Y ) then we
say PV (U) is an ideal sub-space of the problem space PY (X).

In the sequel we use the notion of regularity and maximality to find a subspace
that is ideal and at the same time principal.

Proposition 4.2. Let PY (X),PV (U) be problem spaces with PV (U) ⊂ PY (X). If
Y is a regular problem and V is the maximal sub-problem of Y , then the sub-space
PV (U) is ideal and principal.

Proof. Suppose PV (U) ⊂ PY (X) and assume that Y is a regular problem and V is
the maximal sub-problem of Y . It follows for the sequence of all the sub-problems
{Ji}i≥1 of Y except V , we can write

· · · Jn ≤ · · · ≤ V ≤ Y.

Since every problem in the space PV (U) is a sub-problem of Y , it follows that for
each T ∈ PY (X) except Y , we must have

{T} ∪ PV (U) = PV (U)

and the space is ideal. Similarly, if we choose T = Y , then we have {T}∪PV (U) =
PY (X) and the space is a principal space. �

5. Overlapping and non-overlapping problem and solution spaces

In this section we study the notion of overlapping and non-overlapping problem
and solution spaces. We launch formally the following languages.

Definition 5.1. Let PY (X),PV (U) be problem spaces. Then we say they are
overlapping if and only if

PY (X) ∩ PV (U) 6= ∅.
Otherwise, we say they are non-overlapping. The same characterization also holds
for their corresponding solution spaces.

Proposition 5.2. Let PY (X),PV (U) be problem spaces, with their correspond-
ing solution spaces SY (X),SV (U) such that F 6≡ G for any F ∈ PY (X) and
G ∈ PV (U). Then the problem spaces are non-overlapping if and only if their
corresponding solution spaces are non-overlapping.
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Proof. First suppose PY (X) ∩ PV (U) 6= ∅ then there exist some T ∈ PY (X) ∩
PV (U). Since Y is a problem with solution X and V is a problem with solution U , it
follows that T must also be a solved problem. That is, there exist some K ∈ SY (X)
that solves T . Again, T ∈ PV (U) so that there exist some G ∈ SV (U) that solves
T . It follows that G and K must be the same solution or G ⊥ K; that is, G and
K are alternative solutions to T . Since solutions spaces remain invariant under
replacement with alternative solutions, it follows in particular that we can replace
G ∈ SV (U) with K and the space SV (U) still remains unchanged. Conversely,
suppose SY (X)∩SV (U) 6= ∅. It follows that for each F ∈ SY (X)∩SV (U) must be
a solution to some problem T ∈ PY (X) ∩ PV (U). �

6. Symmetric problem spaces

In this section we study the notion of symmetry existing among problem spaces.
We launch the following languages.

Definition 6.1. Let PY (X),PV (U) be problem spaces. We say the problem spaces
are symmetric if for each problem T ∈ PY (X) there exist a problem L ∈ PV (U)
such that K ≡ L. That is, problem K and problem L are equivalent. We denote
the equivalence between the space PY (X) and PV (U) as

PY (X) � PV (U).

We use the notion of symmetry to justify the assertion that the problems spaces
endowed with equivalent problems have indistinguishable solution spaces. In fact,
it has consequences that allows us to artificially build solution spaces that can be
tweak without changing the structure.

Proposition 6.2. Let PY (X) be a problem space with a corresponding solution
space SY (X). If PY (X) � PV (U), then

SY (X) = SV (U).

Proof. Suppose PY (X) � PV (U), then for each problem T ∈ PY (X) there exists a
problem K ∈ PV (U) such that K ≡ T . Since SY (X) is the corresponding solution
space for PY (X), there exists some F ∈ SY (X) that solves T . Since problem T
and problem K are equivalent problems, it follows that F also solves K ∈ PV (U).
The claim follows by iterating the argument in this manner to build the solution
space SV (U). �

Proposition 6.3. Let SY (X) and SV (U) be solution spaces. If for each K ∈
SY (X) there exist some L ∈ SV (U), then

PY (X) � PV (U).

Proof. Let K and L be arbitrary with K ∈ SY (X) and L ∈ SV (U). Then there
exists a problem T ∈ PY (X) solved by K and a problem F ∈ PV (U) solved by L.
Since ≡ is an equivalence relation and K ⊥ L, it follows that T ≡ F , since L also
solves T and K also solves F . The claim follows by repeating the argument with
solutions in the space. �
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